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The previously developed first-principles density-functional (nonlocal) atomic pseudopotentials are extended to
include explicit spin effects as well as electronic correlation effects beyond the local-spin-density (LSD) formalism.
Such angular-momentum-and spin-dependent pseudopotentials enable the extension of pseudopotential applications
to study magnetic problems (e.g., transition-metal and other open-shell impurities in solids, ferromagnetic surfaces,
etc.). As the spurious electronic self-interaction terms characterizing the LSD energy functional are self-consistently
removed, these pseudopotentials can also be used to calculate reliably localized electronic states (e.g., deep defect
levels, surface and interface states, narrow-band states in solids, etc.). Applications to atoms show that this
pseudopotential method removes many of the anomalies of the LSD approach, including the systematically high
total energy, the failure to predict the stability of negative ions, the lack of correlation between orbital energies and
observed ionization potentials, and the erroneous ordering ofs and d levels of the 3d transition elements Sc to Fe in
their d" 's' configuration.

I. INTRODUCTION

In this paper, I show how the recently developed
density-functional first-principles atomic pseudo-
potentials can be generalized to include spin-polar-
ization and self-interaction cancellation effects.
Such generalized potentials permit the extension
of the pseudopotential techniques to treat magnetic
problems as well as localized electronic states.

Although pseudopotentials have been very suc-
cessful in describing the electronic properties of
systems as diverse as bulk semiconductors, sur-
faces and interfaces of metals and semiconduc-
tors, ' and cohesive properties of solids, ' practi-
cally all applications have been restricted to non-
magnetic phenomena. The development of a pseudo-
potential approach to magnetism holds the poten-
tial of attacking problems such as surface proper-
ties of ferromagnetic materials, transition-metal
and general open-shell impurities and defects in
semiconductors, spin-density waves and magnetic
phase transitions in compounds, calculation of
spin densities in solids, and many others.

Pseudopotential and all-electron methods that
use, in one form or another, the local-density-
functional (LDF) approach' to describe electronic
screening tend grossly to misrepresent localized
electronic states: Relative to experiment, the
one-electron energies of these states are too
high ' they produce exchange energies that are
too low' (10%-15%) and correlation energies that
are too high' (100%-200%). Recently, ' ' a simple
generalization of the spin-density formalism has
been suggested that overcomes these problems
systematically by self-consistently removing the
spurious self-interaction terms from the LDF en-
ergy functional. I show here how these self-inter-

action corrections can be incorporated into atomic
pseudopotentials. This will enable the extension
of pseudopotential applications to systems where
itinerant and localized states coexist in similar
energy regions, such as deep impurities in solids,
localized surface and interface states, Mott in-
sulators, etc.

In Sec. II, I discuss the scope of the present ap-
proach in the context of the existing pseudopoten-,
tial methods: the empirical, semiempirical, and
first-principles pseudopotential approaches. In
Sec. III, the method of obtaining spin-dependent
pseudopotentials (III A) and self inte-raction cor-
rected pseudopotentials (III B) is outlined. Sec-
tions IVA and IVB describe, respectively, appli-
cations for these two classes of pseudopotentials.

II. PSEUDOPOTENTIALS AND THE SCOPE
OF THE PRESENT STUDY

Consider a many-electron system with an elec-
tronic density matrix p(r, r ), interacting with an
external potential V,„,(r). The conventional all-
electron (ae) approach, treating both core (c) and
valence (v) states on the same footing, represents
the effective one-body-like potential for the system
as a sum of the external potential and the inter-
electronic response ("screening")

v,", = v.„,(r)+ v„--;"(p(r, r')).
Here V',"(p(r, r)) is a functional of the total core
plus valence electronic density p =p'+p' and in-
cludes the interelectronic Coulomb repulsion
V,","(p (r)) as well as exchange V„'"(p (r, r')) (e.g. ,
the Hartree-Fock approximation) and possibly
correlation V,'"(p(r, r')) terms (e.g. , the density-
functional approximation'). The external potential
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V,„,(r) may be identified with the electron-nuclear
—(Z, + Z, )/x potential for atoms, the internuclear
repulsion in polyatomic systems, etc. The eigen-
states fg, (r)) of the all-electron Hamiltonian --,'V'
+ V,ff have a nodal structure resulting from the
mutual orthogonality constraint. These eigenfunc-
tions form the basis for constructing the self-con-
sistent all-electron charge density p (r, r').

The pseudopotential (ps) representation replaces
(1) by

Vg = [V,"„,(r)+ W„(r, r') j+ V" (n(r, r')), (2)

(3)

The eigenstates (y,.(r)} of the pseudo-Hamiltonian
--,'V'+ V~& span only the valence subspace and.
form the basis for the self-consistent pseudo-
density n(r, r').

To the extent that the construction of the pseudo-
potentials V, (r) can be made simple, the study of
valence-related properties of solids through the
solution of the pseudopotential single-particle
problem is both computationally and conceptually
simpler than that study via the solution of the all-
electron problem. This relative simplicity stems
not only from the fact that the pseudopotential ap-
proach treats a smaller number of ("reactive")
electrons and permits nodeless and spatially
smooth ground-state wave functions, but it is also
due to the fact that to within a good approximation,
the first term in (3) can be constructed once and
for all from simple prototype systems (e.g. ,
atoms) and then used to replace the core electrons
in complex systems. These nearly system-in-
variant transferable quantities are the atomic
pseudopotentials v, (~) that form the total pseudo-
potential V, r through a linear superposition over
sites at:

V (r) = Q v' '(r - v )p, „ (4)

where I', is an angular momentum projection
operator with origin at 7 . Note that unlike the
pseudopotential, the screening potential in a solid
V",{n) is generally nonlinear with respect to de-

where V,"„,(r) is the valence-projected external
potential (e.g. , -Z, /~ for an atom of valency Z„),
W„(r, r') is the repulsive part of the pseudopoten-
tial, and V„",(n(r, r')) is the same as V","(p(r, r'))
in Eq. (1) except that it is a functional of the va-
lence pseudodensity n(r, r') rather than the all-
electron "true" density p(r, r') =p'+ p". Frequent-
ly, the first two terms in (2) are referred to as the
bare pseudopotential, and the spatial nonlocality
in W„(r, r') is replaced by an angular momentum
dependence with a projection operator P, :

composition into atomic sites, and hence it is
strongly system dependent.

Using the decomposition of the effective poten-
tial underlying Eqs. (3) and (4), one can broadly
divide the pseudopotential approaches that have
been used for practical electronic structure cal-
culations into three groups: the empi;rical, semi-
empirical, and first-principles pseudopotential
methods.

The empirical pseudopotential method'" does
not express the pseudopotential V, or the screen-
ing V„",in terms of microscopically specified in-
teractions (e.g. , charge-density-dependent Cou-
lomb, exchange and correlation potentials, and the
orthogonality-hole and the core structure, etc. ), but
rather represents V~~~ by an arbitrary analytical
or numerical form with parameters adjusted to
fit a selected set of experimental data (e.g. , energy
levels of ions, "interband transitions in semicon-
ductors, "' Fermi surface in metals, "etc.)
through a pseudopotential calculation. Both the
pseudopotential and the screening are then as-
sumed to be transferable from one crystal to
another containing the same atoms. No self-con-
sistency in the treatment can be defined, as V~« in
this form is independent of the variational charge
density n(r). No meaningful comparison can be
made between these calculations and nonempirical
all-electron band structure calculations (using im-
perfectly known exchange and correlation screen-
ing), as the former approach attempts to reduce to
zero the many-body corrections to the band ener-
gies by fitting to experiment. The empirical
pseudopotential method has produced for semicon-
ductors the most accurate band structures known
today. "'

The semiempirical pseudopotential method""
calculates the screening V„",(n(r)) from the density
n(r) using a well-defined microscopic model (e.g. ,
the density-functional approximation). It then rep-
resents the pseudopotential v, (r) by an arbitrary
empirical form with parameters adjusted to obtain
a i'it to selected experimental data (ionic struc-
ture, "band structure") through a pseudopotential
calculation with Y~~. Here only the atomic pseu-
dopotentials are assumed to be transferable, and
a self-consistency in the treatment is possible.
Only local approximations to the pseudopotential
[e.g. , retaining only a single l component in Eq.
(3)] have been utilized in this apporach. As some
correlation effects are introduced via empirically
adjusting the pseudopotential, again no meaningful
comparison can be made with all-electron calcula-
tions on the same system, even if an identical de-
scription is used for screening. Hence, semiem-
pirical Xn-type pseudopotential band structures
for Si, diamond, Ge, etc. , do not compare well with
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all-electron calculations using the same Xn ap-
proach for V". As only the energy eigenvalues of
the pseudopotential equations and not the detailed
wave function or charge density are constrained to
fit experiment, the semiempirical pseudopotentia1
method has often yielded charge densities which
differ from those obtained from experiments or
from first principles calculations. "'" The semi-
empirical pseudopotential method has been suc-
cessfully used to study a large variety of surface
and chemisorption problems. "

The first pri-nciples pseudopotential method'~"0
calculates both the pseudopotential V, (r) and the
screening V",(n(r)) from the same (chosen). micro-
scopic model for electronic interactions. As such,
it establishes a one-to-one correspondence be-
tween the pseudopotential and the all-electron ap-
proaches using the same screening theory. It per-
mits the analysis of both the success and the fai.l-
ure of a certain pseudopotential model in terms of
the underlying method used to describe the ex-
change and correlation effects (e.g. , Hartree-
Fock, correlated Hartree-Fock, LSD}; At the
limit where the basic pseudopotential frozen core
approximation becomes exact, the pseudopotential
and the all-electron band structures match (e.g. ,
for bulk Si, the pseudopotential and all-electron
band structures agree to within an average devia-
tion of 0.06 eV/state over a range of 20 eV).2' Its
major limitation is that no perfect agreement can
be obtained at present with experiment: As our
present knowledge of electronic correlation poten-
tials is limited, so is the agreement between the
pseudopotential calculation of certain properties
and experiment. Some of these discrepancies are
discussed in Sec. III B. The basic advantage of
the first-principles pseudopotential method lies in
its physical transparency and the possibility it
offers to improve systematically upon the results
as our understanding of many-electron effects im-
proves.

In this paper I show how two recent elaborations
on the theory of the interacting electron system
within the density-functional formalism —the spin-
polarization" and self-interaction cancellation
effects' —can be simply incorporated in the first-
principles pseudopotential method. Empirical as
well as semiempirical pseudopotentials are diffi-
cult to generalize to include a spin dependency, as
the pertinent experimental data needed for the fit
is inherently limited. Most spin-polarized atoms
form solids that are nonmagnetic, and hence their
observed interband spectra cannot be used to pin
the atomic pseudopotential spin dependency; for
the magnetic solids, only a small subset of the
transition observed in spin-polarized photoemis-
sion is associated with a clearly interpretable

spin splitting. Similarly in ions or atoms, many
of the weak transitions associated with a spin rever-
sal are not known. Still, spin-dependent pseudopo-
tentials are needed for problems, such as pseudopo-
tential studies of surfaces of magnetic transition
metals, transition-metal and other open-shell im-
purities and rjefeets in semiconductors, spin-den-
sity waves, general magnetic phase transitions in
compounds, as well as the calculation of spin den-
sities of solids that have now become experimen-
tally accessible.

The inclusion of self-interaction corrections in
the local spin-density formalism permits a gen-
eralization of this theory to describe not only it-
inerant electronic states but also localized con-
figurations. Such a generalization is impossible in
the empirical pseudopotential method (as the poten-
tial is independent of charge and orbital densities).
Self-interaction effects are important whenever
there is a, coexistence of itinerant and localized
electronic states, e.g. , surface and interface states
of semiconductors and metals, deep impurities,
Mott insulators, and Anderson localized states,
etc.

III. METHOD

The problem of obtaining accurate first-princi-
ples atomic pseudopotentials from a given all-elec-
tron model has been solved by Goddard, Kahn,
Melius, and others" for the Hartree-Fock and cor-
related Hartree-Fock models, and by Zunger et
al.'" for the density-functional model. The Har-
tree- Fock first-principles pseudopotentials have
been used to calculate the electronic properties
of a large number of molecules and clusters. "
The first-principles density-functional pseudopo-
tentials of Zurjger et al. have been used to calcu-
late the electronic properties of some semicon-
ductors [Si (Refs. 21 and 23), Ge (Ref. 23), GaAs
(Ref. 24)], bulk transition metals [Mo (Refs. 25 and
26), W (Ref. 26)], diatomic molecules [Si, (Ref.
1t), 0, (Ref. 2'7)], the relaxed GaAs (110) sur-
face,"the cohesive properties of bulk Si (Ref. 28),
Mo and W (Ref. 26), and to develop an orbital radii
scheme that successfully predicts the crystal.
structure of a,s many as 495 binary compounds. "
Using this latter approach, the extension to spin-
polarized density-functional pseudopotentials is
straightforward, as will be discussed in the next
section.

A. Spin-polarized atomic pseudopotentials

The local spin-density" (LSD) single-particle
description of the electronic states of an atom (or
ion) with Z,. core (c) and Z„valence (v} electrons,
and electron charge density of p(r) =p ~ (r) +p ~ (r)
and spin-polarization $ (r) =(p~ (r) -p (~r) }p/(r) is
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given in the central field approximation by

I-~2m'+ V...(r) + V""(p(r), $ (r))]q.) (r) =&.) )I).) (r)

(5)

The variational single-particle equation is

I--.'&'+ V,.+ V.".,(n(r), $(r))]x. .(r) =~. .x. .(r)

(14)
where the external potential is

V,„,(r) = —(Z, +Z„)/r (6)

pre„pxxdx
where e„,(p, $) is the exchange-correlation energy
per particle of a uniform spin-polarized electron
liquid. The total energy of this system is given by

E..'=T(p, ~) E..{p} !E,(p} E"..'(p, &),

(9)
where T{p,() is the noninteracting kinetic energy,
E,„,(p) is the interaction energy of p(r) with the
V,„,(r) and E„(p}is the interaction of p(r) with the
Coulomb potential V„(p (r)). The variational den-
sity is determined via

~(~) =$ P. .(~) (10)

from the spin-orbital densities p„„(r)
=N„';",Ig'„„(r)I (where ¹,'", is the occupation num-
bers of both core and valence states), given by the
self-consistent orthogonal solutions Q„„(r))of Eq.
(5).

In the pseudopotential representation, one con-
siders a fictitious atom having only Z„(valence)
electrons with density n(r). The electrons inter-
act via an interelectronic repulsive potential
V (n(r)) and an exchange-correlation potential
V„',(n, $) as well as with a (yet unspecified) exter-
nal potential:

V",„,= V~=-Z„/r+ Ws.

The corresponding total energy is

EPn = T( $}n+E~,(n} 'E~+( } En@+(n, n)), (12)

where the interaction energy with the external po-
tential is

&„(n)= f n(r) )',.)r)dr. (13)

and the spin (with index v) dependent screening is

V„","(p(r), &(r))= V„(p(r))+ V„;(p(r),((r)). (7)

Here, V (p(r)) is the interelectronic Coulomb re-
pulsion due to p('r), and the exchange-correlation
potential V„;(p (r), $ (r)) is the functional derivative
of the total exchange and correlation energy E„,
with respect to the spin-density p, (r) E„., is
usually replaced in the local approximation by'

with the pseudo-(valence) screening

n(r) = g n„,.(r),
n.i (r) =N.").Ix'.).(r)I .

(16)

We now look for the external potential V~, that
will produce certain desired relations between the
solutions (A.„„,y„„(r))of the pseudopotential sin-
gle-particle equation {14) and those (e„„,g„, (r)]
of the full all-electron equation (5). Following our
previous work on the nonpolarized pseudopoten-
tials, '"we require that: (i) the energy eigenvalue
spectra fA.„„]of the pseudoatom be equal to the
valence spectra (e„„)of the "true" atom in the
ground electronic state; (ii) the wave functions
(y„„(n)J of the pseudoatom be normalized, mono-
tonic, and nodeless for each of the lowest spatial
symmetries; and (iii) the pseudo-wave-functions
{y„„(n))match the "true" wave functions f)I)„"„(n))
of the valence states asymptotically from x =+ ~
to the innermost point possible under constraint
(ii). We require that this "maximum similarity
constraint" be achieved in a particular: manner
that will permit: (a) a simple unitary relation be-
tween the "true" wave functions and the pseudo-
wave-functions and (b) that the pseudopotential V„
derived from these pseudo-wave-functions be ap-
proximately energy independent, i.e., transfer-
able from one system to the other, and hence use-
ful for calculations on arbitrary systems.

The motivations for choosing these constraints
are the following: Constraint (i) ensures that the
spectral properties derived from the pseudopoten-
tial single-particle equation match those of the
valence electrons of the all-electron problem.
Hence, one-electron excitation energies or differ-
ences in total energies (corresponding to different
electronic configurations) can be reliably repro-
duced. Constraint (ii) ensures that the solutions
of the pseudopotential equation are legitimate
ground-state orbitals (that is, normalized and
nodeless). This also permits their expansion in
simple and spatially smooth basis functions (as g
is monotonic and nodeless for the lowest states).
Constraint (iii) ensures that the chemical infor-

V",(n(r), $ (r)) = V„(n(r)) + V„;(n(r), ( (r)) . (15)
)

The variational density is given by the spin-orbital
pseudodensities n„„(r) and the valence occupation
S„'„numbers as:
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mation included in the "tail" part of the "true" va-
lence wave functions is contained in the pseudo-
wave-functions and that this continue to be so, to
within a good approximation, even if the atomic
pseudopotential is used in chemical environments
different from that used for its construction (i.e. ,
atoms}."

We proceed by first constructing pseudo-wave-
functions that satisfy (ii) and (iii) and then use
them and condition (i) to derive the pseudopoten-
tial V~, . To satisfy these conditions, the initial
step is to construct the pseudo-wave-functions as
a, linear combination of the known core and valence
all-electron wave functions for each spin [condi-
tion (iii)(a)]:

X!&!(r) = Q C!'."'4,.":&.(r)
n'

(17)

x2&pI. (r) = 42/. .(r)
(18)

where the pseudo-2p orbital equals the real 2p
orbita, l, since the latter is already nodeless. One

has to mix sufficient &I&„, into &I&„, to eliminate
the node in the latter and obtain at the same time
a pseudo-orbita. l y,',",with a maximum similarity
to &j&„, outside the core. Such a maximum simi-
larity is achieved by including the minimum
amount of g...necessary to eliminate the node

in X,",', . The minimal amount of mixing is hence
achieved when x~&", ,(0) =0. Together with the nor-
malization condition on the pseudo-orbital, this
determines the expansion coefficients from

x,',",(0) = cI';;,'y„,(0)+ c,',";,'&&&„,(0) =0,

)C"'")'+(C""~'=1

As the exchange-correlation potential in Eq. (5) is
spin-dependent, the spatial form of the all-electron
as well as pseudo-wave-functions is different for
different spins. The expansion coefficients fC&I„', &]

are to be determined such that X„"„' be normalized,
monotonic, and nodeless [condition (ii)] and have

the maximum possible similarity to the "true"' va-
lence orbital. The expression (17) amounts to a.

rotation of the core and valence wave functions of
the full Hamiltonian to form a pseudo-wave-func-
tion X„"„' with desired properties. At the limit
where the exchange takes its simple Hartree-Fock
form, such a rotation (amounting to an interchange
of columns in the determinental description of the
total wave function), leaves the total energy ex-
pression invariant. To this limit, the variational
properties of the total energy expression in the
frozen-core approximation remain intact.

In the simple case of a, first-row atom (i.e. , 1s
core), this yields

(20)

where M„, is a constant that normalizes X„",', and

f„„(r)is an arbitrary function that overlaps with

Q„,, „(r)J and decays rapidly at large distance. We

chose for f„„(r)the simple function:

(21)

Since y„"„' is already very close to the true wave
function g„„outside the core region, the correc-
tion f„„is usually very small and is used to im-
prove the agreement between the pseudo-wave-
function moments (X,. ~r ~X,.) and the moments of
the true wave functions (P, ~r ~g,) for P &1. The
agreement" is normally to within 3% using X&&

&,

and better than 1% using x„",„'. The normalization
requirement on X„",& produces a second-order al-
gebraic equation for A„„as a function of e, . We
then determine n„by requiring that the charge-
accumulation function for the pseudo-orbital,

q„",„(R&=f (gt,"„~~'d~,
0

(22)

will match the all-electron charge-accumulation
function

(23)

from which one can solve for C,",',,& and C,",',,' given
the known amplitudes of the all-electron orbitals
at the origin. ,

In the general case of an arbitrary number of
core orbitals, the coefficients are determined by
minimizing the core projection(X&„&~P, ~X&'&„&), seek-
ing a normalized, monotonic, and nodeless orbital
with minimum core amplitude X'0&', (0) = X„",",(0)
= y„",',"=0. This is accomplished by an iterative
core-minimization procedure subject to the above
constraints. Note that if one relaxes the condition
that the monotonic y„"„& be zero at the origin, then
the region of space where X&o&&, and &)&„„are close is
reduced. A similar procedure for determining
X„„hasbeen used in the Hartree-Fock pseudo-
potentials. "

Since the all-electron orbitals (g„„(r))form an
orthogonal set, the choice (17)will produce a (small)
constant deviation between g„'„' and the "true"
valence orbital &I&„„at large distances from the or-
igin. This results from the fact that lim„„X«» (r)
= C„"„'&g„„and~C&'„"&~' &1 due to orthogonality.
To correct for this constant deviation, we con-
struct in the second step from (17) the final pseu-
do-wave-function in which we introduce a wave-
function component that lies outside the atomic
LSD orthogonal space":

1 C„"„'7&'I

X!&.'(r) =~ Q C&,
".'& ~q„„„(r)+f„,.(r) +y„(r&),
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starting from R= ~ to the smallest R =R, possible
under our constraints. '

The resulting final pseudo-wave-function is
nodeless, normalized, monotonic, has a minimum
core projection, and is numerically identical to the
true wave function from r= ~ [as from Eq. (20) one
gets lim„„g„&'„&(r)=g„„(r)]to a point r=R, that
normally falls inwards to the last orbital maxima
in g„„(r). Since the orbital charge-accumulation
functions in Eqs. (22) and (23) are equal, &I)„",,(R)
= g„'t, (R) for ) ~R„ the electrostatic potential set
by any pseudo-orbital density V (y'„„) is identical
to that set by the "true" orbital density V (('„„)
for r~R„.. As pointed out by Hamann et al. ,

" the
identity proved by Shaw and Harrison guarantees
that if Q~,', (R) = Q„", (R) for R ~R„ then the loga.-
rithmic spatial and energy derivatives of )&„„(~)
and (j(„„(~)are also identical for ) ~R,. This
means that the corresponding pseudopotential has
a, low energy dependence [condition (iii) (b) ] in that
it produces pseudo-wave-functions that continue to
simulate the all-electron wave functions even in. a
changed chemical environment where the energy
spectrum ls modified. The fact that we have cho-
sen to construct our pseudo-wave-functions with a
minimum core amplitude adds a new aspect to
this; not only the r~R, behavior produces a low
energy dependence, but also the anchoring of the
pseudo-wave-functions to the origin )(„„(0)=)&„'„(0)
= y„"„(0)= 0 makes it energy costly for bonding
forces to modify the wave function in the core (and
hence, by normalization, throughout the valence
region) away from the form for which a maximum
similarity to the "true" wave function has been
established. Extensive tests on atomic pseudopo-
tentials derived from such pseudo-wave-functions
have indeed indicated a very low energy depen-
dence. '"

We also note that one can simply recover, to
within a good approximation, the "true" valence
function (I)&(r) of arbitrary systems from the cal-
culated pseudo-wave-function y~(r) using the known
core orbitals and the assumed function f(r), e.g. ,

0 (~) =x,"&(~)-g (&y "&ly-")

—M)&flÃ"&)0"*'- &f(~) (24)

This permits the assessment of the accuracy of a
pseudopotential calculation once it has been com-
pleted. The simplicity of this core orthogonaliza-
tion hinges on the choice of the linear form of Egs.
(17) and (20).

Having obtained the desired set of pseudo-spin-
orbitals (g„"„'],we now find the pseudopotential in
Eq. (14) that will produce these orbitals in a self-
consistent calculation, subject to the constraint (i)
that the ground-state energy spectrum (X„„jmatch

the spectrum (c„,,] of the all-electron equation (5).
Note that this approach is distinctly different from
that underlying both the empirical and the semi-
empirical pseudopotential .methods (cf. Sec. II) in
which one starts from a postulated parametrized
form for the potential and allows the fitting of the
energy eigenvalues (and possibly the peak of the
wave function) to also implicitly determine the
shape of the wave functions.

From (14), the form (20) of the spin orbitals,
and A. „, ='e„, , one obtains an angular-momentum-
(t) and spin- (o) dependent nonlocal pseudopoten-
tial:

0)

Qadi fy lr)

(25a)

As the all-electron orbitals entering (20) are so-
lutions to Eq. (5), one can use

~n&o+2 „(o&( )
=

g~ C(&.a)
~ ( )

+ V„","(p(~)). (25b)

The physical significance of this form is discussed
elsewhere. "

In Sec. IVA applications of the spin-dependent
nonlocal pseudopotential to the calculation of the:.in-
terconfigurational energies of transition-metal
atoms are presented.

B. Self-interaction-corrected atomic pseudopotentials

The spin-density functional expression for the
total energy, both in its all-electron [Eq. (9)] and
pseudopotential [Eq. (12)] form, contains spurious
electron self-interaction terms: the self-Coulomb
-,'E (p„„}and the self-exchange-correlation
Ego(p„„,1) terms [with the corresponding contri-
butions —,'E„(n„, ) and E~n(n„„,1) in the pseudopo-
tential expression]. The corresponding terms in

The extra function f„„()) that enters g&~&& (r) in Eq.
(20) contributes additional terms to V'g&', & /g„", &

that can be evaluated analytically.
The final spin-dependent nonlocal pseudopoten-

tial is hence determined by fC„&I„', &f in Eq. (17),
(A„„,o.'„) in Eq. (20), and the known all-electron
results Q„„(r),e„„).Given the first two sets, the
pseudopotential can be easily constructed from Eq.
(25a) by standard programs. We have obtained
V(&„"&(r) for a number of atoms in numerical form.
We find that it can be conveniently fitted to the
analytical form":

g(& fy)

V t, ~&&(&) & e-c '»~ ~ -c r ~ (25)
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the screening potential are V (p„„)and
V.'.(p„&..1).

In the extreme limit of a, single-electron system
(e.g. , H, He', or all alkali atoms in a pseudopoten-
tial representation) the total energy. does not equal
T(p, ))+E,„,(p) as it should, since ,'E„+—E„,(p, 1)
0, leading to very substantial errors. " Clearly,
this defect stems from the attempt underlying the
LSD theory to describe the imperfectly known ex-
change and correlation energies in terms of local
potentials. Whereas the electron self -Coulomb
potential is positive, the self-exchange-correla-
tion potential is negative. The partial success of
LSD in describing localized states rests on the
fact that often most of the self-Coulomb term is
canceled by the self-exchange-correlation term.
For extended states, both are individually small.
While retention of these self-interaction terms
makes the screening potential V„","(p,() conven-
iently /ocal (i.e., state independent) it also results
in some systematic errors in the predictions of
the LSD theory.

Recently, Zunger, Perdew, and Oliver' have
shown that a self-consistent compensation of the
self-interaction terms results in a systematic im-
provement in a number of properties calculated
by LSD. These include the following:

(1) The exchange energies E~ of atoms are
systematically underestimated by 10%%uo-15%%uo in LSD
(Ref. 5) compared with the exact Hartree-Fock re-
sults, whereas in the self-interaction-corrected
(SIC) approach the errors are reduced by a factor
of 5.

(2) The correlation energies E~sn of atoms are
overestimated by as much as 100%%uo-200'%%uo in LSD
(Ref. 5) compared with experiment, whereas a sim-
ilar reduction of about a factor of 5 in the error is
accomplished in the SIC-LSD approach.

(3) The experimentally stable negative ions (e.g. ,
H, 0, F, etc.) are predicted by LSD to be un-

stable, "whereas in SIC LSD their stability is
confirmed and the ca,lculated electron affinities are
in very good agreement with experiment.

(4) The large-r electrostatic limit -(@+1)/r of
the potential of an ion of charge Q is realized by
the SIC-LSD approach, whereas LSD erroneously
predicts a Q/r limit. -

(5) Whereas the absolute value of the LSD total
energy of a metal surface is too low when com-
pared with the exact value, "the LSD energy for
atoms is Ioo high. ' Furthermore, the lowest-order
correction to the LSD exchange and correlation
energy predicted by many-body theory (i.e., the
density-gradient correction") is positive and so

can only worsen the agreement of the calculated
atomic energies and experiment. When the SIC is
applied, the atomic total energies become very
close to the experimental values and are systema-
tically losses, in line with the results for a metal
surface (which has no self-interaction correc-
tions). Gradient corrections can now improve the
agreement with experiment.

(6) Whereas self-consistent density-functional
band-structure calculations for insulators (e.g. ,
rare-gas solids" ) tend to underestimate the one-
electron band gap by as much as 40'%%uo, simple mod-
els for the self-interaction corrections to the band

gap account for almost 100'%%uo of these errors.

The self-interaction-corrected LSD total energy
expression proposed by Zunger and Cohen, ' Per-
dew, ' and Zunger, Perdew, and Oliver' is

gLSD SIC E LSD (28)ae ae nla neo &

n&a

where Ego is given by Eq. (9) and N„"," denotes the
occupation numbers. The orbital-dependent cor-
rection is

'E (P.&.-)+E„"."(P.&., I). (29)

The corresponding variational effective potential
is:

v:,", "'= V...(.) v;;"(p(r), i(r))
-V (P„,.(r)}-V„", (p„...l), (30)

th

where p(r) and ((r) indicate the charge density
and spin polarization, respectively, calculated
with orbitals that are self-consistent with V~PS&c(r)
rather than withthe LSD potential [Eqs. (5)-(7)j.
Since the SIC effective potential in Eq. (30) is state de-
pendent, its solutions Q„„(r)}do not form an or-
thogonal set. This can be -overcome by including
off-diagonal Lagrange multipliers and transform-
ing the problem into a canonical form. One can
evaluate the effects of this nonorthogonality by
arbitrarily performing a Schmidt orthogonaliza-
tion of gr„„(r)}at each interaction step in solving
the SIC equation with the potential (30). The effect
in atoms is very small' (e.g. , 10 ' hartree in the

total energy of Ne) and is neglected here.
The application of the self-interaction-correc-

ted LSD approach to pseudopotentials is straight-
forward. One first solves the all-electron atomic
single-particle equation with the self-interaction-
corrected potential in Eq. (30). From the resulting
orthogonalized orbitals fP„„(r)}one constructs
the pseudo-wave-functions (X t&&&, (& )} as in Eq. (20).
This yields the corrected pseudo-charge-density
n(r) and the spin-orbital densities as in (16). The
SIC pseudopotential equation is then

I

[--,'V'+ V&I"&(r) + V,"„(n(r),](r)) —V„(n„,„(r)}—V„,(n„,.(r), I)]p', & (r) = e„'Ic.q &'& & (r)
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. from which we calculate the SIC pseudopotential
Vp', "'(r) usingb„", ,'(r) e ' j. The SIC pseudopoten-
tials differ from the LSD pseudopotentials in Eq. (25)
both due to the difference between Xnl a and Xnr a
and due to the explicit existence of the [--,' V„(n„„)
—V„,(Q„„,1)]terms in Eq. (31). Both the LSD and
the SIC-I SD pseudopotentials exhibit the same type
of nonlocal form (i.e., are different for different
angular momenta I and spins o). At the limit of no

spin polarization (n „=n„, ), we obtain the usual
unpolarized pseudopotential. The LSD-SIC atomic
pseudopotentials for a number of atoms have been
calculated and the results are presented in Sec:
IV B.

IV. RESULTS

A. Spin-polarized atomic pseudopotentials

The spin-polarized atomic pseudopotentials
Vp,"'(r) of Eq (25). have been calculated for the 3d
series Ca to Cu. The potentials were generated
from the d" 's' high-spin configuration, and hence
reproduce by definition [constraint (i) in Sec. III]
the all-electron energy eigenvalues 43@

and E4p for this configuration. To test their en-
ergy dependence, the energy eigenvalues obtained
by applying these pseudopotentials to the d" 's'
configuration have been compared with the energy
eigenvalues of the all-electron problem in the
same d" s configuration. We use the unpolarized
potential for systems with zero net spin (e.g. , Ni
3d"4s'), Using the spin-polarized pseudopotentials
for systems with a net spin, we reproduce accu-
rately all the spin splittings, as core spin polari-
zation is included in the pseudopotential: There is
agreement to within better than 0.002 a.u. , indicat-
ing a good transferability of the pseudopotentials.

As a further application, the interconfigurational
energy (ic),

~ AII-Electron, LSD
0.2 - o Pseudopotential, LSD

n-2 2

0.1

K
p

LLI

-0.1

-0.2-
Ca Sc Ti V Cr Mn Fe Co Ni CLI

FIG. 1. The interconfigurational energies of the 3d
elements calculated with the all-electron LSD energy
expression [Eq. (33)] and the pseudopotential LSD ex-
pression fKq. (32)].

pseudopotential radial 4s wave functions for Cr in
the s'd' configurations. It is seen that the two sets
of wave functions h~'„g~o' ) and fg„„g„}
agree from x=~ to about r=2.8 a.u. and that the
spin dependence of the all-electron orbitals is
faithfully reproduced by the pseudo-orbitals. We
conclude that the spin-dependent pseudopotentials
can be reliably used to replace the all-electron
potentials for calculations of valence properties.

B. Self-interaction-corrected pseudopotentials

The SIC pseudopotentials V~&' &(p) have been
calculated for Si and the 3d transition elements.
Figure 3 shows V',"'(r) for l=0, 1 in the unpolar-
ized 3s'3p' ground state of Si together with the SIC
screening,

V",'~' = V",(n(r), $ (r)) —V„(n„«(r))—V„,(n„,,(r), 1)

(34)

KEPI ELSD (~-2&2) E1SD (dn &s~)- (32)
0.6-

has been calculated using the energy expression
(12), It has been compared to the all-electron re-
sult.

0.5-

p 4-

0.3-

Cr 4s'3d'
II

X4, fr)

BE~4 =E1s (d+ s ) — lEsD( +-$1+&) (33) 0.2-

using the energy expression (9). We use the ex-
change-correlation functional of Ceperley" to rep-
resent V„,(n, g). Although Epn is much smaller
in absolute magnitude than the core+ valence en-
ergy EPD (e.g. , for Sc in the d's' configuration
E~p,

D /EPD = 0.002), the differences in the pseudo-
potential total energies should follow the differen-
ces in the aQ-electron total energies. Figure 1
shows a plot of ~Et and ~EP; indicating that this
expectation is indeed met.

Figure 2 shows a plot of the all-electron and

C
C -0.1-

-0.2-

-0.3-

-0.4—

-0.5-
I

4.0 5.0
-0.6 I I I

0.0 1.0 2.0 3.0
Distance (a.u.)

FIG. 2. All-electron and pseudo-4s wave functions
for Cr in the s d configuration.
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1.5
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10C

I 0.5

0.0V
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i )~

1

3.0 4.0 5.0

of Eq. (31), where V„",(n, t') is given by expression
(15) but with the density n(r) calculated self-con-
sistently with SIC. It is seen that self-interaction
effects tend to somewhat deepen the pseudopoten-
tial near its minima but have a negligible effect
on the crossing point V~&' '(x„)=0 and on the po-
tential outside the core region. At distances that
correspond to the bond center in the bulk solid
(vertical arrows in Fig. 3), the SIC pseudo-
potential is numerically identical with the LSD
potential.

The effects of SIC on the screening [Eq. (34)]
are more pronounced: Whereas the LSD screen-
ing V,„(n(~),$ (r)) [dashed line in Fig. 3(b)] is state
independent and behaves asymptotically for the
neutral atom at large-r as Z,/r, the SIC screening
is state dependent and has a corrected larger-r
limit of (Z, -1)/r. The screened atomic pseudo-
potential in the LSD approach hence decays very
rapidly at large distances from the atomic origin
as the interelectronic repulsion V (n(x)) cancels
the core attraction -Z„/r and only the exponen-
tially decaying (-es") exchange-correlation part
V„,(n(r), $ (r)) is left. On the other hand, the SIC-
screened pseudopotential approaches at large dis-
tances the correct electrostatic limit of -1/x
[or —(@+1)/r for a Q charged ion]-as the Coulomb
and exchange-correlation self-interactions are
eliminated. We note that in recent calculations of
the vacancy in bulk Si, and LSD-type pseudo-poten-
tial was used. "'" This leads to the asymptotic
behavior of -(1/e)e 8' for the screened defect po-

Distance (a.u.)
FIG. 3. (a) LSD (---) and SIC-LSD {—) pseudopoten-

tials for Si (3s 3p ). (b) The local LDF screening j-—,
Eq. (15)) and the state-dependent nonlocal SIC screening
gull and dotted lines, (Eq. 34)]. The vertical arrows
indicate the position of the bond center in bulk silicon.
Arrows point to the limiting form of the pseudopotential
and screening.

tential of a neutral vacancy V' and -1/re and
-2/re for the singly- and doubly-ionized vacancy
(V" and V", respectively), while the electro-
statically correct limits are -1/ex, -2/ex, and
-3/er for V', V', and V", respectively, where e
represents dielectric screening. The use of prop-
erly self-interaction-corrected pseudopotentials
might have a significant effect on the relative sta-
bilities of V, V', and V" relative to the LSD cal-
culation of Ref. 39.

Figure 3(b) indicates that SIC affects not only
the large-x behavior of the screening: At dis-
tances smaller than the bond center in the solid,
the d screening (calculated here from the 3s23p'3d'
configuration and spin average for clarity of
display) is close to the local LSD screening as
the d orbital density in Si is very diffused, while
the more localized 3s and 3p orbitals give rise to
significantly lower screening potentials. The non-
locality of the SIC screening in Si extends to a dis-
tance comparable to the bond center in the solid
and hence can affect the band structure. The be-
havior of the screening in Fig. 3(b) inchcates that
Latter's suggestion" to remedy the self-interaction
problem in the LSD formalism by matching a -1/r
tail to the potential starting from an outer point
R~ (where -Z/8+ V, (A) = -I/R~) is insufficient,
as SIC has important effects even for r &AI. We
find, indeed, that SIC atomic total energies are
much closer to experiment than those obtained
with a Latter tail correction. ~'

Figures 4 and 5 show respectively, the SIC pseu-
dopotential V,",'"(r) and screening V&"&(r) [Eg.
(34)J of the spin-polarized Fe atom in the
(4s'4p'3d'), (4s'4p'3d') configuration. Whereas
SIC effects on the pseudopotentials are relatively
small [cf. Fig. 3(a)], spin effects are pronounced
and prevail at distances beyond the potential's
minimum. The minority spin (v = --,') pseudopoten-
tial is consistently deeper than the majority spin
(o =-,') pseudopotential. The opposite is true of the
screening potentials as the majority spin wave
functions are more localized than the minority
spiri wave functions. Whereas spin effects reduce
the magnitude of the crossing points of the bare
pseudopoieniiai V",' '(r'„) =0 for spin down
(r', & r'„), the crossing points of the total screened
pseudopotential V~~", '(r„)+ V"' &(~„)+l(l+ I)/2r '„
=0.0 show r, & r„itwahreduced difference (i.e. ,
2I&i+ ri I/I&i++-&i I

=2/o 4/0) -~
In a previous study, "the crossing points (r,] of

the unpolaxi @ed screened pseudopotential were
shown to constitute a sensitive intrinsic l-depen-
dent length scale for atoms. As r, ' is a measure
of the scattering power of a screened atomic core
for electrons of angular momentum l, it can also
be used as an anisotropic electronegativity scale.
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FIG. 4. The orbital and spin-dependent self-interaction-corrected pseudopotential for Fe.

(4sl4p03d )„(4sl4p 03d )&, configuration was used.
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FIG. 5. The orbital and spin-dependent self-interac-
tion-corrected screening for Fe in the
(4s 4p 3d )~(4s 4p 3d )d~ configuration. Arrows point
to the limiting form of the screening.

We found that the (r I}values of atoms scale lin-
early with the average node position of the all-
electron valence orbital $„I(x) of the same I (length
scale) and that (i,'} scales linearly with the multi-
plet averaged experimental ionization energy of
the valence electron with the same I (energy
scale). This has lead to a successful attempt to
use the orbital radii {xI}as structural indices in
predicting the stable crystal structures of the
binary&B compounds. The scheme has been ap-
plied to 495 binary compounds, including transi-
tion elements as well as simple elements, and has
produced a remarkable topological separation
between more than 20 different structures. " The
present generalization of the density-functional
pseudopotentials of Ref. 6 to include SIC as well
as spin effects offers the possibility of establish-
ing spin-sensitive orbital radii. Although the dif-
ference between the crossing points for spin up
and spin dowq found here are not large, these dif-
ferences may be of importance for the structural
coordinates of magnetic binary compounds.

The introduction of self-interaction corrections
to the effective potential [Eq. (31)j affects the en-
ergy eigenvalues significantly. Using the form
(31) of the SIC effective potential and the form (14)
for the LSD effective potential, one obtains the

following for the corresponding orbital energies:

~...= &X.I. I
--;v' Ix„,.)+ (x „,.I

v'„"
I
x „,.)

+&x„,.l „,(-, j) Ix„,.&+ &X.„,.I
-v„(-„,.) Ix„,.&

+ (X„,.I v,'("„... 1)
I x„,.&. (35)

The contributions appearing here are kinetic,
pseudopotential, local screening, self-Coulomb,
self-exchange, and self-correlation, respectively,
and the hat symbol indicates that the orbitals are
calculated self-consistently from the SIC effective
potential. The corresponding expression for the
uncorrected LSD orbital energy is

~„I:=&x...I

- -'v'
I
x „,.&+ &x„,.I

v",."I
x „,.&

+ &x„,.l v„,(,g) lx„,.&. (36)

Table I depicts the individual contributions to the
rbjtaj energies for Si 3/23p2 and gn 4g M

main conclusions are:
(1) Self-interaction corrections lower the orbital

energies significantly (30%-50%). The lowering is
strongly orbital dependent and hence one-electron
gaps are modified as well (e.g., the s-d gap in Zn

changed from 4.4 to 11.1 eV). Localized orbitals
(e.g. , Zn 3d) show a much larger energy lowering
than relatively diffused orbitals (Zn 4s).

(2) The differences in orbital kinetic energies
and local screening energy (with and without SIC)
reflect only the self-consistent modification of the
wave functions due to SIC effects (e.g., X vs X).
These are small for all nontransition elements
but significant for the 3d elements. Hence, self-
consistent LSD orbitals cannot be reliably used to
estimate SIC effects in these systems.

(3) The SIC effects on the pseudopotential energy is
small relative to the effect on the total screening
energy for s, P orbitals (viz. , Fig. 3 which com-
pares the SIC and LSD pseudopotentials and
screening for Si), whereas for d orbitals the
change in the pseudopotential energy is significant
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TABLE I. Components of the orbital energies of Si 3s 3p and Zn 4s 3d as obtained in LSD [Eq. (36)] and the SIC-LSD
[Eq. (35)]. Energies are in eV and the orbital moment (z„„)x)y„, ) is given in Bohr radii. DIFF indicates the differ-
ence, in eV, between the LSD and self-interaction corrected results.

SIC
Si 38
LSD DIFF SIC

Si 3p
LSD DIFF . SIC

Zn 4s
LSD DIFF SIC

Zn 3'
LSD DIFF

Kinetic
Pseudopotential
Local screening
Self- Coulomb
Self-exchange
Self- correlation
Orbital energy
Orbital moment

7.92
6.21

-23.62
-11.25

6.55
0.52

-13.67
2.18

7.88
6.19

-23.84
0.0
0.0
0.0

-9.77
2.19

0.04
0.02
0.22

-11.25
6.55
0.52

-3.90
-0.5%

10.18
2.56

-15.75
-8.68

4.99
0.43

-6.27
2.86

10.10
2.55

-15.85
0.0
0.0
0.0

-3.20
2.89

0.08
0.01
0.10

-8.68
4.99
0.43

-3.07
-1.0%

4.64
5.76

-15.10
-9.04

5.21
0.47

-8.06
2.74

4.81
5.41

-15.26
0.0
0.0
0.0

-5.04
2.73

-0.17
0.35
0.16

—9.04
5.21
0.47

-3.02
0.4%

306.80
-97.74

—216.67
-28.78

16.48
0.79

-19.12
0.89

302.26
-95.90

—215.83
0.0
0.0
0.0

-9.47
0.91

4.54
—1.84
-0.84

-28.78
16.48
0.79

-9.65
-2.2%

relative to the change in the screening energy
(e.g. , 14%%uo in Zn 3d). Hence, LSD pseudopoten-
tials cannot be used with a SIC screening to cor-
rectly describe localized. d orbitals.

(4) Self-Coulomb corrections always dominate
the positive self-exchange and correlation correc-
tions, the latter being about 60/0 of the former.
Self-interaction correction hence tends always to
loire~ the orbital, energy.

(5) Equations (28) and (29) describe the effects
of SIC on the total energy. In the pseudopotential
case one obtains

ESIC LSD @~D ~ ~v
Ps &s ~ ~~ nlrb nlfy

nlrb

with

(37)

5„,.=-.'(X„,.~
V..(;„,.) ~X„,.)

+ (X„„ie„,.(n„„1)i X„„), (38)

where g„, is the spin-polarized exchange and cor-
relation energy per particle. We find for Si,
~3 -0.70 eV and &,~ = -0.59 eV; for Zn, &4, = -0.60
eV and &~=-2.03 eV. Using~„=2 and A'»=2 for
Si and N~= 2 and N,~= 10 for Zn, the corresponding
direct corrections to the total energy are -2.6 eV
for Si (2.6'%%uo) and -21.5 eV for Zn (1.2%). Hence
the SIC lowering of the total energy of atoms
brings it into much better agreement with experi-
ment than the LSD energy, which is systematically
too high.

Figure 6 shows the differen. ce &,„—a~ in orbital
energies obtained with the standard LSD approxi-
mation and with the SIC-LSD approximation for the
3d transition elements. For reference, we give
the same quantity as obtained in the Hartree-Fock
(HF) approximation. 4' We note that for the d" 's'
configuration LSD predicts erroneously that the
d orbital is above the s orbital from Sc to Fe (in
the d" 's' configuration this is true only for Sc).
The SIC-LSD approximation produces d-s one-
electron gaps that are consistently negative, as
obtained in HF and experiment. The erroneous

d-s one-electron energy gaps
[sPin uPJ

&HFresults (d" sJ
0 HF results Id" s

LSD

LSD

slc-
LSD

-10

slc-
LSD

-15,
Sc li V Cr Nln Fe Co Nl Cu

FIG. 6. The one-electron d to g energy gap in transi-
tion elements as obtained in LSD, SIC-LSD, and Har-
tree-Fock (HF).

ordering of d and s levels for Sc-Fe in LSD may
have significant effects on the band structure of
the corresponding elemental solids and on the or-
dering of the transition metal impurity levels in
semiconductors calculated previously with the
I.SD.4'

We have applied the SIC pseudopotentials of F,
0, and Cl to calculate the negative ions 0, F,
and Cl, which are predicted to be unstable by the
conventional LSD approach. " We have reproduced
our results on these ions obtained with the all-
electron SIC approach. Owing to the correct
large-r limiting form of the SIC-screened pseudo-
potential, these ions are predicted to be stable.
The electron affinities (calculated as a difference
in total energies of the negatively charged ion and
atom) are 1.5 eV for 0 (observed: 1.5 eV), 3.4
eV for F (observed: 3.6 eV), and 3.6 eV for Cl



660 ALEX ZUNGKR

(observed: 3.8 eV). As this approach includes a
realistic description of correlation effects, the
results are ~uch better than those obtained by the
Hartree-Pock approach": -0.5 eV (negativel),
1.4 eV, and 2.6 eV for 0, F, and Cl, respec-
tively.

Finally, we compare the SIC-LSD atomic orbital
energies with the LSD orbital energies and with

the observed ionization energies of the outermost
electron in the atom (Table II). We have used the

improved correlation functional of Ceperley, "
which constitutes an improvement over the
von Barth-Hedin form. ' The long-known nonap-
plicability of Koopmans theorem to the LSD form-
alism arises not only from orbital relaxation ef-
fects (which are relatively small for outer orbi-
tals) but also from the existence of the spurious-
self-interaction terms in the potential. ' Hence,
the difference in the unrelaxed LSD total energies
for the atom and the ion with one hole in the nlo.

orbital is to lowest order

As the self-Coulomb term is typically of the same
order as -g„„, the latter constitutes a poor ap-
proximation to bE„„(Table II). While Slater's
transition-state procedure4 eliminates this term,
it does not provide a physical description of the
ground state potential in the atom. The SIC-LSD
approach eliminates this difficulty by constructing
self- consistently self -interaction-compensated
orbitals and potentials. Indeed, Table II shows
that the SIC-LSD approach yields orbital energies
that compare very well with experiment. The re-
maining discrepancies are due to orbital relaxa-
tion effects.

Atom IPe~t q SIC

Li
B
C
N

p
Mg
Al
P
Ar
Ca
Cr
Kr

54
8.3

11.3
14.6
17.4
7.6
6.0

11.0
15.75
6.11
6.8

14.0

5 4
8.3

11.5
14.9
18.6
7.4
5.6

10.1
15.3
5.9
6.7

14.0

3.2
4.05
6.1
8.3

10.4
4.8
3.0
6.25
9.3
3.8
4 0
9.4

TABLE II. The negative of the pseudopotential SIC LSD
and LSD orbital energies for the outermost electron in
the ground atomic state is compared to the observed first
ionization potential (IP) (in eV). Ceperley's (Hef. 37) cor-
relation is used for both LSD and the SIC- LSD calcula-
tions.

We have previously indicated that the lowering in
the orbital energies of occupied localized states
due to the self-consistent removal of self-interac-
tion terms provides the necessary explanation for
the anomalously small energy gaps calculated for
insulators in LSD. Although the empirical scaling
of the LSD exchange coefficient = 3 or the lack
of self-consistency in band structure calculations
often have the effect of increasing the calculated
band gap towards its experimental value, when
such devices are avoided, the band gaps predicted
by band theory are anomalously small (11.2 eV in

Ne [Ref. 36(a)] relative to the observed value of
21.4 eV, '4 8.3 eV in Ar [Ref. 36(a)] relative to the
observed value of 14.2 eV,"or 6.8 eV in Kr [Ref.
36(b)] relative to 11.6 eV (Ref. 44)).

Calculating the differences in the 2P, sp, and 4p

orbital energies for Ne, Ar, and Kr, respectively,
with and without SIC (i.e., &„„—= i„„-e„„), we
find that the discrepancy between the experimental-
and LSD-calculated band gaps closely matches

This confirms the suggestion that self-inter-
action effects are the dominant correction to the
anomalously small band gaps obtained in LSD cal-
culations for insulators. ' Since the SIC pseudopo-
tential mimics very accurately the all-electron
SIC orbital energies, the success of the latter ap-
proach in explaining quantitatively the systemati-
cally low LSD band gaps is shared by this pseudo-
poteritiaal approach. Detailed self- consistent band
structure calculations on insulators with the SIC
pseudopotentials developed here may provide a
practical way to improve significantly the pre-
dicted band structure of such systems.

V. SUMMARY AND CONCLUSIONS

Whereas the empirical and semiempirical pseu-
dopotential methods can be made to fit certain ex-
perimental quantities through adjustment of pa-
rameters, the first-principles pseudopotential ap-
proach involves the use of the imperfectly known
exchange and correlation interactions but provides
the possibility for systematic improvements and
establishes a firm connection to the all-electron
descriptions of the electronic structure. In this
paper, the previously developed density-functional
nonlocal atomic pseudopotential method' ' is ex-
tended to include spin-dependent effects as well as
an accurate description of correlation effects that
go beyond the local spin-density formalism.

We derive spin- and angular-momentum-depen-
dent pseudopotentials V,",~ "(r) from the known
LSD atomic structure. These atomic pseudopoten-
tials produce pseudo-wave-functions that are nor-
malized, monotonic, and nodeless for the ground
state, have a "maximum similarity" to the "true"
all-electron valence orbitals outside the core, and
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produce the same orbital charge accumulation
functions from ~ = to some point r = R~ inward
of the last maxima of the "true" orbital. In addi-
tion, these pseudo-wave-functions are given as a
simple rotation in the orthogonal space of the
"true" core and valence atomic orbital and include
an additional simple analytic component that lies
outside this orbital space. This simple linear
form allows one to conveniently recover the "true"
wave functions from the pseudo-wave-functions.
For atoms, the energy spectrum of the screened
pseudpotential is identical to the valence spectrum
of the all-electron Hamiltonian for the ground
electronic state and continues to mimic the latter
to within 0.005 Ry for excited states over an en-
ergy range of 1 to 1.5 By.

The calculated spin-dependent LSD atomic
pseudopotential V,", "(r) is shown to accurately
reproduce the all-electron interconfigurational en-
ergies Eg" 's') —E(d" 's') of all 3d transition ele-
ments. These spin-polarized pseudopotentials can

hence be used to establish for the first time a
pseudopotential theory of magnetism, including
pseudopotential calculations of magnetic impuri-
ties, magnetic surfaces, and phase transitions.

The spin-dependent pseudopotential V,","(r),
corrected for self-interaction effects, cures many
of the discrepancies previously encountered in the
local spin-density formalism when applied to
localized states. These include the anomalously
high atomic total energies, the erroneous order of
s and d levels of the 3d transition elements Sc to
Fe in the d" 's' configuration, the failure to pre-
dict the experimentally established stability of the
negative ions, and the large discrepancies between
the LSD energy eigenvalues and the observed ion-
ization energies. The calculation of such self-in-
teraction-corrected atomic pseudopotentials can
establish the basis for reliable pseudopotential
applications to localized states such as deep im-
purity states, surface and interface states, and
narrow-band materials.
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