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Analytic representation for first-principles psendopotentials
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The first-principles pseudopotentials developed by Zunger and Cohen are fit with a simple analytic form
chosen to model the main physical properties of the potentials. The fitting parameters for the first three
rows of the Periodic Table are presented, and the quality of the fit is discussed. The parameters reflect
chemical trends of the elements. We find that a minimum of three parameters is required to reproduce the
regularities of the Periodic Table. Application of these analytic potentials is also discussed.

INTRODUCTION

It is well known that pseudopotentials do not have
a unique representation. The general requirement
of a pseudopotential is, that it reproduce the va-
lence characteristics of an all-electron system.
Zunger and Cohen' have developed a systematic
method to produce pseudopotentials in the density-
functional (DF) formalism for any element in the
Periodic Table by imposing certain physically mo-
tivated constraints on the pseudo-wave-functions.
The Zunger-Cohen potentials were successfully
applied to characterize a large class of crystal
structures' and were applied to a number of elec-
tronic structure problems (e.g. , bulk properties').
However, these potentials are given in numerical
form and, hence, are not easily accessible. In
this work, an analytic form is used to fit the po-
tentials. This form is given by Eq. (29), and the
fitting parameters are tabulated in Tables I—IV and
the Appendix. The form chosen is simple so that the
physical properties of the potentials could become
more apparent. In Sec. I the choice of the analytic
form and its physical interpretation are discussed.
In Sec. II the calculational methods are described,
and in Sec. III the quality of the fits are discussed.
Section IV describes the chemical trends reflected
by the fitting parameters; applications of these
analytic potentials are also briefly discussed.

I. ANALYTIC FORM OF THE PSEUDOPOTENTIAL

The formalism of Ref. 1 has been implemented
by using numerical integrations, and the resulting
pseudopotentials are, thus, numerical. 'They can
be used in numerical form for electronic-structure
calculation'', however, in this paper, we are con-
cerned primarily with simple, analytical repre-
sentations which reproduce in a transparent form

the systematics of the potentials. We will, there-
fore, start from the exact closed form of the po-
tential and apply a number of simplifying approx-
imations to deduce the correct analytical asymp-
totic forms. We will then use these forms to de-
vise a simple interpolative analytic form for all
x values.

The exact expression for the Zunger-Cohen po-
tential of a particular angular momentum sym-
metry, l, is'

v', (~) = U, (~)+ v, [p] —v, [&l.

U, (r) is the nonlocal (i.e. , I-dependent) 'Pauli-
force" term which replaces the kinetic energy of
the true valence state, due to valence-core ortho-
gonality, by a potential ba,rrier. U,(r) ha. s the fol-
lowing closed form':

„(,) . .t(»i -~.r)4.«) (2)~'C„,tt„,(r)

The &fr„,
's are the all-electron nodal wave functions

(i.e. , core and valence) and q„,'s are the corre-
sponding eigenvalues. X is the principal quantum
number of the valence state for which the potential
is generated, and the sum is extended over both
the core and valence states. The C„,'s define the
normalized pseudo-wave-function, X«(y), through
the unitary rotation

X», (r) -=Q C„,g„,(g) .

In the Zunger-Cohen scheme, the C„,'s are de-
termined by imposing some physically motivated
constraints on X„,(r).' Generally, C», = I and C„,
((1 for the core; i.e. , X» is mostly valence in
character with a small admixture of core states.
Note that in Eq. (2), ;lthough the numerator is
summed over both the core and valence states, the
term (q„,—q„,) makes the valence contribution
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identically zero. Hence, if there is no core state
for that particular I, then U, (r) is zero. This is
in accord with Phillips's cancellation theorem'
and the Pauli-force concept. ' The functions Vr[p]
and Vr[n] represent the local parts of the potential
(i.e. , common to all l's); their closed forms are

v, [p]= —zlr+ v„,[p] (4)

10

4—
0

({=oj

and

v, [n] = z„lr—+ v„[n],
I
Q

L

0
2— 4

where Z is the atomic charge and g„is the valence
charge.

The functions, p(r) and n(r), which are the all-
electron core (c) plus valence (v) charge density
and the pseudovalence charge density of the refer-
ence state, ' are defined as

0U

CI
0 —2—
CL

Q

—4—0

(6)

and

n(r)=-Q Iy„,I'&„",,
—10
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I I I I I
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where N„"," and N„",are the occupation numbers for
the core-plus-valence and for the valence orbitals,
respectively. V» is the self-consistent screening
potential; in the Zunger-Cohen scheme, a local
density functional is used for both the interelec-
tronic Coulomb (Hartree) potential and the ex-
change potential with n= —,. When V' (r) is used in

the Schrodinger equation,

-!~'+ p v',.(~)I', + )',(e])x„(r)= g, x„(r),

where I', is the angular momentum projection op-
erator, Z Ilm)(ml I, the valence eigenvalues are
reproduced; i.e. , A.„,= q». ' Following the notation
of Ref. 1, we will define the atomic core potential
(or ionic potential) W, (r) as the sum of V,',(r) and

-Z„lr; i.e. ,

w, (r) = v„'(r) -z„lr. —

The various components of the core potential for
Sb, as obtained in the unapproximated numerical
form, are depicted in Fig. 1. Curve 4 in Fig. 1
shows the typical shape of W, (r). W, (r) is char-
acterized by a classical turning point, Ao,

w, (ft,') =- 0

and by a minimum point, R',

%'e now examine the analytic properties of the
various components of W, (r) Starting .with the

FIG. 1. Different contributions to the core (ionic)
potential. (1) Pauli term; (2) core-screening term
= Vr—V„;{3)—Z„lr;and {4)core potential, W& {r)
= (1)+ (2)+ (3). The l =0 Sb potential is used as an exam-
ple.

U"' (r) = (C,'/r ') exp(-C,'r) . (12)

This has the same form as the "renormalized
Pauli-force "potential of Andreoni et al. ,

' but here
we see a microscopic justification of this form.

The local parts of the pseudopotential also have
a simple physical interpretation. Combining V~
and V~,

v,(r) —v, (r) = z, /r+ v„[p]——v„[n],

Pauli term, as r 0, U-, (r)-C/r'. This results
from the constraint imposed by the Zunger-Cohen
scheme on the small-r expansion of the pseudo-
wave-function', lim„,y„,(r) =a,r"+ with X=2.'
Hence, at small r, U, (r) has the same form as the
Pauli-force potential postulated by Simons and
Bloch. ' At large r, U, (r) diminishes very rapidly,
tending to zero outside the core region (cf. curve
1 in Fig. 1). From Eq. (2) we note that, at large
y, the dominant term in the numerator comes
from the outermost core state and the denominator
from the valence state. Since both of these states
have an approximate exponential decay in this
region, U,, (r) also tends to zero exponentially. In
the intermediate region U, (r) may have structure
(cf. Fig. 2). In our fitting, for simplicity we ap-
proximate the Pauli term by
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FIG. 2. Structure of the Pauli term in the core re-
gion.

where Z, is the core charge and it is equal to Z
minus Z„.This term mainly represents the elec-
trostatic screening of the nucleus by the core elec-
trons. To see this more clearly, we separate the
contribution to the all-electron charge density into
two parts, one from the core and one from the
valence state; i.e. ,

—2.0 I I I I

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
R (a.u. )

FIG. 3. Different contributions to the core-screening
term, V& —Vv. (1) —Zc/x+VH [p, 1+Vx [p, ]; (2)
Vx~ pc+ pv ~

—Vx ~ pc ~
—Vx I pv]; (3) VH~ p v j —VH~n~ i (4)

Vxt p. ~
—Vx(&1 i and (5) V r—Vv= 0.)+(2)+(3)+(4).

= (3)+ (4).

is an almost complete cancellation between I and
II (cf. curves 1 and 2 in Fig. 3). The cancellation
can be shown analytically by examining the asymp-
totic form of these terms. At large y

~= pc+ pv ~ (14)
( Z, /r+ V,[p,-]+ V,[p.])- V, l p. l (16)

and rewriting (13) by adding and subtracting terms
and by using the fact that V„[p]is a linear function-
al of p leads to

v, (r) v„(r)—=( z,/r+ -v„[P,J+ v [P,J)

+(V [P.+P„] V[P.]--V [p.])
+ (V„[p„]—V„[n]+V [p„]—V [n]) .

The different contributions are separated by round
parentheses and are plotted in Fig. 3 for Zn. The
dominant term is ( Z,/r+ V„[p,]+ V—x[p, ] ), which
can be identified as the electrostatic potential due
to a nucleus of charge Z, screened by the core
electrons. We denote this term by I. The second
term (Vx[p, + p, ]—Vx[p, ] —V~[p„])arises from the
nonlinearity of the exchange potential, Vgp]cc p'~',

and we denote this term by II. The third term
(V„[p„]—V„[n]+Vx[p„]—Vx[n]) comes from the
mismatch between the all-electron valence wave
functions and pseudovalence wave function, and we
denote this term by V«(r).

We now examine the asymptotic behavior of the
potential in Eq. (15). At large r (r-1.5 a.u. ) there

because V„[p,] cancels Z, /r -Subst. ituting the
functional form for Vx[p] in II and using the fact
that at large y p„&&p„oneobtains

(V [p + p ] —V [p ] —V [p ])-—V [P J+O(p /p )

which cancels with (16). Thus at large r
V (r) —V (r) —(Z,/r+ V„[p,])+ V (r).

At small y

To first order, we can approximate V~ —Vv by a
Fermi-Thomas screening term

Vr(r) —Vr(r) - —(Z,/r)exp( C3r) . -
Although this is a good approximation for the Z,/r-
+ V„[p,] part, it fails to account for V«(r); for
r & 1.5 a.u. , Vr(r) —V~(r) - V«(r) (cf. curves 3, 4,
and 5 in Fig. 3). It is important to account for
this term in the fit in this region because the va-
lence wave functions have their largest amplitudes
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FIG. 4. 4 large r(r) is a good fit for Vz& (x) at large
Zn is used as an example.

at -. 1-3 a.u. It turns out that the form

for Z, =18. For completeness, the Ga to Br po-
tentials with 3d in the valence and potentials for
the 4d with 3d in the core are given in the Appen-
dix.

In the work of Andreoni and co-workers, ' the
following expression for V,', was assumed:

V,',(r) = [(6I.)/2r'] exp(-yr), (26)

where both 5I and y are l dependent. For valence
states with no core state of the same symmetry,
e.g. , the p state of the i,i-Ne row, negative (6L)'s
are required. The same effect is evident in the
simpler potential of Simons and Bloch. ' In our
form, it is very apparent why t/'„ is attractive;
in that case, the Pauli term, U, (r), is identically
zero, leaving

V '„=V,(r) —V,(r) (27)

g large r(r) 4 5
2(C2+ r2)2

yields a good fit for V~4(r) at large r (see Fig. 4).
The fit with the Fermi-Thomas term plus

&~"'(r)

which is attractive. The effect of the core states
of different symmetries on this pseudovalence
state is only the electrostatic screening. The ionic
potential is

Vr(r) —Vr(r) ' = (Z, /r)e-xp( C,r)+ L—' 2' "(r) (22) w, ( )r= v,(r) —v,(r) z,lr— (28)

works very well for atoms in the first two rows of
the Periodic Table. However, for the third row
(the transition metals), Eq. (22) is too attractive
at small y. This is because, as Z increases and
the core charge is pulled inward, the Fermi-
Thomas form underscreens the nucleus. This ef-
fect can be accounted for by introducing

which has the correct limits: lim„~W,(r) = Z/r-
and lim„„W,(r) = Z„lr, wh-ile Eq. (26) fails for
the former limit.

In the following sections we will describe the
method of fitting and the quality of the fits using
the following analytic form for V~", ,(r):

4'm'll "(r) = C, exp(-C, r) . (28) V,",, , (r) =', exp(-C,'r) — 2 exp( —C,r)

This small-y correction is important for the 3d
series because the d orbital is very localized. For
example, using Eq. (22) for V~(r) —Vv(r)a', the
3d pseudo-wave-function of Zn is pulled inward,
and the 4s and 4p pseudo-wave-functions are
pushed outward. The 4s and 4p orbitals are af-
fected by the 3d orbitals through the self-con-
sistent screening potential V„z[n]. The eigen-
values are in error by 8—12%, but with the small-
r correction included the error is -1%. In our
fitting procedure, the Ga to Br potentials are gen-
erated with the 3d shell in the core. There is no
need to include the small-y correction for these
potentials because the 4s and 4P pseudo-wave-
functions have their peaks at much larger y than
the range of b, ™~1(r)Hence, for .Z, =2, Z, =10,
and Z, =28, we use

V ~(r) —V„(r)" = -(Z,/r) exp(-C, r) + 4' 2' "(r) (24)

C4C, ,), + C, exp(-C, r),
71 j,C~+r

(29)
I

where C, and C, are set equal to zero for Z, = 2,
10, and 28. We note that the Heine-Abarenkov'
pseudopotential replaces Eq. (29) by a single l-
dependent constant A inside a core of a radius
R„while the "empty-core" pseudopotential of
Aschcroft'2 sets V, , (r) to zero, independent of l,
inside a core radius Rp In both these forms, it
is assumed that a pseudopotential cancellation be-
tween a repulsive Pauli force and the Coulomb
attraction takes place leaving a constant net po-
tential which is either zero" or nonzero. ' The
present pseudopotential approach does not assume
such a cancellation but rather calculates it in the
density-functional formalism yielding explicit an-
alytic forms for the nearly canceling terms of Eq.
(29). Alternative forms are discussed in Ref. 11.
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FIG. 5. Setting the weighting function, cu(~), equal to
unity is adequate for states with only one core state.
The p potential of phosphorous is used as an example.

II. METHOD OF FITTING

The numerical pseudopotentials are fit with the
analytic form expressed in Eq. (29). The fitting
parameters are adjusted to minimize the integral,

Q= I (V"" '"'" —V+ l*w(r)d'r
0

(3o)
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FIG. 6. Simple fitting form for the Pauli term cannot
account for the structure in the core region.

i.e. , a least-squares fitting with a weighting func-
tion, ur(r). For states with only one core state,
choosing ~(r) to be unity is adequate (See Fig. 5),
but as the number of core states increases there
is structure in the core region which cannot be fit
by this simple form; see Fig. 6. Both R0 and R'
are not adequately reproduced. One of the objec-
tives of the fitting is to reproduce the trends in the
numerical potentials. In order to do this, we
choose a weighting function which emphasizes the
large-r region. The form for &u(r) is

0, r&R
(u(r) = r&R.

—6 I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2

R (a.u. )

FIG. 7. A weighting function is chosen to ignore the
structure in the core and emphasize the large-r region.
The resulting fit reproduces R 0 and R .

R is chosen to be 0.5 a.u. for both the Na-Ar and
K-Kr rows and zero for the I i-Ne row because
there is no need to ignore the core region for this
row. See Fig. 7 for the fitting with this weighting
function.

The loca.l part of the potential, Vr(r) —Vv(r), is
fitted first; then, C, —C, are fixed while V„,is
fitted by C,' and C,'. The fitting parameters for the
first three rows of elements are tabulated in Tables
I-IV and are plotted versus Z in Figs. 8(a)-8(g).
(See also the Appendix. ) The K-Kr row is arbi-
tral'ily separated into two rows with Z, = 18 and

Z, = 28; from K to Zn, the 3d states are treated
as valence states while from Ga to Kr the 3d is
treated as a core state.

TABLE I. Fitting parameters for the Zunger-Cohen
potentials. All energies are in Hartree units.

Z~ =2 C3
Vz -V~

C4

U) (l =0)
C0 C0

U
C~ C~

1 2

3L1
4Be
5B
8C

N
's
SF

~0Ne

1.9686 4.7982 5.9880
2.9456 3.7518 3.1452
3.9668 1.6050 1.8682
5.0062 1.0923 1.4285
6.0734 0.6807 1.1263
6.8700 0.3000 0.5000
7.7131 0.0 0.0
8.7366 0.0 0.0

2.9990 1.0472
3.0169 1.4229
3.0315 1.8014
3.0 731 2.1922
3.0487 2.5638
3.0500 2.9600
3.0744 3.3609
3.0 765 3.7456

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

III. QUALITY OF THE FITTED POTENTIALS

The value of Q in Eq. (30) is one measure of the
quality of the fit; the smaller the Q value the better
the fit. However, the true test is how well the
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TABLE II. Fitting parameters for the &c=10 potentials. All energies are in Hartree units.

c =10 C3

V~-Vv
C4

U) (l=p)
c' CO

2

Ug (E =1)
C1 C1

"Na
1'Mg
13Al
'4Si
15p
16S

1ZCl

"Ar

2.3326
2.6122
3.0200
3.4389
3.8615
4.3209
4.8235
5.4118

8.7946
7.1771
7.1847
4.3879
7.3943
7.2263
7.0678
6.8659

1.3053
3.0945
2.6178
1.7767
1.8431
1.5381
1.3050
1.1078

8.6691
8.0022
8.P223
8.0929
8.3029
8.4635
8.6365
8.8225

1.354
1.4094
1.5274
1.6490
1.8115
1.9.634
2.1205
2.2825

4.8595
4.9062
4.8883
4.8731
5.0262
5.1350
5.2563
5.3928

1.0814
1.2141
1.3286
1.4347
1.6057
1.7581
1.9161
2.0803

fitted potentials can reproduce the atomic-term
values and other features of the all-electron wave
function such as the moments, (&r&„, ~x" ~tI&»). Here
g» is the radial part of the wave function. A com-
parison between the all-electron moments,
( t«&&r" ~P»), and the pseudoelectron moments,
(g» Ir"

I y«), determines the similarity between the
all-electron wave function and the pseudo-wave-
function at different r regions. For n&0, the sim-
ilarity at small r is compared; for n&0, the sim-
ilarity at large r is compared, and for n= 0, the
normalization is checked. In our test, n is an
integer between -2 and+3, inclusive. In the
Zunger-Cohen scheme, the pseudo-wave-function
is a linear combination of the all-electron core
and valence states [see Eq. (3)]. The all-electron
valence state, p», can be recovered from XN, by
core orthogonalization, i.e. , subtracting out the
core contributions. Let ~&y») denote the core-
orthogonalized wave function; it is equal to

where the ~tt&, , )'s are the core states and X is the

normalization constant. With the Zunger-Cohen
numerical potentials, the all-electron valence
state is fully recovered; X» is given as a linear
form in [P„,(r)] Eq. (3); hence

but with the fit potentials, this is not necessar ily
so because of an imperfect fit. A comparison be-
tween (g» (r"

~
Q») and (&y~ Ir" ~&y») will de-

termine how well the all-electron valence state is
recovered. Potentials for the first and last ele-
ments of a row are tested. The potentials for the
other elements in the row are assumed to be of the
same quality.

The atomic-term values calculated with the
fitted potential are compared with the all-electron
results in Table V. The fitted potentials reproduce
the atomic-term values to within 1% to 3%. (The
numerical potentials give zero error in the term
values. ) The pseudoelectron moments are very
close to the all-electron moments for n~ 0, and
the orthogonalized pseudomoments recover the
all-electron results to c 3% (cf. Table VI). The

TABLE III. Fitting parameters for the Zc =18; E=2, C1
——C2

——0.0 potentials. All energies
are in Hartree units.

Zc =18 C3 C4

Vr &v

C5 c,
U& (E =1)

C' C'
U) (l =1)

C1 C2

"K
"ca
21 Se
22Ti
23+
24cr
"Mn
26F
2ZCO

'8Ni
"cu
"Zn

1.5698
1.8822
2.1414
2.3685
2.5793
2.7634
2.9744
3.1611
3.3435
3.5240
3.6701
3.8772

15.5520
17.6890
15.2430
13.7390
12.8390
6.5083

10.1230
9.2306
8.4799
7.7663
4.7710
6.6233

6.3732
4.3045
3.6154
3.3310
3.0885
3.2634
2.7907
2.6890
2.6092
2.5226
3.1868
2.3913

25.682
29.815
28.732
29.285
29.765
31.525
32.732
34.047
35.407
36.848
38.370
39.791

3.1951
4.1556
4.4795
4.9331
5.3572
5.8169
6.2825
6.7046
7.1176
7.5357
7.8480
8.3515

10.615
11.154
11.706
12.210
12.655
12.781
13.257
13.661
13.761
14.134
14.230
14.557

0.8133
0.8898
0.9809
1.0726
1.1619
1.2449
1.3321
1.4247
1.4997
1.5925
1.6794
1.7601

11.683
11.918
12.089
12.260
12.386
12;519
12.596
12.701
12.845
12.846

0.9938
1.0802
1.1621
1.2549
1.3288
1.4112
1.4902
1.5714
1.6674
1.7300

11.0 78 0.8248
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TABLE IV. Fitting parameters for the Z~ =28 potentials. All energies are in Hartree units.

Z =28 C3
V~-Vy

C4

Ug {l =0)
C0 C',

U, (l =1)
C) C2

@Ga
32Ge

33As

-"Se
35Br

3.3476
3.5107
3.6166
3.8322
4.0707

16.367
11.987
9.9995
9.9776

10.190

0.91154
0.964 94
1.345 2
1.4135
1.3565

14.934
14.888
14.954
15.171
15.224

1.8452
1.8923
1.9544
2.0278
2.0910

13.115
12.772
12.779
12.764
12.783

1.8120
1.8373
1.8978
1.9577
2.0218

TABLE V. Tests for the quality of the fitted poten-
tials —reproduction of atomic-term values. Energies
are given in eV. AE, fit, &, and % denote, respect-
ively, all-electron, fitted potential, error, and per-
centage error.

Ll ~2s

Zc
10Ne ~2s 2P

stability of the numerical potentials against ex-
cited configuration was tested in the Zunger-Cohen
paper'; a similar test is performed for the fitted
potential for Ge (see Table VII). The results are
very good; eigenvalues are reproduced to ( 1%.

These analytic potentials, as in the case of the
numerical potentials, are "hard-core", hence,
they have non-negligible components for large q
in Fourier space. To ensure convergence, one
may have to use a very large basis set if plane
waves are used. However, if the calculations are

performed in real space, there is no convergence
problem. Smoothing out the hard-core part of the
potential near the origin will improve the conver-
gence; such smoothed potentials seem to give good
atomic results.

IV. TRENDS AND APPLICATIONS

The fitting parameters reflect the chemical
trends of the elements. We will examine them in

order:
(1) C,' [Fig. 8(a)]. (a) C,' increases as the number

of core states increases, indicating a stronger
Pauli potential is needed to replace the kinetic
energy due to valence-core orthogonality as Z, in-
creases.

(b) When there is only one core state, e.g. , Z,
= 2 for l =0 and Z, =10 for l = 1, C,' is almost a con-
stant. The value of the constant is 21+3 (Ref. 1);

AE
fit

-2.149
-2.143
+0.006

0.3%

3s

AE
fit

Z =1Q
"Ar

-34.439
-34.365
+0.075

O.2%

~3s

-12.053
-11.876

+0.180
1.5%

TABLE VI. Tests for the quality of the fitted poten-
tials —reproduction of moments. g-, g, and xg denote
the all-electron, pseudo- and core-orthogonalized
pseudomoments. f is defined as the ratio of the pseudo-
(or core-orthogonalized-pseudo) moment to the all-
electron moment. Results for Li and Na are tabulated
below.

AE -2.095
fit -2.129

-0.034
1.6/0

19K ~4s

AE -1.753
fit -1.705

+0.048
2.7%

AE
fit

Z~ =18
30Zn

AE
fit

-22.655
-22.475

+0.180
0.8/p

~4s

-5.042
-4.980
+0.062

1.2%

-9.081
-9.054
+0.027

0.3/0

-9.472
-9.528
-0.056

O.6%

2&

(~ 1)
(~'&
&r&

&~2&

(~3&

0.4823
0.3388
1.OOOO

4.1260
20.5300

120.1300

Ll
0.1222
0.3069
1.0000
4.0650

20.0100
116.6000

"Na

0.253
0.906
1.OOO

0.985
0.975
0.971

0.4857
0.3399
1.0000
4.3.180

20.4700
119.7400

1.017
1.003
1.000
0.998
0.997
0.997

AE
fit

-7.912 -1.921
-7.835 -1.976
+0.077 -0.055
1.0% 2.8%

AE
fit

Zc =28
Ga

-18.309
-18.133
+0.177
1.0%

-6.833
-6.829
+0.004

0.1%

&Z-2&

&y&

&y 2&

0.5117
0.3087
1.0000
4.2921

21.9990
131.9550

0.106Q
0.2909
1.0000
4.2051

21.1720
125.311Q

0.192
0.942
1.000
0.980
0.962
0.950

0.5052
Q.3089
1.0000
4.2701

21.7250
129.1890

0.916
1.QQ1

1.000
0.995
0.988
0.979
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TABLE VII. Test for the stability of the Ge fitted
potential. Energies are given in eV.

e04~24P

AE
fit

Ge'4s'4p'

AE
fit

-10.521
-10.429
+0.092

0.9%

~4s

-11.430
-11.339
+0.091

0.8%

-30121
-3.148
+0.027

0.9%

-3.747
-3.780
-0.033

0.9%

Ge+'4s'4p'

AE
fit

4s

-18.490
-18.569
-0.079

0.4%

C4p

-10.369
-10.549
-0.1.8

1.7%

)l', ~1/Z.
Therefore

C,' ~ I /8,' ~ Z .

(34)

Large C,' means small core and vice versa. Since
Ne has the tightest core, it has the largest C,.

(b) The discontinuity of C, going from lower to
higher Z, is due to the additional core states.

(c) Again, C,' and C', are insensitive to whether
the 3d is in the valence or core regions.

(d) As the number of core states for l = 0 and
l =1 approaches the same value, the nonlocality
diminished; e.g. , for Z, =18 and 28, C, =C', .

(3) C, (Fig. 8(c)]. (a) 1/C, is the Fermi-Thomas

this is due to the small-y expansion of y», lim„ppf
= apy "+~ ~ ~ . As the number of core states in-
creases, there is structure in the core region
which is being ignored by our fitting procedure;
hence, no such simple relationship exists for C,'

at higher Z,.
(c) Although we have arbitrarily divided the third

row into Z, = 18 and Z, = 28, with 3d in the valence
for Z, = 18 and 3d in the core for Z, = 28, both Cy

and C,'are insensitive to this division because they
depend only on the number of core states with l = 0
and 1, respectively.

(2) C,' 1|Fig 8@)]. (a).C,' exhibits an almost lin-
ear dependence on Z (or Z„)for a given Z, . This
can be explained simply. 1/C,' is a measure of
the range of the Pauli potential; thus, it is pro'-
portional to the size of the outermost core state
of angular momentum l. We denote the size by

R,'. As Z increases, the nuclear charge pulls the
core states inward. Since the potential is Z/x, -
one expects

screening length of the core electrons; conse-
quently, it is proportional to the size of the core.
The linear relation of C, vs Z follows the same
argument for C,'.

(b) In this case, the distinction between 3d in the
valence and 3d in the core is important because
1/C, is proportional to the size of the whole core.
Hence, C, jumps to a lower value from Zn to Ga,
indicating an increase in core size. However, the
change is small since 3d is very localized.

(c) If C, is approximated by

C, =a(z+5) (36)

where a and b have different values for different
Z„the slope indicates the rate at which the core
size decreases. A least-squares fit gives

C, = 0.964(Z —0.906), Z, = 2

C, = 0.443(Z —6.068), Z, = 10

C, = 0.203(z —10.571), Z, = 18

C, = 0.200(Z —14.835), Z, = 28.

(37)

(38)

(39)

(40)

The value of the slope decreases as Z, increases
because of screening.

(d) The ratios of the slopes between Z, = 2 and

Z, = 10 and between Z, = 10 and Z, = 18 are almost
the same:

a(Z, = 2} a(Z, = 10)
a(Z, = 10) a(Z, = 18)

This is an empirical result, and at present, we

are unaware of the underlying reason.
Since C4-C, are introduced as a small correction

term to the fitted potentials in a particular r re-
gion, either large y or small y, their behavior is
not as regular as C,-C,. Nonetheless, there are
some qualitative trends.

The major conclusion from Figs. 8(a)-8(c) is
that at least three Parameters per pseudopotential
are required to reproduce the regularities under-
lying the Periodic Table: one (C,) for determining
the size of the total core, another (C,) for deter-
mining the size of the core due to angular mo-
mentum l only, and finally, one (C,) for deter-
mining the strength of the Pauli potential. Fur-
thermore, given the simple forms of C„C„and
C, shown in Figs. 8(a)-8(c}, each of these can be
represented as a linear function of the atomic
number Z with two parameters. Hence, for l = 0,
1, and 2, a minimum of 12 parameters are needed
to represent the (l, Z) dependence of C,' and C,'.
Together with the two (l-independent) parameters
for C„aminimum of 14 atom-independent param-
eters are required to reproduce the periodic trends
of atomic pseudopotentials. Using the present ap-
proach to pseudopotentials, a considerable re-
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FIG. 8. (a)-(g) Plots of the fitting parameters versus Z, the atomic number.
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duction in the number of indispensable degrees of
freedom is achieved relative to conventional
pseudopotentials to individual atoms or even in-
dividual compounds.

(4) C» [Ei8. 8(d)]. (a) C» increases with Z,. C»
measures the magnitude of the mismatch between
p„and n', since the mismatch increases with Z„
C4 increases with Z,.

(b) For Z, =2 and 18, C, decreases as Z„in-
creases. Consider Z, = 2; the 2P state has no core
state; consequently, y»= g» [see Eq. (2)]. The
mismatch between p„and n arises from the mis-
match between y„and(„only. Therefore, as the

p state is being populated, the mismatch between
p„and n actually decreases, and as a consequence,
C4 decreases. The same regularity exists for the
3d series.

(c) The potentials for Si, Cr, and Cu are gener-
ated with configurations 3s'3P'3d', 4s'3d', and
4s'3d', respectively. The extra occupation of the
d state explains the dips of C4 at Si, Cr, and Cu.

(&) C, [Eig 8(e)].. C, decreases as Z„increases.
C, measures the range of s~" '(r); thus, it should
be proportional to the size of the valence state.
As Z„increases, the size of the valence state de-
creases; therefore, C, decreases.

(8) C, [Fig. 8(f)]. C, increases as Z„increases.
b,' ~ "(r)was introduced to account for the core
charge accumulated near the origin (see sec. I).
C, is the magnitude of b™~'(r).As Z„increases,
there is more charge being pulled inward; as a
result, C, increases.

(7) C, [Fig. 8(g)]. C, increases almost linearly
with Z„.1/C, is the range of 4™~"(r) which is pro-
portional to the core size. Since the core size is
inversely proportional to Z„,C, is proportional to

V

Since the quality of the fitted potentials is gen-
erally good, we expect that they can be used in

place of the numerical potentials for many appli-
cations, although sma/l adjustments in their val-
ues may be needed in view of the approximations
made here with respect to the precise Zunger-
Cohen pseudopotentials' (see Tables V, VI, and
VII). In addition, the fitted potentials have other
applications because they are analytic, and phys-

ical trends can be related to the parameters. If
an analytic calculation is performed with these po-
tentials where results can be expressed as func-
tions of the fitting parameters, then the dependence
of the calculated quantities on the physical prop-
erties of the potential can be revealed. To lowest
order when looking for physical trends, the small
corrections, b~»'"(r) and & ~ "(r), can be ig-
nored; therefore, V"", has an even simpler form:

V~", , = (Cf/r')exp(-C', r) —(Z,/r)exp(-C, r) . (42)

Further simplification can be made by fitting C„
C'„and C, with functions of Z and Z, ; the pseudo-
potential can then be completely specified by the
atomic-charge and core-charge numbers

(42)

and the calculated function of Z and Z,.

V. CONCLUSION

The Zunger-Cohen first-principles pseudopo-
tentials are successfully fitted with a simple an-
alytic form. This form models the different con-
tributions to the pseudopotential where each con-
tribution is physically relevant. The behavior of
the fitting parameters as a function of Z and Z, is
understood in simple physical terms. These an-
alytic pseudopotentials, hopefully, will be useful
for determining physical trends in addition to their
use for numerical calculations. Note that the un-
derlying density-functional formalism used to de-
rive the present pseudopotentials contains the im-
perfectly known exchange and correlation energy
functional E„,. The deficiencies in the currently
known E„,are reflected in systematic discrep-
ancies between the predictions of any calculation
using this E„,(both pseudopotential and all-elec-
tron) and experiment. The parameters in the
analytic form of the DF pseudopotential given
here may, hence, be slightly modified if one de-
sires to achieve better agreement with experiment.
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TABLE VIII. Ga to Br potentials with 3d electrons in the valence.

Zc =18
V2 —Up

C4 C5 c,
U, (l=0)

c' co,
Ur (

c,' c',
U, (i=2)

c2 c2

"Ga
32Ge
'3As
'4Se
35B,

4.1180
4.3502
4.6132
4.9060
5.2180

7.2615
8.5192
9.4193

10.0720
10.5920

1.9524
1.7789
1.5794
1.3978
1.2527

41.691
42.695
44.105
45.845
47.618

9.0863
9.6643

10.4680
11.5200
12.7620

14.546
14.823
14.885
15.162
15.269

1.8131
1.8874
1.9489
2.0268
2.0950

12.736
12.714
12.717
12.757
12.824

1.7763
1.8323
1.8921
1.9567
2.0253

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
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TABLE IX. Ga to Br potentials with 3d electrons in the core.

Zc =28 C3 C4

Vr-Vv
C~

U) (l =0)
c' c'

2

Us (L=1)
C1 C

U) (I=2)
C2

1
C2

2

"Ga
32Ge

33As
'4se
3)Br

3.1536
3.4957
3.6439
3.8456
4.0771

20.4200
10.5530
8.3575
8.0709
8.2950

0.4616
0.8724
1.0930
1.2267
1.2234

57.429
37.634
47.064
51.253
56.430

5.0386
9.8418

11.7040
13.0870
15.0120

14.383
14.846
14.806
15.062
15.161

1.7930
1.8855
1.9387
2.0150
2.0823

12.503
- 12.684
12.598
12.624
12.689

1.7437
1.8228
1.8744
1.9378
2.0060

5.8303
6.0842
6.2339
6.3824
6.5580

1.2501
1.3679
1.4605
1.5552
1.6541
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APPENDIX

The definition of ~oye and valence is rather
arbitrary. It is governed only by our chemical in-
tuition and the particular applications. For Ga to
Br, we treated the 3d electrons as part of the core,
but they can also be treated as part of the valence
in some applications. Hence, we have also gen-
erated the potentials for these elements with the
3d electrons in the valence. The fitting parameters
are given in Table VIII. With this definition of the
valence, the fitting parameters follow the regular-

ities of the K to Zn row. We have also generated
potentials for the 4d electrons with the 3d treated
as part of the core. Since the 4d orbital is very
delocalized in the ground-state configuration,
these potentials are generated, for a numerical-
stability reason, in the excited configuration where
one of the 4p electrons is put into the 4d state, ex-
cept for Ga where one of the 4s electrons is put
into the 4d state. The fitting parameters are given
in Table IX. Comparison between these parame-
ters with those in Table IV shows that the l =0 and
l = 1 potentials are quite independent of the valence
configurations. This fact shows that these pseudo-
potentials depend only on the core, thus implying
tr ansf er ability.
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