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The electronic structure of a semiconductor surface is studied for the first time using self-consistent nonlocal (first-
principles) pseudopotentials. In agreement with the recent local pseudopotential as well as tight-binding studies, no
intrinsic surface states are obtained in the gap of GaAs for the relaxed surface. However, in contrast with the
previous approaches, new features of the electronic structure are obtained, including a pronounced downwards
displacement of the low As-derived surface states, the appearance of an additional As p state near the valence-band
maximum, the reordering of the states near X with a different order of. wave-function parity, and the development
of pronounced d-orbital character (in addition to s and p) in the highest occupied and lowest empty surface states.

I. INTRODUCTION AND CONCLUSIONS

All of the pseudopotential electronic-structure
calculations of semi- infinite semiconductor sur-
faces known today have used local pseudopoten-
tials. Qn the other hand, all pseudopotentials are
inherently nonlocal. ~ Until recently, nonlocal
pseudopotentials which are usable in self-con-
sistent calculations were not available. Empirical
nonlocal-like corrections to otherwise local
pseudopotentials" have shown substantial changes
both in the band structure as well as in the elec-
tronic charge densities of zine-blende semicon-
ductors. ~ Since, however, in this approach the
screened pseudopotential, rather than the bare
pseudopotential, has been empirically parame-
trized, ' these potentials were not expressible in
terms of the calculated wave functions and hence per-
mitted neither self-consistency in the calculation nor
the transferability from bulk to surface calculations.

Pecently, 4 self-consistent first-principles non-
local pseudopotentials have been derived from the
density-functional formalism~ for all atoms of the
first five rows in the periodic table. They have
been used for a number of electronic-structure
calculations, including that of bulk semicon-
ductors, 6 bulk transition metals, ' and diatomic
molecules, 8' ~ as well as the calculation of the
equilibrium lattice constant, cohesive energy, and
bulk moduli of Si (Ref. 10) and Mo, W. '~ In this
paper, these nonlocal pseudopotentials are applied
for the first time to study self-consistently the
electronic structure of the relaxed GaAs (110) sur-
face. I use the 27 -rotation relaxation model sug-
gested by Tong et al. '2 for the surface geometry.

My main conclusions are:
(1) 'In agreement with recent tight-binding" "

and local pseudopotential'~ calculations using the
relaxed surface geometry, but in contrast with
the calculations using the ideal surface geom-
etry, '6 ~9 I find that no intrinsic surface states

exist in the fundamental gap. This agrees with
recent experimental f indings. Earlier experi-
ments on Fermi-level pinning26 as well as partial-
yield spectroscopy~7 have erroneously led to the
conclusion that intrinsic surface states exist in
the gap. However, subsequent studies on pure
samples ' have indicated that no pinning exists
in the gap, and that the core-to-empty-. state tran-
sitions observed in partial-yield spectroscopy
actually measured final core exciton states rather
than one- electron surface states. 2' The present
study, based on nonlocal pseudopotentials, shows,
however, features that are absent from local
pseudopotential calculations.

(2) Since the s part of our nonlocal potential is
substantially deeper than the local pseudopotentials
used previously, '~ (Fig. 1), the lowest (Ass-like)
bulk valence band in QaAs as well as the lowest
As-derived surface states As(l) and As(2) (Fig. 2)
are pulled down in energy by about 1.5 ep, in
agreement with recent experimental results. ~"30

Tight-binding calculations"" place the As(2) level
in resonance with the bulk bands, whereas local-
pseudopotential calculations" place the As(2) state
correctly in the heteropolar gap, but too high by
about 1.3 ep.

(3) Whereas a local-pseudopotential calculation
predicts only one clearly defined AsP-like state in
the —(2 4) eV region, the nonlocal calcula. tion
predicts two states, As(3a) and As(3b), at —(3.0-
3.5) eV with nearIy identical dispersion, in agree-
ment with experiment. 9'3 These states are relaxa-
tion induced and are localized on the second surface
layer. Hence, the nonlocal pseudopotentials re-
spond more sensitively to changes in the atomic
positions and split two rather than one surface
AsP state from the bands.

(4) Both As and Ga atoms have relatively low-
lying 4d states that are unoccupied in the ground
atomic state but may mix into the bands in the
bulk solid and surface. hereas the d component
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of the nonloca/ pseudopotential is appreciably
deeper than the s component for both Ga and As
(Fig. 1) (reflecting a weaker pseudopotential can-
cellation due to the existence of only one core state
of d symmetry compared to three of s symmetry),
the local pseudopotential approach constrains both
s and d states to sample a common potential. This
raises artif icially the energy of the d-containing
states to the higher conduction bands, outside the
energy region of conventional interest. Hence, in
this approach the valence, surface, and lowest
conduction states are characterized as s- and P-
like states. gn contrast, an s, P, d nonlocal pseudo-
potential shows As d character in the lowest un-
occupied surface state Ga(3) (cf. Fig. 2) as well
as Gad character in the highest occupied As(5)
surface state. This may lead to a possible re-
interpretation of some of the selection rules used
to analyze the partial-yield photoemission data. 3'

(5) Angular-resolved photoemission studies in
which the emission was collected in the mirror
plane have indicated three or four surface states
around X' at -0.9, -1.4, and -1.6 eV below the
valence-band edge. The two outer states at
-0.9 and -1.6 ep were observed to be strong for
a polarization parallel to the mirror plane (i.e.,
even with respect to reflection), whereas the
central state at -1.4 eV is strong only for a polar-
ization direction perpendicular to the mirror plane
(i.e., odd). In contrast with the local pseudopoten-
tial study, ~5 which finds an order of surface states
of odd, even, even [As(6), As(5), As(4), respec-
tively], I find the correct order of even, odd,
even [As(5), As(3), As(4)] not as X' but rather
at a point displaced by 20%%uo towards I'. I do not
find the As(6) state that was obtained in the local-
pseudopotential study~5 (localized parallel to the
surface plane in the I'-X' region of the bands). A
correct order of states in this region was found
also in a tight-binding study'3 but for a somewhat
different surface geometry (bond-rotation relaxa-
tion rather than the presently used 27 -rotation
relaxation model). In agreement with recent ex-

perimental studies, ' J find four surface states
between X' and p above —3 ep, whereas the local-
pseudopotential study indicates only three states in
this region. The predicted dispersion of the four
states along X'. to p agrees very well with experi-
ment" and suggests an assignment that differs
from that suggested both by tight-binding and the
local-pseudopotential'5 studies.

II. METHOD

A self-consistent symmetrized plane-wave ap-
proach in a repeated slab geometry with nine
layers of GaAs (i.e. , 18 atoms) and six layers of
vacuum in each of the translationally equivalent
unit cells is used here. The effective potential in
coordinate space is partitioned into an external
pseudopotential W (r, r') and a two-electron
screening potential W„,[n(r)] that is a functional
of the self-consistent pseudocharge density n(r):

V„~(r, r') = W„(r, r') + W„,[n (r)] .
The pseudopotential acts as an external field,

replacing the dynamic effects of the core elec-
trons, and is a constant for a given geometry of
the system. The nonlinear response of the elec-
tronic system to this external potential is repre-
sented by the screening, which is calculated self-
consistently. Note that whereas certain choices of
screening formalisms may lead to a local screen-
ing potential W„,(r) (e.g. , the local-density ap-
proach5) and others (e.g. , the Hartree- Fock ap-
proach) lead to a nonlocal screening potential
W„,(r, r'), both approaches produce nonlocal
pseudopotentials W (r, r ): eliminating a certain
subspace of (core) orbitals from either a local or
a nonlocal all- electron representation requires
the addition of a state-dependent (pseudo) poten-
tial. '4

The pseudopotential W~(r, r') is approximated as
a superposition of angular-momentum-dependent
atomic pseudopotentials v~'"(r) for each atomic
type a:

W' (r, r')=Q Q v„' '(r —R„—y, )+Q Q Q [v,',""(r—R„—7. ) —vL'~'(r' —R„—r, )]P,

= Vz. (r) + V„„(r). (2a)

I use v(r) to indicate atomic potentials; V(r) denotes crystal potentials. Here R„and r denote the unit-
cell and atomic-site-position vectors, respectively, and P, is an angular momentum projection operator
with origin at r —R„—7 . The total pseudopotential has been divided into a local part V„(r) common to all
angular momentum components of the wave function and into a nonlocal part that acts differently on the
different angular components of the wave function. Note that the definition of the local atomic potential
v„' '(r) is arbitrary as long as the nonlocal part V„~(r) includes all the differences v~~'" —v„' ' as indicated
in Eq. (2). Since at a large distance from the origin all atomic pseudopotentials approach -2„/r, the non-
local potential is nonzero predominantly inside the core. One is hence free to select vL '(r) =&,v' '"
+&~v' '"+&~v' "and optimize &,&~, and &„ to obtain a good convergence in the basis-set expansion.
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Similarly one may select V„(r) to be e(lual to the local semiempirical pseudopotential v,m()(r) used in pre»ous
studies'5 and define the nonlocal part as the deviation of the first-principles pseudopotential f»m v p(r):

W„(r, r') =g g v(™'(r—R„—y ) + g g g [v,',""(r—R„—q, ) —v,"'(r' —R„—7,)]P, . (2b)
Rg R~ i=0

In the momentum representation used here, the matrix element of the pseudopotential between two plane-
wave basis functions exp[i(k+ G) ~ r] and exp[i(k+ Q') ~ r] is

(k4 Gi))'„(rr')~k+G'): g S (G) )f(G)+ g g S (G G))",tk+G k+G ),

where the atomic nonlocality matrix in momentum space is given by

E,(k+G, k+Q') =(k+Qlv' "(r)—vL '(r) Ik+Q')
= (4.i&.)(2E+1)&ji(lk+ Q I.) I

[v( '(r) —v."'(r)]P, (cosr) lji(lk+ Q'Ir)&.

E (G) = — v'~'(r)e ' ''dr
oe0 g L

a

Using the density-functional approach, 5 the
screening potential W„,[n(r)] is represented in
coordinate space as

W, [n(r)] = V„[n(r)] + V„[n(r)] + V, [n(r)],

(6)

where V„[n(r)J is the interelectronic Coulomb
r epuls ion,

V„[n(r)]=, dr', (8)

V„[n(r)] is the local-density exchange, 5

V'„[n(r)] = —(3/r)'i3n'i3(r) (g)

(with a Kohn and Sham exchange para. meter of e(
=-', ), and V, [n(r)] is the correlation potential of
the homogeneous electron gas5 for which I use the
result of Singwi et al. 3 as parametrized by Hedin
and Lundqvist. 33 In a momentum representation,
the screening components are

Here S (G) is the nth sublattice structure factor,
Q, is the unit-cell volume per atom, j, (x) are the
ordinary spherical Bessel functions, and P, (y) is
the I egendre polynomial of angle y given by

(k+Q}. (k+G')
Ik+6( Ik+G'I

The local pseudopotential form factor E,o(Q)
is given as a simple Fourier transform of the
local potential

x)(k, r) = Q Bi(k+G)e" (12)

followed by a symmetrization of [e'"' ''') with
respect to a reflection operation at the center of
the unit cell. This symmetry operation belongs to
the star of all k points in the Brillouin zone of the
(110) system and reduces substantially the matrix
size. With the basis of the form (12), the single-
particle equation becomes

I

where Q is the superlattice unit-cell volume.
ln a local pseudopotential approximation 5 one

sets

E,(k+Q, k+Q') -=0

for all angular momentum components. Hence, the
+,P, d, etc. , components of the wave function are
all constrained to sample a common local potential.
This is a good approximation only to the extent
that (i) v' "(r)=v,', '—"(r)=—v' "(r), or if (ii)
v', ~ 0'(r) &v' "(r)Wv,', '(r), but that the crystal
wave functions have only one predominant angular
momentum component over the entire energy-band
range of interest. In practice, neither of these
conditions are met for covalently bonded tetrahe-
dral solids that exhibit extensive orbital hybridiz-
ation over the full valence and lowest conduction
bands [cf. condition (ii)] and are made of atoms
with a different number of core orbitals for differ-
ent I values [cf. condition (i)].

In the present calculation, I expand the pseudo-
wave-functions x& of band j and momentum k in a
plane-wave basis:

4wn(Q)

1 3"'
V (6) = —— — n~i~(Q)

(10a)

(10b)

Q [(k+ G) 5o, o + V(k+G, k+6') —e~(k)]B~(k+Q)

= 0, (13)

);(G)=—I);(r)e ' ''dr, (10c)
where the potential matrix is given in the mo-
mentum representation as
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V(k + G, k + G') = V„(G—G') + V„(G—G') + V, (G —G')

+ I S, (G —6')(E ~(G —6')+ $ )„.g(k+ Gk+G')),
a

and the various terms are given by Eqs.— (10a), (10b), (10c), (6), and (4), respectively.
The input to the calculation is {v~'$ for & =Ga, As and I =0, 1, 2, as well as the geometry {II„,7 ].

The matrix elements F, 0(G) and E,(k+ G, k+ G') are then calculated once and for all on a given grid in
momentum space by performing the one-dimensional numerical integrations indioated in Fqs. (6) and (4),
respectively. To solve (13), an intial guess for V„(G)+ VQG)+ V, (Q) is needed. This guess does not affect
the final self-consistent result but rather the computing speed with which it is obtained. One can use an
initial guess taken from previous empirical pseudopotential studies or by first solving an atomic pseudo-
potential equation with v' "(r) for Qa and As:

{- v + v„[no (r)] + v„[no (r)] +v, [go(r)] + v ' "(r)P,] y„,(r) =q„,p„,(r) (15)

using standard atomic structure programs, 34 and
then use the linearly superposed atomic screening
as a first guess to the crystal screening:

W."„'(r)=,P g ~„,„„[~,(r- a„-7.)],

where v„„,(r) denotes collectively v„+v„+v,.
Qiven this initial guess, Eq. (13) is solved for
four special k points in the surface Brillouin
zone. 35 To obtain a convergence of 0.25 eV in the
eigenvalues e&(k) with respect to the sum over Q'
in Eq. (13), I use 600 plane waves at I' (which de-
compose into two 300x300 matrices due to the
symmetrization) plus a,n additional 1167 plane
waves in a second-order Lowdin perturbation
technique. ~ These correspond to energy cutoff
values of 4.1 and 9.5 Ry, respectively. Those
large cutoff values are required because the first-
principles pseudopotentials (Fig. 1) are rather
steep in coordinate space.

From the wave functions x&(k, r) evaluated at
points k& in the irreducible zone [Eq. (12)] one
calculates the symmetrized wave function x&(k, r)
over the full zone. The charge density is then
given as

(16)

OCC

n(r) =g g ur +)x& (k&, r)x&(k, r), ,

using the statistical weights u (kP for the four
special k points k&.35 The density Fourier com-
ponents are

(17)

OCC

n(G) =g g g u (k, )B, (k~ + G')B, (k +Q).
0'

(18)

From (18) I obtain the interelectronic Coulomb
potential V„(Q) using Eq. (10a). The individually
divergent V„(G=O) and E,, (Q=O) terms are
arbitrarily set to zero, redefining thereby the
posit:ion of the vacuum level. . From the coordinate
space charge density in Eq. (17), tabulated over

t

about 65000 grid points {r,.] in the unit cell, I
calculate m(r,.)' ', and via a fast Fourier trans-
form, 3~1 obtain from this the V„(G) term in (10b).
The correlation potential (10c) is similarly cal-
culated by fast Fourier transforms of V, (r,.). Using
this updated screening W, (G) = V„(G) + V„(G)
+ V, (Q), and the fixed pseudopotentials E„o(G)
and E,„(G,G'), Eq. (13) is solved again. The pro-
cess is repeated iteratively until the screening
IV„,(G) agrees to within 10 Hy in successive
iterations. Starting from the initial guess (16)
and using extensively iteration-damping tech-.

niques, this requires nine iterations.

III. PSEUDOPOTENTIALS

Our basic method for obtaining nonempirical
atomic pseudopotentials {v~,"' (r)) in the density-
functional formalism has been previously de-
scribed. 4

The nonlocal density-functional pseudopotentials
for Ga and As are displayed in Fig. 1, where they
are compared with the semiempirical local pseudo-
potentials used previously for surface calcula-
tions. " These latter potentials are obtained by
fitting the spectra of the bare ions Ga'3 and As'
to experiment without constraining the shaPe of the
wave functions. For comparison, Fig. 1 also
shows the local pseudopotential developed by
Frensley and Kroemer38 (FK) by fitting orbital
energies and using realistic Hartree-Fock-type
atomic charge densities. gt is seen that the semi-
empirical local pseudopotential" is qualitative1y
different from the two other potentials which in-
corporate realistic charge densities: Its mini-
mum is displaced to larger r values and is sub-
stantially shallower. Having also an attractive
character in the core region, the semiempirical
pseudopotential tends to accumulate charge in the
core (where a pseudopotential description of the
wave function is least valid). Due to the wave-
function normalization requirement, such a core
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FIG. 1. Nonlocal density-functional atomic pseudo-
potentials compared with the local semiempirical pseudo-
potential (Ref. 15) and the pseudopotentials of Frensley
and Kroemer (Ref. 38): (a) Ga, (b) As.

attraction tends to deplete charge density from the
bond region. Although the density-functional / =0
pseudopotentials are very similar to the local FK
pseudopotentials (used by these authors also to
obtain a good fit of the QaAs band structure to ex-
periment38), the former have, in addition, f = 1, 2

components. The f =1,2 (P-like and d-like, re-
spectively) density-functional pseudopotentials
are appreciably sti'onger than the f =0 (s-like)
pseudopotential. Application of the local semi-
empirical pseudopotentials to the calculation of
the ground state of Qa and As atoms indeed indi-
cates that the P orbitals lie at about 1.3 ep above
the values obtained both with the "full" potential
and the density-functional pseudopotential. Simi-
larly, the atomic orbitals outside the core differ
considerably (by about 15%) from the "true" all-
electron valence orbitals. Note that a significant
difference persists between the v' ' ' potential
and v'~" v'~' ' even after addition of the 1/r
and 3/r2 centrifugal terms to v~" and v~ '", re-
spectively.

While it is conceivable that a suitably local
pseudopotential for Qa and As may be constructed
to approximate the results obtained with the full
nonlocal pseudopotentials, no such simple potential
exists as yet. Not only does the semlempil ical
local pseudopotential' fail to reproduce well the
results obtained with the nonlocal pseudopotentials,
but also the present v' '" alone fails in providing
a good approximation to the nonlocal results.

The inclusion of pseudopotential nonlocality has
signif icant effects on the character of the wave
functions. Although atomic As and Qa do not have
occupied 4d states in the ground state, their s,P
valence state may hybridize with d states in the
solid. Indeed, the calculated 4p-to-4d one-elec-
tron gap in the atoms (8.5 and 5.5 eV for As and

Ga, respectively) is of similar magnitude to the
4s-to-4P valence gap (9.5 and 7 ep for As and Ga,
respectively). Furthermore, the 4d atomic orbital
of Qa overlaps significantly with the 4s, 4P orbitals
of As when these atom are displaced by a typical
Qa-As bond length. Such an s-d and P-d hybridiza-
tion is made unlikely if one uses local pseudopoten-
tials, since the d-like components of the crystal
wave functions are forced to sample a shallou
local pseudopotential, more akin to s states,
rather than the deePer nonlocal d pseudopotential
(cf. Fig. 1). This pushes the d-containing crystal
states upwards in energy into the higher conduc-
tion bands, outside the energy region of physical
interest. The d nonlocality has also an indirect
effect on the s states: these can penetrate the
core region, which lowers their energy consider-
ably. 3' A local. pseudopotential approximation may
hence be too crude to reveal reliably the ProPor-



964 ALEX ZUXGER 22

tf,ons of s, P, and d character in each state, while
energies that are stationary with respect to small
wave-function variations may be better repre-
sented.

A note is in order here on a related feature of
the tight-binding (TB) method. As core states are
omitted from explicit consideration by this ap-
proach, it constitutes in effect an implicit pseudo-
potential method. However, contrary to the ex-
Plicit pseudopotential approaches, the basis func-
tions remain unspecified, and (in current ver-
sions of TB) they are constrained to have zero
intersite overlap and possess matrix elements
with s and p symmetries alone. Hence this ex-
cludes the possibility of having direct d character
in the bands at any energy, while local pseudo-
potentials merely tend to raise d-containing states
to higher energies.

The density-functional nonlocal pseudopotentials
have been smoothed in t;he inner core for x ~ 0.5
a.u. to avoid numerical instabilities resulting from
the potential fluctuations of this region. The
criteria used for smoothing is that the smoothed
potential equals approximately Jo v' "(q)e~'"dq
with q ~ being the highest Fourier component in-

cluded in the Hamiltonian matrix. This has a
small effect on the atomic structure (the energy
eigenvalues of the smoothed potential differ by
less than 0.01 eV from those obtained by the un-

smoothed potential) and enables better numerical
convergence. Applying these potentials for bulk
GaAs using l =0, 1, and 2 for both atoms, a rea-
sonable band structure is obtained. The energy
eigenvalues for high-symmetry points [the value,
in eV, calculated with the first-principles nonlocal
pseudopotential is given first, followed by the value
obtained by Chelikowsky and Cohen by fitting the
experimental data (this, however, is not the poten-
tial used by these authors for surface calculations)
and the experimental value, when available] are:
I'(,„(-13.7, —12.6, —13.8 + 0.4),40 I'(„(1.0, 1.51,
1.52), I'is„(3.8, 4.6), X(,„(-11.0, —9.8, —10.7
+0.2),4 X3 „(-7.2, —6.9, —7.1a0.2),4 Xq „(—2.5,
—2.9), X,„(1.7, 2.03), and I,~,„(-1.2, —1.3, —1.4
+ 0.3).40 No comparison can be made with the band
structure obtained with the local pseudopotential
of Ref. 15, since the results were not published.
The main defect of the density-functional band
structure lies in the small predicted band gap (1.0
eQ compared with the observed value of 1.52 eV).
This is by now a mell-recognized general short-
coming of the density-funct, ional approach for
screening~'4~ both in its pseudopotential and all-
electron forms (e.g. , for Si the band gap calculated
either with the full potential42 or with the first-
principles nonlocal pseudopotential is 0.5-0.6 eV,
compared with the observed value of 1.17 eV,

whereas for CdS it is 2.0 eV, 3 compared with the
experimental value of 2.55 ep).

The ma, in sources of error in our calculation
are.

(1) In principle, one should also include pseudo-
potential components with E &2. However, using
l =0, 1,2 alone is probably a good approximation
for semiconductors, since wave-function com-
ponents with f or g character a.re not expected to
be pronounced in the valence and the low conduc-
tion bands.

(2) Using a repeated slab geometry introduces
spurious interactions between surface states on

opposite sides of the slab. gf one does not force
the degeneracy of the energy eigenvalues resulting
from this symmetry, the splitting between them
forms a measure of the spurious intersurface in-
teractions. The off-degeneracy is found to be 0.2-
0.3 eV. Since the density-funct;ional pseudopoten-
tials are more localized than the local semiempiri-
cal pseudopotentials (Fig. 1), one expects such
spurious interactions to be smaller in the present
study.

(3) The most serious source of numerical error
i;n the present calculation involves the truncation
of the Fourier expansions at finite momentum q ~.
One can estimate this error by changing the mo-
mentum cutoff values and repeating the band cal-
culation. g use two values of the cutoff parameter
q~~: 0 9qp and 1.1qo, where qo is the largest wave
vector entering the Hamiltonian matrix. For each
such q~~ value one defines a corresponding
smoothed atomic pseudopotential j ~u' "(q)e""dq
where v ' ' "(q) is the Fourier transform of the un-
truncated nonlocal atomic pseudopotential. Using
such smoothed pseudopotentials one is assured that
the solution of the eigenvalue problem [Eq. (13)j
with 6 ~q reflects the true results of the as-
sumed potential. I find that the average deviation
of the band energies from thos e obtained using qo
as a cutoff, over an energy range of 16 eV of
valence and conduction states, is 0.32 e V for q,„
=0.9qo and 0.18 eV for q ~ = 1.1qo.

IV. GEOMETRY

The present study uses the surface geometry
deduced by Tong et al. ~~ from J RED studies. This
relaxation model involves an angle of 27' in the
inward rotation of Qa relative to the "ideal" sur-
face plane. Qnly surface atoms are allowed to
relax: in units of the bulk interplanar distance do,
the As atoms move outwards by about 0.1 do and
the Ga atoms move inwards by about 0.25 d, . A
complete discussion of the various surface geom-
etry models inferred from LEED studies is given
in Refs. 44 and 45.
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V. RESULTS

The (110) projected band structure of GaAs to-
gether with the calculated surface bands are dis-
played in Fig. 2(a). A schematic drawing of the
experimentally observed surface states
plotted with the calculated projected band structure
is given in Fig. 2(b). The surface states have been
denoted by the chemical symbol of the atom (Ga/As)
that forms the predominant orbital character in the
corresponding wave function, followed by a number
in parentheses, in increasing order from the bot-
tom of the bands that labels the different slates.
Fifteen calculated k points in the surface Brillouin
zone have been used, and the wave functions of the
lowest 60 bands at each point have been analyzed
by calculating the wave function's planar average
(which indicates the region of space perpendicular
to the surface where the wave function is mostly
localized) as well as an angular momentum pro-
jection of the wave function [~B,(k+. C)j, (~ (k+ G)
~ r ~) 1; ] around spheres (with r ~R, where R, is
the tetrahdral radius~6) centered on surface atoms.
This can be used to establish the predominant
orbital character in each state, and when nor-
malized, this yields the percentage of a given
angular momentum species in each state. As both
s as well as P, d-type pseudopotentials wave func-

tions have zero amplitude at the origin, such a de-
composition is an important tool in analyzing the
orbital character. In addition, a large number of
the calculated wave functions have been subjected
to a symmetry reflection operation in the mirror
plane to examine their parity.

The two lowest surface states labeled As(1) and
As(2) (83 and B„respectively, in the notation of
Ref. 13 and Ref. 16) are As s-like. The As(1) state
was observed experimentally at -12eV(Ref. 30) and
is predicted to have its region of maximum band
flatness (i.e., peak density) at —12.1eV by the
present theory and at -10.2eV by the local semi-
empirical pseudopotential theory. "The As(2) state
has been observed at -11eV (Ref. 30) (it is, how-
ever, not clear whether the emission is from a
surface or a bulk state) and is predicted by the
present theory to li.e at -10.8 eV (X) and -10.7 eV
(M), whereas the local pseudopotential theory
places it at -9.3 eV." Tight-binding calculations
seem to place the As(2) state in the bulk bands.
Whereas the As(1) is localized predominantly on
the plane next to the surface, the As(2) state is
strongly localized on the surface plane. The dis-
crepancies between the local" and nonlocal pseudo-
potential results for these states occur because of
the misplacement of the low As-derived bulk band

VB0,(6)
-1 -, ,«:, ,~ VBO

Relaxed GaAs(1101
tTheory)

A~s(2
-11 =

12,, Aa(O ~-,-- ":
-13

(a) -10-
-11 =

-3

GaAs i110I
~~

~~
xperiment

Schematic)

~ ~ ~ ~ ~ ~ ~ ~ I~ ~ ~ J

X X' X X' r
FIG. 2. Projected surface-band structure of GaAs (110): (a) nonlocal-pseudopotential calculation. Full lines and

dashed lines indicate strong and weak surface states, respectively; (b) schematic representation of the experimentally
observed surface states (Befs. 20-23, 29, 30) plotted with the calculated projected bulk band structure.
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by the former method. "More detailed experiment-
al data are needed to assess the calculated disper-
sion and energy separation between these states.

The Ga(1) and Ga(2) pair of bands appearing at
—(5.8-6.0) eV at M (B2 in the notation of Hef. 13)
are Qas-like with a 10'%%uo AsP-like contribution.
Similarly to the As(1)-As(2) pair, Ga(1) is local-
ized on the second layer, whereas Qa(2) is local-
ized on the first layer. Only one state at —6.5 ep
(Hef. 23) is observed experimentally in this energy
region. Both pairs As(1)-As(2) and Ga(1)-Ga(2)
are split by an interaction induced by the surface
relaxation (1.5 and 0.3 eV, respectively).

The As(3a) and As(3b) pair of surface states are
localized on the two upper surface layers and are
AsP-like with 25% admixture of GaP. Two surface
states are observed experimentally in this energy
region at —3.6 to —3.8 eV (X to M) and —3 to —3.2
eV (X' to 1P).~' The calculated positions are As(3a)
at —3 to —3.2 eV and As(35) at —2.9 eV. The
local-pseudopotential theory'5 predicts one state
in this region at —3.2 eV (plus an additional very
weak state near the zone corner&. Here it is found
that the splitting of these states is small (0.1-0.2
eV), reflecting a different content of the minority
character (QaP). ~ith respect to the symmetry
operation of mirror-plane reflection, I find As(3b)
to be odd and As(3a) to be even along the I' —X'
line.

The As(5) and As(4) pair of states (8, and S, in
the notation of Hef. 13 or the As "dangling" and As
"back" bonds, respectively) are localized on the
first surface layer. Whereas they are classified
as AsP-type both in the tight-binding~3 and local-
pseudopotential~5 calculations, I find these states
to include also a non-negligible Asd character
(e.g. , 20% in As{5) and 17% in As(4) at the M
point compared with 75% and 80% P character,
respectively). I find the As(4) and As(5) states to
be even under a mirror-plane reflection at X' and

M; however, the As(4) state reverses its parity to
odd just outside X' towards I', and As(5) continues
to be even under reflection. The angular- resolved
photoemission study of Williams, Smith, and
Lapeyres shows at this energy region at least
three states at —0.9, —1.4, and —1.6 eg. At X'
I find the order As(5) at —0.8 eV, As(4) at —1.2
eV, As(3b) at —1.65 eV, and As(3a) at —1.7 eV.
With respect to mirror reflection, these states
are even, even, odd, even, respectively. If one
moves, however, away from X' towards I', the
order is changed to As(5), As(35), As(4), and
As(3a) with polarities even, odd, even, even, re-
spectively. Williams et al. '0 have studied the
angular-resolved energy distribution curves ob-
tained with a polarization of the incoming radiatio~
both parallel and perpendicular to the mirror plane

and collecting the emission in the mirror plane.
They, concluded that the states at —0.9 and —1.6
ep are strong for a polarization parallel to the
mirror plane (even), whereas the transition at
—1.4 eP is odd, i.e. , the order of states of in-
creasing binding energies is even, odd, even, re-
spectively. This agrees with the order found here
at a point that is 20'%%uo away from X' towards I"
but disagrees with the order predicted at X'.
Huijser et al. 2~ have shown four states near X',
the two lowest being nearly degenerate at X' but
splitting appreciably in going from X' to I'. The
observed ordex of the dispersion of these states
in going from X' to I' (and from the least bound
to the most tightly bound) is'9: up, up, dispersion-
less, and down. These observations strongly
support the ordering As(5), As(3b), As(4), and

As(3a), which agrees with experiment" both in
the dispersion directions as well as with the as-
signment of polarities' even, odd, even, even.
This interpretation is different from the one sug-
gested by the tight-binding work'3 [As(5), As(4),
As(3), or 8&, S&, and S~, respectively, where
As(4) is found to be odd] which agrees with ex-
periment in the order of polarities but shows only
three rather than four surface states at I' —X'
above —3 eg. Similarly, the present interpreta-
tion differs from the one suggested by the local-
pseudopotential work, which shows only three
states [As(6), As(5), As(4) or odd, even, even,
where As(4) is even in agreement with the present
results but in disagreement with Hef. 13[. I do not
observe any As(6) state (in agreement with Hef.
13), but instead the As(3) state extends to X' (in
agreement with Hef. 13). In order to verify
whether the order parity and dispersion of the
narrowly spaced bands near X' depend strongly on
the number of plane waves used in the calculation,
two calculations were repeated using a basis set
which includes + 10% and —10% more (less) basis
functions. I find that the convergence error near
X' is mostly (0.12 eV) rigid (i.e. , state indepen-
dent) with a small (0.04 eV) nonrigid component
which does not alter the order, parity, and dis-
persion direction of the bands.

In the previous interpretations of the polarities
of the surface states, '3'~~ it was simplistically
assumed that the initial states are of P symmetry
and the final states are of s symmetry. In the
present study, non-negligible d character is found
in both states. In particular, the lowest empty
surface state Ga(3) includes P symmetry on the
Ga site (91% at X) but 35% d cha.racter on the
As site (as well as 30/o Ass on As): note that
bonding to an electronegative chemisorbed species
will tend to stabilize such an orbital. Tight-binding
calculations" exclude a direct d character from
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the problem by avoiding the use of d basis functions
and neglecting intersite overlap. As indicated be-
fore, whereas local-pseudopotential studies allow,
in principle, d character in the wave functions (as
the plane-wave basis used can produce all angular
symmetries), the neglect of nonlocality effects
tends to destabilize d states and push them to high
energies.

The empty surface states Ga(3) and Ga. (4) obtained
in this study are localized on the surface layer and
agree closely in location with the corresponding
states found in the local-pseudopotential study. '5

As indicated by others, '3'" the Qa(4) state lies in
the gap for the unrelaxed geometry, whereas Qa(3)
lies above it. Relaxation effects reverse their
order and place both of them in the conduction
band, partial-yield photoemission studies ' in-
dicate that transitions from As 3p and Qa3d to
empty surface states have comparable intensities,
whereas the As 3d-to-empty-state transitions are
extremely weak. It was assumed" that if cross
transitions coupling the two sublattices are weak,
the As character in the empty states is s-like and
the Qa character is P-like, in agreement with the
present study. However, the absence of transi-
tions from As 3d is also naturally explained by the
fact that the present study finds Asd character in
the empty states.

In regard to the assignment of certain atomic
orbital character to surface or bulk states, one
notes that such procedures involve a certain amount
of arbitrariness: a three-dimensional charge den-
sity can not be partitioned in any unique way into
its atomic parentage whether one uses localized~3'~4
or delocalized" basis functions. The nonloeal-
pseudopotential approach offers, however, a physi-
cal way of assessing the orbital character of sur-
face states simply by scaling down by a small
amount the nonloeal-pseudopotent3al component
[v~ '"(x) —v"',] [Eq. (2b)] of a given f for a
chosen atomic species a. To estimate the non-
locality effects, I have repeated a non-self-con-
sistent calculation [i.e. , using the screening,
which is self-consistent, with the full nonlocal
pseudopotential in Eq. (2b)] with a perturbational
change in the nonlocality matrix elements
E,,(k+G, k+Q')- XE,, (k+G, k+6') with X

=1+0.05. Whereas the choice X =0 reduces the
problem to a local-pseudopotential calculation, the
choice X =1+g with a small g allows one to ex-
amine how the electronic charge and orbital ener-
gies of various surface states respond to small
perturbations in the external nonlocal potential,
revealing thereby their orbital character. Note
that while the total elimination of the nonlocal com-
ponents (X —0) will yield results that are deter-
mined by the choice of the local pseudopotential,

the use of a limiting procedure (X = 1 a q with q «1)
allows one to examine the derivative of the energy
of a given surface state with respect to the poten-
tial nonlocality. To first order, this derivative is
independent of the local potential.

First, the Qad nonlocality was scaled down.
The major effect was to raise the energy of the
empty states Ga(3) and Ga(4) with Be,./BX =—0.15 eV
and to decrease the d character of the wave func-
tion by increasing substantially the s character
[e.g. , from 9% to 16% in Qa(3) at the limit X-0].
Although self-consistency will tend to somewhat
offset this linear response, it seems clear that the
Qad character has an important role in stabilizing
the empty Qa states.

Among the other choices of nonlocal pseudo-
potentials that have been scaled, an interesting
result is obtained when the s,P nonlocality is
smoothly scaled towa, rds zero (i.e. , s, P electrons
tend to feed a common local potential). lt is found
here that the splitting between the As(3a) and
As(3b) states (which differ predominantly in the
proportions of s and P character) is reduced, ap-
proaching degeneracy at about X.

=—0.6. Hence, the
relatively small s, p nonlocality in As and Ga (Fig.
1) seems to be responsible for the formulation of
takeo stable As-derived surface states in this ener-
gy region.

Finally, when the p, d nonlocality is reduced and
the s pseudopotential is scaled, the low As(1) and

As(2) surface states move upwards with Bq,/BX
=—0.1 eV, but the bulk band at —(12—14) eV moves
rigidly with these surface states. The scale of the
s potential determines therefore the position of the
lowest s-derived surface states with respect to
vacuum but the positions relative to the nearest
band edges remain nearly invariant under scaling.

I end this paper with a theoretical note on the
validity of the density-functional approaeh5 used
here and in other pseudopotential (e.g. , Ref. 15),
as well as all-electron4' calculations, to describe
localized surface states. As can be seen from
Eqs. (7)-(9), the density-functional approach in-
cludes in the effective screening W„,[n(r)] the un-

physical Coulomb repulsion of an electron in state
g, with itself: V„[g,'], as well as the exchange-
correlation attraction of an electron with itself:
V„[$2]. These self-interaction terms are neg-
ligible only for diffused orbitals. The partial suc-
cess of the density-functional formalism in de-
scribing localized states rests on the fact that
often most of the positive self-Coulomb term is
canceled by the negative self- exchange- correlation.
terms. In general, however, recent calculations
have shown that V„[g~])

~
V„[g~]

~
for a wide

range of localized orbitals P,.(r), leading therefore
to anomalously high orbital energies for localized
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W«, [n(r), P2 (r)] = U«[n(r)] + Ug n(r)]

+ U.[n(r)1- U«[4)(&)]
—U„[P,(r), $ .=1]
—U.[C', (~), ( =1], (19)

where g denotes spin polarization. Applications
to many atoms have shown that the orbital ener-
gies obtained with (19) are 1-3 ep lower than
those obtained with Eq. (7), even for the valence
electrons. In addition, many of the systematic
anomalies characterizing the local-density for-
malism have been shown to be removed by this
self- interaction corrected scheme.

states in the density-functional approach, relative
to diffused itinerant states (which have a vanishing
self- interaction).

&t has been recently pointed out4 that one can go
beyond the local-density formalism by defining a
new energy functional in which self-interaction
effects are canceled self-consistently. This leads
to a modified state-dependent screening which re-
places Eq. (7):

Since some of the surface states obtained for
semiconductors have a localization range char-
acteristic of an atomic scale [ e.g. , states ap-
pearimg in gaps in. the projected band structure
such as Ga(1) and Ga(2) in Fig. 2], one may ex-
pect that self-interaction corrections for these
states would be a non-negligible fraction of that
found for atoms. Indeed, the energy of the Ga(1)-
Ga(2) states calculated here is about 0.5-0.7 ep
higher than the experimental value. 3 Hence,
whereas many electronic-structure calculations
for semiconductor surfaces using a density-func-
tional screening Eq. (7) (e.g. , Ref. 49 and refer-
ences therein) have produced an overall agreement
with experiment (sometimes via semiempirical
parametrization of the pseudopotential or scaling
the exchange potential), as pointed out first by
Schrieffer, 5 non-negligible corrections can result
from the physical mechanisms underlying Eq. (19).
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