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By combining an atomistic pseudopotential method with the configuration-interaction approach, we predict
the pressure dependence of the binding energies of neutral and charged excitons: X0 �neutral monoexciton�, X−

and X+ �charged trions�, and XX0 �biexciton� in lens-shaped, self-assembled In0.6Ga0.4As/GaAs quantum dots.
We predict that �i� with applied pressure the binding energy of X0 and X+ increases and that of X− decreases,
whereas the binding energy of XX0 is nearly pressure independent. �ii� Correlations have a small effect in the
binding energy of X0, whereas they largely determine the binding energy of X−, X+, and XX0. �iii� Correlations
depend weakly on pressure; thus, the pressure dependence of the binding energies can be understood within the
Hartree-Fock approximation and it is controlled by the pressure dependence of the direct Coulomb integrals J.
Our results in �i� can thus be explained by noting that holes are more localized than electrons, so the Coulomb
energies obey J �hh��J �eh��J �ee�.
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The energetics of excitons reflects a balance between
single-particle energy levels E �e� and E �h� of electrons �e� and
holes �h� in the system, and the many-particle carrier-carrier
interactions resulting from electron-hole Coulomb and ex-
change interactions.1–3 The variation of excitonic energies
under pressure naturally reflects the corresponding variations
in single- versus many-particle energies. Of particular inter-
est are the pressure variations of excitons confined to nano-
size dimensions such as in quantum dots.4–14 Unlike the case
of excitons in higher-dimensional systems, where binding
and its pressure dependence reflects mostly many-particle
�correlation� effects, in zero-dimensional �0D� systems
where the geometric dimensions are smaller than the exci-
tonic radius, binding of neutral and charged excitons results
from an interesting interplay between single-particle and
many-particle effects. Here, we use a realistic description of
both single-particle and many-body effects in self-assembled
In0.6Ga0.4As/GaAs quantum dots, showing how pressure af-
fects the different components of exciton binding. We distin-
guish the neutral monoexciton X0 �one e, one h�, from the
neutral biexciton XX0 �two e, two h�, positive trion X+ �one
e, two h�, and negative trion X− �two e, one h�. While the
effect of pressure on X0 has been measured,8–14 to the best of
our knowledge, the optical spectroscopy of X−, X+, and XX0

under pressure has not yet been reported. Each of the
q-charged excitons has a spectrum of levels ���, of which the
lowest is termed the “ground state of �q” ��=X ,XX�. This
spectrum is usually expressed by expanding the many-body
excitonic states �������q�� via a set of Slater determinants
����q��. The latter are constructed from single-particle elec-
tron and hole states and accommodate as many carriers as are
present in �q. The single-particle states are solutions to the
effective Schrödinger equation

�− 1
2�2 + Vext�R� + Vscr�R���i = Ei�i, �1�

where Vext�R� is the external �pseudo� potential �due to the
ion-ion or ion-electron interaction� and Vscr�R� is the screen-
ing response to such external potentials. The effect of pres-

sure or strain is encoded in the ion-ion geometry underlying
Vext�R�. The many-particle Hamiltonian is
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where ci
† �ci� and hj

† �hj� create �destroy� an electron in the
single-particle state �i

�e� and a hole in � j
�h�, respectively. In

Eq. �2�, the Coulomb and electron-hole exchange matrix el-
ements are given, respectively, by
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Here, ��R ,R�� is a phenomenological, microscopic dielectric
function that screens the Coulomb and exchange interac-
tions, and in this work we have adopted the ��R ,R�� pro-

posed by Resta.15 The diagonal elements J ij
�����=J ij;ji

����� of
Eq. �3� are the familiar electron-electron ����=ee�, hole-
hole ����=hh�, and electron-hole ����=eh� direct Cou-
lomb integrals. The electron-electron and hole-hole exchange
integrals are given by J ij;ij

�ee� and J ij;ij
�hh�, respectively. Solving

the single-particle Eq. �1� for a given dot yields the wave
functions �i, which are used to construct the Slater determi-
nants ����q�� for �q and solve the many-particle, config-
uration-interaction16 �CI� problem �Eq. �2�	. This gives the
total �ground-state� energy ECI��q� of exciton �q, as well as
excitonic excited states.

The binding energy of the excitonic complexes are de-
fined as
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	CI�X0� = �E 0
�e� − E 0

�h�	 − ECI�X0� ,

	CI�X−� = �E 0
�e� + ECI�X0�	 − ECI�X−� ,

�5�
	CI�X+� = �− E 0

�h� + ECI�X0�	 − ECI�X+� ,

	CI�XX0� = 2ECI�X0� − ECI�XX0� .

In a simplified Hartree-Fock �HF� approximation and ne-
glecting the electron-hole exchange K00;00

�eh� �which magnitude
is of the order of a few to hundreds of �eV�,17 we have

	HF�X0� = J 00
�eh�,

	HF�X−� = J 00
�eh� − J 00

�ee�,

�6�
	HF�X+� = J 00

�eh� − J 00
�hh�,

	HF�XX0� = 2J 00
�eh� − �J 00

�ee� + J 00
�hh�	 = 	HF�X−� + 	HF�X+� .

The latter relation establishes a “sum rule” for the binding
energy of the biexciton at the Hartree-Fock level. The many-
body correlation effects 
��q� in the binding energy can be
quantified by comparing the full solutions in Eq. �5� to the
HF ones in Eq. �6�,

	CI��q� = 	HF��q� + 
��q� . �7�

In this work, we consider a lens-shaped �base diameter
b=252 Å and height h=35 Å� In0.6Ga0.4As/GaAs quantum
dot and study how the excitonic binding energies 	CI��q�
depend on pressure �well below the �1c−X6c crossover�.18

We then analyze this dependence in terms of the pressure

dependence of �i� Coulomb integrals J 00
����� and �ii� correla-

tion energies 
��q�. In Eq. �1�, we use a screened pseudopo-
tential expressed as a superposition of screened atomic
pseudopotentials

Vext�R� + Vscr�R� = VSO + �
l

�
�

v��R − Rl
���;Tr�̃�	 , �8�

where VSO is a nonlocal spin-orbit pseudopotential;19 v� is a
screened pseudopotential for an atom of type � that depends
on strain; and Rl

��� is the vector position of atom l of type �
after the atomic positions within the simulation supercell

�quantum dot+GaAs matrix� have been relaxed, using a va-
lence force field,19 in order to minimize the elastic energy of
the nanostructure. v� has been fitted to bulk properties of
GaAs and InAs, including bulk band structures, experimental
deformation potentials, and effective masses, as well as
local-density approximation �LDA�-determined band off-
sets.19 Equation �1� is solved in a basis of linear combination
of Bloch bands �unk

�M��R , ̃�� with band index n and wave
vector k of material M�=GaAs, InAs� strained20 to ̃. Thus,

�i�R� = �
M

�
n,k

CM;n,k
�i� � 1

�N
un,k

�M��R, ̃�eik·R , �9�

where N is the number of primary cells in the simulation
supercell that contains the quantum dot and GaAs matrix.
The many-body configuration-interaction expansion is taken
over all the Slater determinants ����q�� generated within a
set of 12 electron and 20 hole single-particle, confined states.
Note that in our atomistic approach the pressure affects di-
rectly the atomic displacements Ri and strain ̃�R� and, con-
sequently, the potential Vext�R� of Eq. �8�. As a result, the
quantum dot energy levels change as well. In another
approach21 one describes the dot nonatomistically, via bulk-
like k ·p methods. In such a case, one needs to scale the bulk
parameters, like effective masses, to the effect of pressure. In
our approach effective masses do not enter the formalism.

Direct-Coulomb versus correlation contributions to bind-
ing. Table I shows the CI-calculated binding energies 	CI��q�
as well as its decomposition �Eq. �7�	 into Hartree-Fock
	HF��q� and correlation 
��q� contributions. We see that �i�
the binding energy of the neutral monoexciton X0 is consti-
tuted primarily by HF energy with only 6% being due to
correlation. This is in contrast with X0 in bulk semiconduc-
tors where 
�X0� dominates over 	HF�X0�. �ii� For X−, X+,
and XX0 the HF and correlation contributions to binding are
comparable. Specifically, while X− is bound �positive 	� al-
ready in HF, here X+ and XX0 are unbound in HF, but be-
come bound by correlation. �iii� For each excitonic complex,
the magnitude of the correlations depends weakly on pres-
sure.

Pressure dependence. Figure 1 shows the dependence on
pressure of �a� the binding energies 	CI��q�, �b� Coulomb
energies J 00

�ee�, J 00
�eh�, and J 00

�hh�, and �c� correlation energies

TABLE I. Comparison of Hartree-Fock �HF� and many-body configuration-interaction �CI� binding en-
ergies �in meV�, and verification of the “sum rule” �	HF�X−�+	HF�X+�	 for different pressures. For each
excitonic complex �q, we present the CI binding energy 	CI��q� as a sum of the Hartree-Fock binding energy
	HF��q� and correlation-energy component 
��q�=	CI��q�−	HF��q�.

Quantity 0.2 GPa 0.8 GPa 1.3 GPa 1.8 GPa 2.4 GPa

	CI�X0�=	HF�X0�+
�X0� 20.8+1.3 21.1+1.4 21.3+1.4 21.6+1.5 21.9+1.5

	CI�X−�=	HF�X−�+
�X−� 1.2+1.3 1.0+1.4 0.8+1.5 0.6+1.6 0.5+1.6

	CI�X+�=	HF�X+�+
�X+� −1.8+2.4 −1.5+2.3 −1.2+2.3 −0.9+2.2 −0.7+2.2

	CI�XX0�=	HF�XX0�+
�XX0� −0.6+2.0 −0.4+2.0 −0.3+2.0 −0.3+2.0 −0.2+2.0

	CI�X−�+	CI�X+� 3.1 3.2 3.4 3.5 3.6

Sum rule −0.6 −0.5 −0.4 −0.3 −0.2
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��q�. Compression is represented by 	a /a0= �a−a0� /a0,
where a and a0 are the distorted and equilibrium lattice pa-
rameter of the GaAs matrix, respectively. The pressure val-
ues showed in the upper axis in Fig. 1�a� are calculated ap-
proximately by using the equation of state22 P= �B0 /B0��
���V0 /V�B0�−1	, where we take V0 /V= �1+Tr�̃�	−1 and cal-
culate Tr�̃� in the GaAs matrix away from the dot. The
calculation of ̃= ̃�R� is performed using atomistic
elasticity.23 We take B0=74.7 GPa and B0�=4.67 as the GaAs
bulk modulus and its derivative with respect to pressure,
respectively.24 We see from Fig. 1 that the pressure depen-
dence of the binding energy of the various excitons is differ-
ent: �i� 	CI�X0� shows a small, nearly linear increase with
pressure; changing by about 7% in the studied pressure
range. 	CI�X−� decreases slightly with increasing pressure,
while 	CI�X+� increases significantly; at 	a /a0=−0.0087
�P=2.4 GPa� it has increased by 160% compared to its value
at 	a /a0=0. Similar to the monoexciton case, the binding
energy of the biexciton depends only weakly on pressure,
showing a small relative change as pressure reaches 2.4 GPa.
�ii� Equation �7� shows that the binding has a HF part and a
correlation part. Table I showed that the magnitude of the
binding is decided by the HF part for X0 and by both HF and
correlation for X−, X+, and XX0. However, Fig. 1 shows that

the pressure dependence is always decided by the HF contri-
bution. �iii� Not surprisingly, the “sum rule” of Eq. �6� valid
within HF is not valid at the CI level, quantitatively failing to
predict the correct values of the biexciton binding energies.
Notwithstanding, the qualitative pressure dependence of
	CI�XX0� is reasonably predicted by the “sum rule” at the CI
level. �iv� From �ii�, we see that the trends of the binding
energies with pressure are determined by J 00

�eh�, J 00
�ee�, and

J 00
�hh�. By calculating these integrals, we find that J 00

�hh�

�J 00
�eh��J 00

�ee� and the magnitude of J 00
�eh� and J 00

�ee� increase
with a similar slope as pressure increases while J 00

�hh� remains
nearly constant; see Fig. 1. This explains the decrease of
	CI�X−� and the increase of 	CI�X+� with applied pressure.
Further, it also becomes clear why the binding energy of the
biexciton remains nearly unchanged with changing pressure:
The similar rate of increase of J 00

�ee� and J 00
�eh� with pressure

combined with the magnitude of J 00
�hh� leads to a weakly

pressure-dependent binding energy for XX0.
Wave-function localization with pressure. To understand

the trend J 00
�hh��J 00

�eh��J 00
�ee� and also that J 00

�hh� has the weak-
est pressure dependence, while J 00

�ee� has the strongest, Fig. 2
shows the calculated wave functions for the electron ground
state ��0

�e�	 and hole ground state ��0
�h�	 as a function of pres-

sure. The isosurfaces enclose 75% of the charge density, the
in-plane contour plot is taken at 1 nm above the base of the
dot, and the out-of-plane contour plot bisects the dot. We see
that the electron is always less localized than the hole. In
addition, the electron gets more localized as pressure is ap-
plied, while the localization of the hole remains nearly un-

FIG. 1. Pressure dependence of �a� binding energies 	CI��q� as
obtained from the many-particle, configuration-interaction method,

�b� Coulomb-energy component J 00
�����, and �c� correlation-energy

components 
��q�. �See text for definitions.�

FIG. 2. �Color� LUMO ��0
�e�	 and HOMO ��0

�h�	 wave functions
at 0.2, 1.3, and 2.4 GPa. The outline of the dot is present as a light
shadow. The �red� isosurface encloses 75% of the charge, the in-
plane �bottom� contour plot is taken at 1 nm above the dot’s base
and the out-of-plane contour plot bisects the dot. The LUMO wave
function becomes more confined as pressure increases—see the
how the wave function penetrates less into the barrier above of the
dot as pressure increases; whereas the HOMO wave functions are
almost independent of pressure.
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changed. The in-plane �parallel to the base� spatial extension
of the electron does not change as much as the out of plane.
In particular, Fig. 2 clearly shows that the spatial penetration
of the electron wave function into the GaAs matrix decreases
with applied pressure. Further, plots �not shown� of the radial
charge-accumulation function �0

Rdr��0
�s��r+Rc��2 �Rc indi-

cates the center of the dot, and the integration is performed
over a sphere of radius R; s=e ,h� for the electron and hole
reveal that as pressure increases the electron wave function
gets indeed more localized than the hole wave function. The
increased localization of the electron with pressure can be
explained by the larger magnitude of the conduction-band-
edge �CBM� deformation potential of bulk GaAs with re-
spect to that of bulk InAs �Ref. 25�, which results in an
increased electron confinement in the dot with pressure. In
contrast, the similar magnitude of the valence-band-edge
�VBM� deformation potential of both bulk GaAs and InAs
leads to small changes in hole confinement with pressure
and, therefore, to small changes in localization.

Single-particle and excitonic pressure coefficients. We
calculate the linear pressure coefficient a by fitting the pres-
sure dependence of the band gap to Eg�P�=Eg�0�+a P
+b P2. For the dot, at the single-particle �SP� level, we ob-
tain aSP

�dot�=86.47 meV/GPa, whereas the excitonic value is
aCI

�dot��X0�=85.79 meV/GPa. The latter compares well with
the values of 85 meV/GPa �Ref. 8�, 80 meV/GPa �Ref. 11�,
and 82 meV/GPa �Ref. 11� observed in InAs/GaAs dots for
the emission lines at 1.28, 1.26, and 1.30 eV, respectively.
For bulk GaAs, we obtain a�bulk�=105.86 meV/GPa, which
is within the range of observed values: 94-120 meV/GPa.
�Refs. 18,22�. Thus, the dot has a smaller linear pressure

coefficient than bulk GaAs. In addition, it is interesting to
inspect how the VBM and CBM contribute to the linear pres-
sure coefficient of the band gap. By fitting the lattice-
deformation �pressure� dependence of single-particle eigen-
values to Ei�a�=Ei�a0�+Ai�	a /a0�+Bi�	a /a0�2, we find
AVBM

�dot� =−1.76 eV and ACBM
�dot� =−22.49 eV. For bulk GaAs we

find AVBM=−3.74 eV and ACBM=−27.23 eV. We see that the
band-gap response to the lattice distortion �pressure� is
largely dominated by the changes in CBM. To reproduce this
LDA-predicted25 behavior, it is necessary to have a pseudo-
potential that explicitly depends on strain, otherwise one gets
ACBM=−0.46 eV and AVBM=−11.72 eV and, consequently,
VBM dominates the gap changes.

In summary, we have studied the effects of pressure on
the binding energies of X0, X−, X+, and XX0. Our main find-
ings are the following. �i� With applied pressure, the binding
energy of X0 and X+ increases and that of X− decreases,
whereas the binding energy of XX0 is nearly pressure inde-
pendent. �ii� The correlation-energy component in the bind-
ing energy of X0 is small, whereas it is large in X−, X+, and
XX0; indeed, correlation is fully responsible for binding the
latter complexes. �iii� Correlations depend weakly on pres-
sure. �iv� The pressure dependence of the binding energies is
controlled by the pressure dependence of the direct Coulomb
integrals. Further, the relative magnitude �order� of these di-
rect integrals explains the relative magnitude �order� of the
binding energies. �v� Pressure dependence of J 00

�hh�, J 00
�eh�, and

J 00
�ee� is explained by the changes of the LUMO and HOMO

wave functions with pressure.
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