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cially for holes, regarding the stable electronic configuration and filling sequence which defies both Hund’s rule
and the Aufbau principle.
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I. INTRODUCTION

One of the most spectacular aspects of quantum-dot phys-
ics is that dots can be controllably charged by either elec-
trons or holes and that one can measure, for each of the many
charged-states, both the electronic spectrum and the charging
energies. This is afforded either by injecting from a tip of a
scanning tunneling microscope,1 or by various gate
structures.2–11 Since the energy scale of both single-particle
levels and Coulomb interactions in quantum dots �QDs�
�10−4–10−2 Ry� are a few order of magnitudes smaller than
those of the real atoms ��1 Ry�, dots can be loaded by as
many as six4 to ten12 electrons in colloidal12 and self-
assembled4,8,9 dots having confining dimension of �50 Å,
and up to hundreds of electrons in larger 500 Å electrostati-
cally confined dots.2,3,7 The “charging energy” ��N� is the
energy needed to add a carrier to the dot that is already
loaded by N−1 carriers,

��N� = E�N� − E�N − 1� , �1�

where E�N� is the correlated, many-body total energy of the
ground state of the N-particle dot. The “addition energy”
��N−1,N� �analogous to the difference between ionization
potential and electron affinity� indicates how much more en-
ergy is needed to add the Nth carrier compared to the energy
needed to add the �N−1�th carrier:

��N − 1,N� = ��N� − ��N − 1�

= E�N� − 2E�N − 1� + E�N − 2� . �2�

The typical electron addition energies for electrostatic
dots,2,3,7 are about 1–8 meV, and the stable spin-
configuration follows the rules of atomic physics; that is, the
s , p ,d , . . . shells are occupied in successive order with no
holes left behind �Aufbau principle� and with maximum
spin3 �Hund’s rule�. Recently, it became possible to load and
measure electrons4,8 and holes8,11,13 into much smaller, epi-
taxially grown self-assembled dots of InGaAs/GaAs, where
electron addition energies are about 10–60 meV,4,8 and hole
addition energies are between 10 and 30 meV.11,13 More in-
terestingly, while electrons still follow the Aufbau principle,
recent hole charging experiment11 show that holes have un-

usual charging patterns that defy the Aufbau principle and
Hund’s rule.

Despite the importance of the dot charging problem and
the great success achieved in experimentally recording the
charging spectra, the theoretical understanding of charging
and addition energies is still preliminary. Most theoretical
works in the area were based on particle-in-a-potential
model,14–17 neglecting interband �e.g., �-�� coupling, inter-
vally ��-X-L� coupling effect, and the true atomistic symme-
try �e.g., C2v for lens of zincblende material� which is lower
than the shape symmetry. The most often used potential in
such approaches is the two-dimensional �2D� parabolic form,
in which all of the above noted electronic structure effects
are replaced by an effective mass approximation �EMA�. In
this parabolic 2D-EMA model,14,16 the single particle levels
have equal spacing, which equals a harmonic oscillator fre-
quence �. Because of the simplicity of the model, all the
Coulomb integrals can be related analytically16 to a single s
orbital Coulomb energy Jss, and therefore the addition ener-
gies are determined entirely by � and Jss. Although the para-
bolic 2D-EMA model can be attractive because of its alge-
braic simplicity and availability of fitting parameters actual
self-assembled dots are significantly different from the de-
scription of EMA model, manifesting inter-band coupling
and inter-valley coupling, strain effects, low atomistic sym-
metry, as well as specific band offset profiles, all neglected
by the 2D-EMA. It indeed has been recently shown18 that
hole ground state configurations predicted by the 2D-EMA
model are qualitatively different from those measured by
hole charging experiments.11,13

An atomistic pseudopotential description of electronic
structure effects can be used instead of 2D-EMA to calculate
charging energies.18–22 Here, we show that such an atomistic
theory correctly reproduces the many-particle configurations
as well as addition spectra for carriers in self-assembled
quantum dots. We study systematically the electronic struc-
ture of self-assembled InGaAs/GaAs quantum dots, provide
detailed information on the electron and hole single-particle
spectrum, many-particle charging and addition spectrum, as
well as ground state configurations using single-particle
pseudo-potential and many-particle configuration interaction
�CI� methods.

The rest of the paper is arranged as follows. In Sec. II, we
introduce the basic concepts of charging and addition ener-
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gies, and show how to calculate these quantities in the
single-particle pseudopotential plus many-particle CI
scheme. In Sec. III, we give detailed results calculated from
pseudopotential-CI scheme the single-particle levels, Cou-
lomb integrals and the ground state configurations as well as
the addition energies. We contrast these results with the para-
bolic 2D-EMA model. We summarize in Sec. IV.

II. THEORY OF DOT CHARGING AND ADDITION
ENERGIES

A. General equation for dot charging in the configuration-
interaction approach

The calculation of the total-energy E�N� of N-particle dot
requires obtaining first the single-particle states from an ef-
fective Schrödinger equation, and then the many-particle
state from a many-particle treatment. The first step is formu-
lated as,

�− 1
2�2 + Vext�r� + Vscr�r���i�r� = �i�i�r� , �3�

where Vext�r� is the external �“bare”� potential experienced
by the electrons or holes, and Vscr�r� is the screening re-
sponse. The single-particle orbital ��i� and energies ��i� are
used in the second step to construct the many-particle wave
functions ��� and energies �E� from,

E�N� = ��N	H	�N
 �4�

where, the many-body Hamiltonian is,

H = �
i	

�
�̂i	
† �̂i	 + 1

2�
ijkl

�
	1,	2

�
	3,	4

�k	3,l	4

i	1,j	2�̂i	1

† �̂ j	2

† �̂k	3
�̂l	4

,

�5�

and,

�k	3,l	4

i	1,j	2 = �
s1,s2

� � drdr�

�
�i	1

* �r,s1�� j	2

* �r�,s2��k	3
�r�,s2��l	4

�r,s1�

��r − r��	r − r�	
,

�6�

are the screened Coulomb and exchange integrals. In the

above Eqs. �5� and �6�, we use �̂i	�r�=ci	�i	�r� as the field
operator, whereas ci	 is a fermion operator, and �i	�r� is the
single-particle eigenfunction. Here, “	” is a pseudospin in-
dex, i.e., an index of Kramers degenerate states, while “s” is
the intrinsic electronic spin. For electrons in InAs/GaAs
QDs, the spin-orbit interactions is extremely small and can
be neglected. In this case, the pseudospin 	 and intrinsic
electronic spin s are equivalent. However, for holes, which
have a mixture of heavy-, �H� light-hole �LH� and split-off
character, an eigenstate of 	 has both s=↑ and s=↓ compo-
nents. The N-particle wave functions can be solved using,
e.g., configuration interaction �CI� method,23 by expanding
the N-electron wave function in a set of Slater determinants,
	�e1,e2,. . .,eN


=ce1

† ce2

† . . .ceN

† 	�0
, where cei

† creates an electron
in the state ei. The th many-particle wave function is then
the linear combination of the determinants,

	�N
��
 = �

e1,e2,. . .,eN

A�e1,e2, . . . ,eN�	�e1,e2,. . .,eN

 . �7�

Once 	�N
 is known, we can then calculate the correspond-
ing total energies for the ground states as well as excited
states using Eq. �4�. Once we solve the CI problem, we get
the order of total CI energy for various holes or electron
configurations, so we can see if Hund’s rule or the Aufbau
principle or spin-blockade occurs. For example, Hund’s rule
states that degenerate single-particle levels are occupied with
maximum number of unpaired electrons, while the Aufbau
principle states, nondegenerate single-particle levels are oc-
cupied in order of increasing single-particle energy.

We construct all possible Slater determinants correspond-
ing to N electrons or N holes �i.e., we ignore the excitonic
�electron+hole� excitations�, using only the bound states of
the dots, �i.e., we neglect all continuum states�. The under-
lying electrons that are not considered explicitly by this ap-
proach are represented by the dielectric screening function
��r−r�� in Eq. �6�.

B. The Hartree-Fock equations for charging and addition
energies

The addition energies at CI level can be written as the
Hartree-Fock �HF� addition energies plus the correlations,
i.e.,

�CI�N − 1,N� = �HF�N − 1,N� + �corr.�N − 1,N� , �8�

where �corr. is the correlation energy correction to the addi-
tion energy calculated in HF. Since the HF equations are
used by many experimentalists to deduce Coulomb
energies,3,8,11 we review it here. In the Hartree-Fock approxi-
mation, where the effect of correlations is neglected but the
direct Coulomb and exchange interactions are retained,
simple expressions can be derived for the addition energies.
The total energy of N electrons is simply,

EHF = �
i	

occ.

�i	 + �
i	,j	�

occ.

�Ji	,j	� − Ki	,j	�� , �9�

where, i is the single-particle level index of all occupied
states, and �i is the corresponding single-particle energy. The

Ji	,j	�=� j	�,i	
i	,j	� and Ki	,j	�=�i	,j	�

i	,j	� in Eq. �9� are Coulomb and
exchange integrals, respectively. Since the spin index “	” is
not an actual electronic spin, but rather an index for two
Kramers degenerate states, in principle the exchange inte-
grals Ki	,j	� are not simply diagonal in 	, 	�, as has been
widely used in the dot charging literature.3,11,15,16 However,
adopting the literature approximation, Ki	,j	�=Kij�		� and
considering the s and two p orbitals, �p1

��p2
and assuming

the particle filling order follows Hund’s rule, as shown in
Fig. 1, the total energies for N=1,2 ,3 ,4 electrons in the
Hartree-Fock approximation are

EHF�1� = �s,

EHF�2� = 2�s + Jss,

EHF�3� = 2�s + �p1
+ Jss + 2Jsp1

− Ksp1
,
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EHF�4� = 2�s + �p1
+ �p2

+ Jss + 2Jsp1
+ 2Jsp2

+ Jp1p2
− Ksp1

− Ksp2
− Kp1p2

,

EHF�5� = 2�s + 2�p1
+ �p2

+ Jss + 4Jsp1
+ 2Jsp2

+ Jp1p1
+ 2Jp1p2

− 2Ksp1
− Ksp2

− Kp1p2
,

EHF�6� = 2�s + 2�p1
+ 2�p2

+ Jss + 4Jsp1
+ 4Jsp2

+ Jp1p1
+ Jp2p2

+ 4Jp1p2
− 2Ksp1

− 2Ksp2
− 2Kp1p2

. �10�

We can then readily calculate the charging energies Eq. �1� in
this approximation,

�HF�1� = �s,

�HF�2� = �s + Jss,

�HF�3� = �p1
+ 2Jsp1

− Ksp1
,

�HF�4� = �p2
+ 2Jsp2

+ Jp1p2
− Ksp2

− Kp1p2
,

�HF�5� = �p1
+ 2Jsp1

+ Jp1p1
+ Jp1p2

− Ksp1
,

�HF�6� = �p2
+ 2Jsp2

+ 2Jp1p2
+ Jp2p2

− Ksp2
− Kp1p1

.

�11�

Similarly, we can calculate the addition energies Eq. �2� as
follows,

�HF�1,2� = Jss,

�HF�2,3� = ��p1
− �s� + 2Jsp1

− Jss − Ksp1
,

�HF�3,4� = ��p2
− �p1

� + 2Jsp2
− 2Jsp1

+ Jp1p2
− Ksp2

+ Ksp1

− Kp1p2
,

�HF�4,5� = ��p1
− �p2

� + 2Jsp1
− 2Jsp2

+ Jp1p1
− Ksp1

+ Ksp2

+ Kp1p2
,

�HF�5,6� = ��p2
− �p1

� + 2Jsp2
− 2Jsp1

+ Jp1p2
− Jp1p1

+ Jp2p2

+ Ksp1
− Ksp2

− Kp1p2
. �12�

From above equations, we see that to predict ��N−1,N� for
the first two cases �N=3�, we need to know 4 parameters
�Jss, Jsp1

, Ksp1
, �p1

−�s�, but for N=6, we need to know 9
parameters. Because of the large number of parameters
needed, the analysis of charging effects in the literature re-
sort to additional approximations aimed at reducing the num-
ber of parameters using simplified effective mass models.
Equations �12� are going to be used below to contrast the
charging spectra deduced from simplified literature models
versus our more complete treatment.

C. Atomistic treatment of the single-particle problem

The most general treatment of the single-particle problem
of Eq. �3� describes both Vext and Vscr atomistically, much in
the same way as molecules are treated quantum-
mechanically. In this description Vext�r� is a superposition of
the ionic potential of individual atoms of type 
 at lattice site
n,

Vext�r� = �



�
n

vion
�
��r − �
 − Rn� , �13�

and vion
�
� is −Z
 /r in an all-electron �core+valence� treatment

�where Z
 is the atomic number� or vps
�
��r� in the pseudopo-

tential �valence-only� scheme �where vps
�
��r� is the ionic

pseudopotential�. The potential Vext naturally contains the
correct point-group symmetry of the object, through the
atomic position vectors ��
 ,Rn�, and includes atomic relax-
ation if appropriate �again, through the atomic positions�, as
well as chemical inhomogeneity �alloying� or surface-
passivation effect. The screening response Vscr�r� of Eq. �3�
is in general a functional of the density-matrix ��r ,r�� and
can be described, e.g., via Hartree-Fock or the density func-
tional theory, both requiring a self-consistent �iterative� solu-
tion to Eq. �3�. These approaches are currently limited to
small dots, relative to the 103–105 atom dots which charging
experiments exist. Furthermore, local density approximation
�LDA� suffer from the famous “LDA error,” whereby the
band gap and effective masses are badly underestimated.
Higher-order method such as GW approximation or time-
depend density functional theory �DFT� have yet to demon-
strate applicability to large dots for which high-quality ex-
periments exist.

An approximation to the screening Vscr���r ,r���, which
allows calculation on large dots, and fixes the LDA error, is
provided by the “screened pseudopotential approach,” where
it is assumed that Vscr�r� can be described as a superposition
of screening potentials vscr

�
��r� of the individual atoms, and
lumping together vion

�
��r�+vscr
�
��r� to yield a screened atomic

pseudopotential vepm
�
� �r�, such that,

FIG. 1. The sequence of electron configurations for filling N
electrons to the quantum dots according to both 2D-EMA model
and pseudopotential calculations. Note that the p levels are split
�into p1 and p2�, so are the d levels �d1 ,d2 ,d3�.
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Vext�r� + Vscr�r� = Vso�r� + �



�
n

vepm
�
� �r − �
 − Rn� .

�14�

Here, vepm
�
� �r� is determined semiempirically. Unlike the clas-

sic empirical pseudopotential method,24 which fitted only to
eigenvalues, here we require that when Eq. �3� is applied to
the underlying bulk periodic solids containing atom �
�,
�vepm

�
� � reproduce the measured band energies, effective-mass
tensors, deformation potentials, and the single-particle wave
functions have a large overlap with the corresponding LDA
wave functions.25,26 In Eq. �14�, a nonlocal potential Vso�r� is
also added to the total potential to represent the spin-orbit
interaction. In our approach, the potential of an As atom
depends on the number of Ga and In atoms around it as

vAs�GanIn4−n� =
n

4
vAs�Ga� +

4 − n

4
vAs�In� , �15�

where n is the number of Ga atoms around the As atom. In
this atomistic approach, one assume that vepm

�
� �r� is transfer-
able to different environments. Note that a fixed v
 is a good
approximation if the dot has no free surfaces �as is the case
in self-assembled dots, where only a strained interface be-
tween chemically-similar materials is present�. For surface
atoms in free-standing dots, a separate vepm

�
� �r� is fitted27 to
LDA surface calculations. For InAs/GaAs dots, we use the
pseudopotentials of Ref. 19. These pseudopotentials have
been tested not only for the InAs and GaAs binaries, but also
for alloys and superlattices of the corresponding ternaries.19

Once �vepm
�
� �r�� is known, one can solve Eq. �3� for the

bulk solid, quantum wells superlattices, quantum-wires or
quantum dots by adopting a supercell approach where the
respective objects are placed. In our case, Eq. �3� is solved
using the “linear combination of Bloch bands” �LCBB�
method,28 where the wave functions �i are expanded as,

�i�r� = �
n,k

�
�

Cn,k
����n,k,�J

��� �r� . �16�

In the above equation, ��n,k,�J
��� �r�� are the bulk Bloch orbitals

of band index n and wave vector k of material � �=InAs,
GaAs�, strained uniformly to strain �J. The inclusion of stain-
dependent basis functions improves their variational flexibil-
ity. We use �J=0 for the �unstrained� GaAs matrix material,
and an average �J value from valence force field �VFF�
method for the strained dot material �InAs�. For the
InAs/GaAs system, we use n=8 �including spin� for electron
states on a 6�6�16 k-mesh. Note that the potential
Vext�r�+Vsrc�r� contain full strain effects through the use of
relaxed atomic positions, in addition to the explicit strain19

and alloy composition29 dependence.
In the atomistic approach to the single-particle problem,

one includes �i� multi-band coupling �different n in Eq. �4��;
�ii� inter-valley coupling �different bulk k-points in Eq. �4��;
�iii� spin-orbit coupling�Vso in Eq.�14��; �iv� the proper strain
profile �by relaxing ��
 ,Rn� in Eq. �14� to minimize strain�;
�v� realistic chemical profile �distributing the species �
� as
in a random alloy,19 or interdiffused interfaces29�. The ensu-

ing single-particle orbitals ��i� transform like the representa-
tions of the point-group created by the ionic positions. These
underlying atomistic structures could break the symmetry
represented by the macroscopic shape of the quantum dots.
For example, a lens-shaped dot has a macroscopic cylindrical

symmetry with �110� and �1̄10� being equivalent, but if the
dot is made of a zincblende material, the real symmetry is

C2v, where, �110� and �1̄10� are not equivalent. Yet the con-
tinuum models do not “see” the atomistic symmetry �the
“farsightedness effect”30�. Therefore, as discussed in Ref. 31,
in reality the atomistic wave function need not to be simple
“pure” s-like or p-like. As a result, the Coulomb energy Jij
and exchange energy Kij obtained with atomistic single-
particle orbital ��i� do not have simple relationships16 as
predicted by the parabolic 2D-EMA model. The deviations
of the atomistic calculated Js from the simplified 2D-EMA
ones are going to lead to new physical behavior �e.g., new
ground state symmetry of the many-particle state�, as illus-
trated below.

D. Continuum treatment of the single-particle problem: EMA

It is sometimes customary3,11,16,32 to avoid an atomistic
description of the single-particle problem in favor of a
single-band particle-in-a-box model. In this approach, one
sets Vscr=0 and replaces Vext of Eq. �3� by a pure external
potential, describing the macroscopic shape of the object,
e.g., a box represents a quantum well, or a sphere with finite
or infinite barriers represents a quantum dot.14,16,33 In some
cases, this Vext is calculated “realistically” from a combina-
tion of band offset, the gate potential and the ionized
impurities,34,35 but it is treated nevertheless as a macroscopic
external field. Under this approximation, simple results can
be obtained for cylindrical QDs, where the angular momen-
tum L and Lz are good quantum numbers. The electron �hole�
single-particle levels have well defined shell structures, with
nondegenerate s shell, twofold degenerate p shell and d shell,
etc. However, if the confining potential is parabolic, there is
another state that is accidentally degenerate with the two d
states. We denote these three states d1, d2, d3 for the para-
bolic 2D-EMA model. Furthermore, for parabolic confining
potentials, the single-particle levels have equal spacing be-
tween two adjacent shells, e.g., �p−�s=�d−�p. Another rea-
son for the attractiveness of the single-band particle-in-a-box
approach to the single-particle problem �Eq. �3��, is that the
many-particle problem �Eq. �5�� becomes simple. For ex-
ample, the quantum Monte Carlo �QMC� approach is cur-
rently applied only within the single-band particle-in-a-box
approach for such large objects as self-assembled quantum
dots.36In a parabolic 2D-EMA model all the Coulomb inte-
grals needed for charging and addition energy can be all
related to Jss,

16

J
� = c
�
�J�Jss

K
� = c
�
�K�Jss. �17�

For example, Jsp=3/4Jss, Ksp=1/4Jss. Therefore, the
charging/addition energies and ground state configurations
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are totally determined by Jss and the single-particle energy
spacing �.

However, real self-assembled quantum dots grown via the
Stranski-Krastanov techniques, are not well-described by the
single-band particle-in-a-box approaches, despite the great
popularity of such approaches in the experimental
literatures.11,15,16,32 The model contains significant quantita-
tive errors37 and also qualitative errors, whereby cylindri-
cally symmetric dots are deemed to have, by symmetry, no
fine-structure splitting, no polarization anisotropy, and no
splitting of �twofold degenerate� p levels and d levels, all
being a manifestation of the “farsightedness effect.”30

III. RESULTS

Using the pseudopotential approach for single-particle
and configuration interaction approach for the many-particle
step, we studied the electron or hole addition energy spec-
trum up to 6 carriers in lens-shaped InAs dots embedded in a
GaAs matrix. We study dots of three different base size, b
=20, 25, and 27.5 nm, and for each base size, two heights,
h=2.5 and 3.5 nm. To study the alloy effects, we also calcu-
lated the addition spectrum for alloy dots In1−xGaxAs/GaAs
of h /b=3.5/25 nm dots, with Ga composition x=0, 0.15,
0.3, and 0.5. In this section, we give detailed results of the
single particle energy levels and Coulomb integrals, and the
addition energy as well as ground state configurations. We
also compare the results with what can be expected from the
parabolic 2D-EMA model.

A. Single-particle level spacing: Atomistic versus 2D-EMA
description

1. Electron levels

We depict in Fig. 2 the calculated energy-level diagram of
a pure lens-shaped InAs/GaAs quantum dot, with height h
=2.5 nm and base b=20 nm. Figure 2 shows that the elec-
tron confinement energy is 230 meV, somewhat larger than
the hole confinement energy �190 meV�. The p levels are
split as are the d levels, even though the dot has macroscopic
cylindrical symmetry �see below�.

The pseudopotential calculated electron single-particle
energy spacings are summarized in Table I for QDs of dif-
ferent heights, bases, and alloy compositions. Table I gives
the fundamental exciton energy EX calculated from CI ap-
proach for each dot. These exciton energies are between 980
and 1080 meV for pure InAs/GaAs dots, and can be as large
as 1297 meV for In1−xGaxAs/GaAs alloy dots. This range
agrees very well with experimental results for these classes
of dots, ranging from 990 to 1300 meV.8,11,38,39

�a� s-p and p-d energy spacing: From Table I, we see that
for electrons in the lens-shaped dot, the s-p energy level
spacing �sp=�p−�s and p-d energy level spacing �pd=�d
−�p are nearly equal, as assumed by the 2D harmonic model.
The energy spacing �sp and �pd range from 50 to 80 meV
�Fig. 2�, depending on the dot geometries. The electron en-
ergy spacings decrease with increasing QD base sizes. The
electron energy spacing of alloy dots are much smaller than
those in pure InAs/GaAs QDs, because of reduced confine-

ment. For Ga rich dots �x=0.3–0.5�, the single-particle en-
ergy level spacings range from 30 to 45 meV. These values
agree with the infrared absorption measurements4,5 of intra-
band transitions of alloy InGaAs QDs, which give �sp
�41–45 meV. When the Ga composition reaches x=0.5, the
s-p energy level spacing �sp becomes significantly different
from the p-d energy level spacing �pd, thus deviating from
harmonic potential approximation.

�b� Shell definition: Figure 2 shows that the energy levels
of electrons in a lens-shaped dot have well defined s, pd shell
structure. However, while effective mass and k · p models
predict degenerate p and d levels, for cylindrically symmet-
ric �e.g., lens-shaped� QDs, atomistic calculations show that
even in perfect lens-shaped dots, the p-p and d-d levels are
split by 2–4 meV �Fig. 2� due to the actual C2v symmetry.
We denote the two p levels as p1 and p2, and similarly, the
three d levels as d1, d2, and d3, in increasing order of energy.
The results listed in Table I show that �pp=�p2

−�p1
and �dd

=�d2
−�d1

are very sensitive to the aspect ratio of the dots
while not being very sensitive to the alloy compositions. Fig-
ure 3 depicts �pp=�p2

−�p1
versus dot heights �Fig. 3�a�� and

bases sizes �Fig. 3�b��. In general, we see that �pp increases
with increasing dot height, and it decreases with increasing
dot base size.

2. Hole levels

In contrast to electrons, hole single-particle levels �Table
I� display a much more complicated behavior that is totally
beyond the EMA description.

�a� s-p spacing: As one can see from Table I, the hole

FIG. 2. The schematic energy-level diagram �in meV� of a pure
lens-shaped InAs/GaAs quantum dots, with height h=2.5 nm and
base b=20 nm. WLe and WLh denote the wetting layer energy
levels for electrons and holes, respectively. The CBM and VBM
correspond to the conduction band minima and valence band
maxima of �unstrained� bulk GaAs. Ex is the excitonic transition
energy.
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s-p energy spacing ranges from 10 to 18 meV for dots of
sizes we studied. These energy spacings are considerably
smaller than those of electrons. The first confined hole state
is found to be about 190 meV above the VBM of bulk GaAs,
for the pure, h /b=2.5/20 nm dot �Fig. 2�. Unlike the case
for electrons, the energy spacing between hole s and p levels

depends strongly on the height of the dots,40 while being
relatively insensitive to the base size of the dots.

�b� Shell definition: The well-defined s, p, d shell-
structure for electrons does not exist for holes �Fig. 2�, as the
p1-p2 and d1-d2-d3 splitting are much larger than those for
electrons.41 The hole p-level splittings are also shown in Fig.
3 for different dot heights �Fig. 3�a�� and bases sizes �Fig.
3�b��. For the smallest dots, h /b=2.5/25 nm, the p splitting
is about 11 meV �Table I�, more than three times the value
for electrons. This splitting is about half of the hole s-p en-
ergy spacing. Note that the pseudopotential calculated p-p
splitting is much lager than 1.3 meV given by the k · p
method �which includes piezoelectric effect�.42For taller
dots, the p-p splittings are even larger. As a consequence, the
p2 levels are energetically very close to the d1 levels, leading,
as we will see below, to a nontrivial charging pattern that
breaks Hund’s rule and the Afubau principle.18

�c� Wave function characters: An analysis of the wave
function show that these levels have somewhat mixed S, P,
or D characters. For example, for a lens-shaped InAs/GaAs
QD of height=3.5 nm and base=25 nm, the “s level” has
92% S character, and the two “p levels,” p1 and p2, have
86% P character, respectively �see Table II of Ref. 31�.
Therefore, we can still label the single-particle levels as s,
p1, p2, etc. These single-particle levels, s, p1, and p2, do not
have pure HH character either, being instead 91%, 86%, and
92% HH-like, respectively. As the aspect ratio height/base
increases, the mixture of angular momentum and HH and LH
characters becomes stronger. For example, as shown in Ref.
43, for a InGaAs/GaAs alloy dot, with 25.2 nm in base and
2 nm in height, s level has 90% S character, while both p1
and p2 levels have 84% P character. When the height of the
dot increases to 7.5 nm �with fixed base size�, the leading
angular momentum characters for these three levels are 84%
S, 78% P, and 75% P, respectively. Similarly, for the flat
dot�2 nm in height�, the mixture of LH state character is
about 4%–9%, but increases to 11%–17% for the tall dot
�7.5 nm in height�.

B. Coulomb integrals: Atomistic versus 2D-EMA description

Another piece of information that decides the addition
energies �Eq. �2�� is the Coulomb integral between the par-

TABLE I. Summary of the pseudopotential-calculated single-particle level spacing �in meV� of In1−xGaxAs/GaAs quantum dots of
different heights, base sizes, and Ga compositions. ei and hi are the ith electron and hole single-particle energy levels. EX is the lowest
exciton energy.

Height �nm� 2.5 3.5 2.5 3.5 3.5 3.5 3.5 2.5 3.5

Base �nm� 20 20 25 25 25 25 25 27.5 27.5

Ga comp. 0 0 0 0 0.15 0.3 0.5 0 0

ep1
−es 77.0 72.0 60.8 57.0 51.5 44.2 33.2 54.9 51.0

ed1
−ep2

79.7 73.6 64.0 58.7 50.7 43.2 18.8 57.9 52.3

ep2
−ep1

2.5 3.7 1.6 2.1 2.5 1.2 0.8 1.1 2.0

ed2
−ed1

3.1 2.8 1.2 1.4 4.0 1.3 4.1 0.8 1.0

hs−hp1
17.8 10.4 17.4 11.3 13.1 13.7 12.8 17.0 11.3

hp1
−hp2

10.9 11.3 7.1 9.5 7.1 5.0 3.3 5.8 7.9

hp2
−hd1

4.5 3.4 8.3 2.4 6.4 8.6 9.4 9.4 3.9

EX 1080 1035 1042 996 1095 1188 1297 1028 981

FIG. 3. Pseudopotential-calculated p level splitting of electrons
and holes vs �a� dot height and �b� dot base for InAs/GaAs dots.
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ticles �Eq. �12��. We list the pseudopotential-calculated Cou-
lomb energies of s orbitals Jss for electrons in the first row of
Table II and for holes in the first row of Table III. For elec-
trons, Jss

�ee��22–25 meV, and for holes Jss
�hh��20–27 meV

for typical dots. These numbers can be directly compared
with experimental value from electron/hole charging experi-
ments, since Jss��1,2� �Eq. �12��. The typical experimen-
tal values of Jss for electrons is about4,16,44 19–27 meV and

TABLE II. Electron-electron Coulomb energies J
� /Jss and exchange energies K
� /Jss calculated nu-
merically from atomistic pseudopotential theory for pure InAs/GaAs quantum dots compared with results
obtained by the 2D-EMA model. The dots have base b=25 nm with different heights.

Height �nm� 2D-EMA

Atomistic

1.5 2.5 3.5 5.0 7.0

Jss �meV� — 25.1 24.3 22.6 21.3 19.7

Jsp /Jss 0.75 0.80 0.83 0.84 0.85 0.86

Jsd1
/Jss 0.59 0.67 0.73 0.75 0.76 0.77

Jsd2
/Jss 0.69 0.63 0.72 0.75 0.75 0.77

Jp1p1
/Jss 0.69 0.78 0.84 0.84 0.86 0.87

Jp1d1
/Jss 0.60 0.61 0.73 0.75 0.77 0.78

Jp1d2
/Jss 0.58 0.61 0.71 0.73 0.74 0.75

Jd1d1
/Jss 0.57 0.55 0.71 0.75 0.76 0.78

Jd2d2
/Jss 0.60 0.59 0.70 0.73 0.75 0.76

Jd1d2
/Jss 0.53 0.53 0.64 0.67 0.68 0.70

Ksp1
/Jss 0.25 0.20 0.22 0.23 0.22 0.21

Ksd1
/Jss 0.09 0.12 0.09 0.09 0.09 0.09

Ksd2
/Jss 0.19 0.06 0.08 0.09 0.08 0.08

Kp1p2
/Jss 0.19 0.06 0.07 0.07 0.07 0.07

Kp1d1
/Jss 0.24 0.09 0.19 0.20 0.21 0.20

Kp1d2
/Jss 0.11 0.13 0.16 0.17 0.17 0.17

TABLE III. Hole-hole Coulomb energies J
� /Jss and exchange energies K
� /Jss calculated numerically
from atomistic pseudopotential theory for pure InAs/GaAs quantum dots compared with results obtained by
2D-EMA model. The dots have base b=25 nm with different heights.

Height �nm� 2D-EMA

Atomistic

1.5 2.5 3.5 5.0 7.0

Jss �meV� — 27.2 25.1 20.4 14.3 14.3

Jsp /Jss 0.75 0.79 0.80 0.85 0.94 1.00

Jsd1
/Jss 0.59 0.70 0.70 0.70 0.87 0.73

Jsd2
/Jss 0.69 0.80 0.81 0.76 0.95 1.02

Jp1p1
/Jss 0.69 0.73 0.74 0.79 0.92 0.73

Jp1d1
/Jss 0.60 0.67 0.68 0.70 0.87 0.70

Jp1d2
/Jss 0.58 0.68 0.70 0.74 0.92 0.70

Jd1d1
/Jss 0.57 0.65 0.65 0.67 0.87 0.80

Jd2d2
/Jss 0.60 0.71 0.72 0.72 0.94 0.80

Jd1d2
/Jss 0.53 0.63 0.64 0.69 0.86 0.77

Ksp1
/Jss 0.25 0.22 0.24 0.27 0.38 0.79

Ksd1
/Jss 0.09 0.10 0.10 0.06 0.13 0.14

Ksd2
/Jss 0.19 0.14 0.20 0.12 0.31 0.13

Kp1p2
/Jss 0.19 0.14 0.14 0.16 0.36 0.12

Kp1d1
/Jss 0.24 0.23 0.24 0.26 0.21 0.14

Kp1d2
/Jss 0.11 0.10 0.12 0.14 0.20 0.12
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for holes11,16,45 20–25 meV. We plot in Fig. 4 Jss for elec-
trons and holes versus height for base b=25 nm dots. For flat
dots, the electron-electron Coulomb energy Jss

�ee� is smaller
than that of holes Jss

�hh�. However, Jss
�ee� is larger than Jss

�hh� for
taller dots. The crossover is at about 2.5 nm for the b
=25 nm dots. Note that in our calculation, the two nearly
degenerate electron p orbitals p1 and p2, are spatially almost
orthogonal to each other. However, in the simple parabolic
2D-EMA model,16 the two degenerate p orbitals p+= px
+ ipy and p−= px− ipy have same spatial function differing
only by a phase factor. As a result, the exchange interaction
between p1 and p2 is much smaller than that of p+ and p−.
Furthermore, the simple 2D-EMA model predicts Jp+p−
=Jp+p+

, which is not true in the atomistic description, where
Jp1p2

is much smaller than Jp1p1
and Jp2p2

.
In a parabolic 2D-EMA model, there is only one free

parameter in calculating the Coulomb integrals for each type
of carriers: The effective length le for electrons and lh for
holes. This leads to simple geometric relationships as illus-
trated in Eq. �17�. These relations are listed in the second
column of Tables II and III. However, as noted in Sec. II C,
a detailed analysis of atomistic wave functions31,43 show that
they are not of pure conduction band character for electrons
or HH, LH characters for holes; nor do they have pure s, p
angular momentum characters as predicted by 2D-EMA
model. Since inter-valley, inter-band coupling and the under-
lying atomistic symmetries are also ignored in the 2D-EMA
model, we might expect that the simple relations between the
Coulomb integrals of Eq. �17� must be somehow different in
the atomistic approach relative to those predicted by the
EMA, even for rather flat lens-shaped dots having parabolic-
like energy level pattern, �p−�s�d−�p, as chosen here.

The ratios J
� /Jss and K
� /Jss derived from atomistic cal-
culations are compared with the parabolic 2D-EMA model
relationships in Table II for electrons and in Table III for
holes for dots of different aspect ratios. To visualize the dif-
ferences, we also plot the relative error for Coulomb energies
�J
� /Jss�atm− �J
� /Jss�EMA and for exchange energies
�K
� /Jss�atm− �K
� /Jss�EMA in Fig. 5�a� for electrons and in
Fig. 5�b� for holes, where “atm” means atomistic results and

“EMA” means the 2D-EMA model results. For flat lens-
shaped dots which have a parabolic-like level spectrum, we
see qualitative agreement between the atomistic calculations
and the 2D-EMA model. For such flat dots, the errors are
generally within 20% of Jss. For taller dots, the agreement is
worse, as can be seen from Fig. 5. For even taller QDs �e.g.,
height/base�5/25 nm�, the large biaxial strain will develop
a “hole trap” at the InAs/GaAs interface, which lead to the
hole localization on the interface of the dots.31,43 In these
cases, where the hole �envelope� wave functions are totally
different from those predicted by 2D-EMA model, the rela-
tionship between Coulomb and exchange energies are, ac-
cordingly, very different from those of 2D-EMA model.

At first sight, it would seem that if the values of Jss in the
parabolic 2D-EMA model are taken to be those calculated
atomistically, the Coulomb integrals predicted by the para-
bolic 2D-EMA model are only a few meV off from those
calculated by atomistic theories. However, these small differ-
ences will change significantly the electronic phase-diagrams
of carriers, as we will see below.

FIG. 4. Comparison of the electron-electron �ee� and hole-hole
�hh� Coulomb energies of s orbitals Jss for lens-shaped dots with
different heights.

FIG. 5. The relative error �J
� /Jss�atm− �J
� /Jss�EMA �closed
circles� and �K
� /Jss�atm− �K
� /Jss�EMA �open circles� for �a� elec-
trons and �b� holes, vs dot height for dots of base b=25 nm. Here,
“atm” means atomistic pseudopotential calculation, and “EMA”
means the 2D-EMA model.
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C. Ground state configurations: Atomistic versus 2D-EMA
description

1. Generic phase diagrams for 2D-EMA model

To calculate the addition energies, we first need to know
the spin and orbital configurations of the few-particle ground
state, which minimizes the energy E�N� of the N-particle
system. For an illustration, we first use the “single configu-
ration approximation,” i.e., retain only the Slater determi-
nants that have the same orbital degree of freedom, and keep
the exchange �spin-spin� coupling between these Slater de-
terminants. The ground states are those configurations that
have the lowest total energy. For electrons, the calculated
ground state for N=1–6 are shown in Fig. 1, which shows
that the electron charging pattern follows Hund’s rule. The
ground state spin and orbital configurations for holes are
listed in Table IV for N=1–6 holes. In contrast to electrons,
the hole charging patterns show complicated behaviors that
defy the Hund’s rule and the Aufbau’s principle for most of
the cases of N=5, 6 holes.18

To understand the differences between the ground-state
configurations of electrons and holes and the driving forces
for these differences, we developed a general phase-diagram
approach18 that classifies the many-particle configurations
for electrons and holes in quantum dots in terms of simple
electronic and geometric parameters. To do so, we calculate
for each particle number N, the configuration which mini-
mizes the total-energy under the single-configuration ap-
proximation at different p1-p2 splitting ��p1,p2

=�p2
−�p1

� and
p2-d1 energy spacing ��p2,d1

=�d1
−�p2

� using Coulomb inte-
grals J and K in units of Jss. This approach gives a phase
diagram as a function of the parameters �N ;�p1,p2

,�p2,d1
� in

units of Jss, which yields for N=4 two electronic phases:
3� = �s↑s↓��p1

↑��p2
↑� ,

1� = �s↑s↓��p1
↑p1

↓� . �18�

Here, we have adopted a spectroscopic notation for a system
with cylindrical symmetry. For N=5, there are three possible
phases:

4� = �s↑s↓��p1
↑��p2

↑��d1
↑� ,

2� = �s↑s↓��p1
↑p1

↓��p2
↑� ,

2� = �s↑s↓��p1
↑p1

↓��d1
↑� . �19�

For N=6, we find four phases,

5� = �s↑s↓��p1
↑��p2

↑��d1
↑��d2

↑� ,

3� = �s↑s↓��p1
↑p1

↓��p2
↑��d1

↑� ,

1� = �s↑s↓��p1
↑p1

↓��p2
↑p2

↓� ,

1�* = �s↑s↓��p1
↑p1

↓��d1
↑d1

↓� . �20�

We first apply this approach to a parabolic 2D-EMA model.
We relax the restrictions in the parabolic 2D-EMA model of
degenerate shells ��p1

=�p2
, �d1

=�d2
=�d3

� and of equidistant
shells ��p−�s=�d−�p� and allow �p1,p2

and �p2,d1
to vary. The

resulting phase diagrams are shown in Fig. 6�a� for N=4–6.

2. Ground states for specific dots in the 2D-EMA model

To decide which of these phases is a ground state for a
given dot, we need to know in Fig. 6�a� the actual value of
�p1,p2 /Jss and �p2,d1 /Jss for this realistic dot. For electrons in
self-assembled dots, the single-particle energy spacing is
usually more than twice the Coulomb energy,4,16 i.e., �p2,d1
�2Jss. For holes, �p2,d1=1.17Jss was determined from recent
experiments11,13 and �p1,p2=0 is assumed in 2D-EMA model.
This places in Fig. 6�a�, for both electrons and holes, phases
3�, 2�, and 1� as ground states for N=4–6, respectively,
where the lens represents a lens-shaped self-assembled QD,
and labels “e” and “h” inside the lens are symbols for elec-
tron and hole, respectively. As a comparison, we also show
the electron ground-state phases for an electrostatic dot
��50 nm� represented by a circle.

3. Generic phase diagrams for atomistic approach

We now use atomistic Coulomb and exchange energies J
and K, listed in Tables II and III to recalculate the phase
diagram �N ;�p1,p2

,�p2,d1
� for electrons and holes in Figs. 6�b�

and 6�c�, respectively. We see that the phase boundaries
change dramatically for both electrons and holes.18 For ex-
ample, for N=6 electrons, phase 1�* disappears �Fig. 6�b��,
while phase 5� disappear for N=5 holes.

TABLE IV. Orbital occupations for N holes in InAs/GaAs QDs of different height/base obtained from
single-particle atomistic pseudopotential and many-particle CI calculations. The orbital occupations are given
by the leading configurations in CI results.

Height/Base
�nm� N=1 N=2 N=3 N=4 N=5 N=6

2.5/20 s1 s2 s2p1
1 s2p1

2 s2p1
2d1

1 s2p1
2d1

2

3.5/20 s1 s2 s2p1
1 s2p1

2 s2p1
2p2

1 s2p1
2p2

2

2.5/25 s1 s2 s2p1
1 s2p1

2 s2p1
2d1

1 s2p1
2d1

2

3.5/25 s1 s2 s2p1
1 s2p1

2 s2p1
2d1

1 s2p1
2d1

2

2.5/27.5 s1 s2 s2p1
1 s2p1

2 s2p1
2p2

1 s2p1
2p2

1d1
1

3.5/27.5 s1 s2 s2p1
1 s2p1

2 s2p1
2d1

1 s2p1
2d1

2
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4. Ground states for specific dots in the atomistic approach

We next use �p1,p2
, �p2,d1

, and Jss from Tables I and II to
decide the ground states for electrons in self-assemble
InAs/GaAs QDs. For example, for a InAs/GaAs dot with
2.5 nm in height and 20 nm in base, we have �p1,p2

/Jss

�0.1 and �p2,d1
/Jss�3. These parameters give the ground-

state phase 2� for 5 electrons, and the ground-state phase 1�
for 6 electrons. As we see, even though the phase boundaries
calculated from atomistic theories are very different from
those calculated from 2D-EMA model, the ground-state con-
figurations are remain the same as those predicted by the
parabolic 2D-EMA model. This is because in the phase dia-
grams, the coordinates of the electrons in self-assembled dots
are far away from other competing phases. For N=4 elec-
trons, the high spin state phase 3� �Hund’s rule� and low spin
state 1� are relatively close in the phase diagram. The intrin-
sic p-level splittings in the lens-shaped dots are about
1–4 meV �Table I�, which are smaller than the electron-
electron exchange energies �5 mV�, and therefore the ground
state is the high-spin phase 3�. However, if the dot shape is
elongated, adding additional p-level splittings, the ground
state could be low-spin phase 1�. Actually there are some
experimental evidences showing that the ground state of 4
electrons could be a low spin state.6,46

In contrast to electrons, holes have ��h�Jss, and large
p1-p2 splitting, small p2-d1 splitting �Fig. 2�, which place the
holes in a different region in the phase diagrams than elec-
trons, where there are more competing phases. For example,

for the dot with base b=20 nm, and height h=2.5 nm, we
have �p1,p2

/Jss�0.4 and �p2,d1
/Jss�0.17. These relationships

give, for this dot, the ground states 1�, 2�, and 1�* for N
=4, 5, and 6 holes, respectively, showing a nontrivial hole
charging pattern that breaks the Aufbau principle.18 We also
list the ground state configurations for dots of different ge-
ometries in Table IV. As we see, in most of the cases, the
ground states are still 3�, 2�, and 1�* as shown in Fig. 6�c�.
However, there are some exceptions for very tall dots or very
flat dots. For very flat dots �e.g., the h /b=2.5/27.5 nm dot�,
the p1-p2 energy splitting �5.8 meV� is much smaller than the
p2-d1 energy splitting �9.4 meV�, These parameters place the
ground state of N=5 holes in phase 2� and that of 6 holes in
phase 3� of Fig. 6�c�. For very tall dots �e.g., the h /b
=3.5/20 nm dot�, the interfacial hole localization changes
the hole-hole Coulomb integrals dramatically, and thus
change the phase boundaries in Fig. 6�c�. We find the ground
states of the dot with h /b=3.5/20 nm are 2� and 1� for 5
and 6 holes, respectively.

5. Effects of configuration interaction

If we use CI instead of single-configuration approxima-
tion, the ground states are superpositions of different con-
figurations, but the leading CI configurations have a signifi-
cant weight, being 79%, 71%, and 64% for 4, 5, and 6 holes,
respectively, in the h /b=2.5/20 nm dot. Since the weights of
leading configurations are significantly larger than other con-
figurations, we are justified in using leading configurations to
represent graphically the ground states. It is worth noting

FIG. 6. The most stable configurations in self-assembled InAs/GaAs dots, for N=4,5 ,6 electrons/holes, as a function of the normalized
p1-p2 splitting ��p1 , p2�=�p2

−�p1
and p2-d1 splitting ��p2 ,d1�=�d1

−�p2
. The notation of the configurations are given in Eqs. �18�–�20�. �a�

Using the 2D-EMA model �the results apples to both electrons and holes�. �b� For electrons, using atomistic Coulomb and exchange
integrals. �c� For holes, using atomistic Coulomb and exchange integrals. The ��p1 , p2� /Jss and ��p2 ,d1� /Jss values of actual self-assembled
dots are denoted by “e” and “h” in lenses for electrons and holes, respectively. We also show the most stable electron configurations in the
phase diagrams of a typical electrostatic dot represented by the circles for 2D-EMA model.
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that for very large electrostatically confined dots, where
single-particle energy spacing �� /Jss�1 �down-left corner
of the phase diagrams of Fig. 6�, the ground state mixes large

number of configurations, which have no significant leading
configurations and are, therefore, in strongly correlated
states47 that are not discussed here.

D. Calculated charging and addition energies

Once we determined the ground state configurations, we
can calculate the total energies using Eq. �4�. We calculate
the ground state total energies for up to 6 electrons/holes for
each dot. For electrons, in the CI approach we used 6 single-
particle electron levels�s, p1, p2, d1, d2, d3� to construct all
possible Slater determinants, while for holes, we used 8
single-particle hole levels. The total number of Slater deter-
minants for 6 electrons is 924. For 6 holes, the total number
of determinants is 8008. We plot in Fig. 7 the CI total ener-
gies for the ground state of 6 carriers versus number of
single-particle states included in the CI expansions. The total
energies converge to about 1 meV if 6 single-particle states
are used for electrons and 8 states are used for holes.

The charging energies and addition energies are calcu-
lated using Eqs. �1� and �2�. The addition energies calculated
from CI calculations give results that are about 1 meV dif-
ferent from single-configuration results for electrons, and
1–3 meV difference for holes. The addition energies are
summarized in Table V. Experimentally, the charging ener-
gies of electrons4–6 and holes11,13 in self-assembled QDs are
usually measured via capacitance spectroscopy, using gated
structures.48 The �In,Ga�As/GaAs dots used in the electron
charging experiments were roughly estimated to be 7 nm in
height and 20 nm in base in Refs. 5 and 6. The measured
�e�1,2��23 meV in Ref. 5 and �21.5 meV in Ref. 6,
which, as shown in Sec. II equals roughly Jss

�ee�, the electron-
electron Coulomb interaction of s orbitals. The charging en-
ergies between s and p levels, �e�2,3� was estimated to be
57.0 meV in Ref. 6. The average addition energies between
p-states are estimated to be 18 meV in Ref. 5, and 14 meV in
Ref. 6. Furthermore, in Ref. 6, �e�4,5� is almost twice as
large as �e�3,4� and �e�5,6�, which might be related to the

TABLE V. Summary of atomistically calculated electron addition energies �e and hole addition energies �h �in meV� of
In1-xGaxAs/GaAs quantum dots for various dot heights, base sizes and Ga compositions. The experimental addition energies for electrons are
extracted from Ref. 6, and the addition energies for holes are taken from Ref. 11.

Height �nm� 2.5 3.5 2.5 3.5 3.5 3.5 3.5 2.5 35

Base �nm� 20 20 25 25 25 25 25 27.5 27.5

Ga comp. 0 0 0 0 0.15 0.3 0.5 0 0 Exptl.

�e�1,2� 26.3 24.6 23.3 21.8 20.5 18.5 15.2 22.1 20.5 21.5

�e�2,3� 89.5 84.4 71.8 67.6 61.2 53.2 40.3 65.2 60.8 �57

�e�3,4� 19.7 20.3 16.7 16.5 15.9 12.7 10.6 15.4 15.5 11.4

�e�4,5� 21.5 19.5 20.1 18.5 16.6 16.5 12.9 19.6 17.5 21.0

�e�5,6� 19.7 20.3 16.7 16.5 15.8 12.4 10.3 15.4 15.4 12.2

�h�1,2� 24.1 19.0 21.9 17.5 18.3 18.4 17.8 21.0 16.7 23.9

�h�2,3� 28.7 21.7 27.2 21.2 23.0 23.6 22.6 26.4 20.6 34.2

�h�3,4� 18.1 16.9 16.4 15.2 15.4 15.4 15.0 15.6 14.5 17.1

�h�4,5� 26.4 21.6 25.4 20.8 23.2 21.7 19.3 23.8 20.5 23.2

�h�5,6� 17.1 16.1 15.3 14.4 14.5 16.0 15.7 15.5 13.7 15.0

FIG. 7. CI total-energy convergency test for �a� six-electron and
�b� six-hole states with increasing number of single-particle orbitals
in the bases. The test is done for a pure InAs/GaAs dot, with base
b=25 nm, and height h=3.5 nm.
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breakdown of Hund’s rule as a consequence of irregular
shape of the dots. These results are listed in Table V and
compared with our theoretical results. We see that the elec-
tron addition energies of an �In,Ga�As/GaAs dot, with b /h
=3.5/25 nm and Ga composition x=0.15, agree very well
with the above experimental results, which show �e�1,2�
=20.5 meV, �e�2,3�=61.2 meV, and the average addition
energies between p-states of about 16 meV.

The experimental hole addition energies are taken from
Ref. 11, which gives �h�1,2�=23.9 meV, comparable to that
of �e�1,2�. However, the addition energy between s and p
orbitals, �h�2,3�=34.2 meV, is significantly smaller than
�e�2,3��57 meV. This result reflects that the s-p energy
spacing of holes is much smaller than that of electrons. As
seen from Table V, our calculated addition energies of pure

and flat �height=2.5 nm� InAs/GaAs dots agree very well
with this experiment.

To study trends of addition energies for the electrons and
the holes, we depict the electron addition energies for differ-
ent dot heights �Fig. 8�a��, bases �Fig. 8�b�� and alloy com-
positions �Fig. 8�c��. Similarly, the hole addition energies are
plotted in Figs. 9�a�–9�c� for dot heights, bases and alloy
compositions. We see the following:

�i� Up to six carriers, the electron addition energies
��N−1,N� have a single peak at �N−1�=2. The peak is due
to the single-particle energy gap between the s-shell and
p-shell. On the other hand, all hole addition energies have
two peaks at �N−1�=2 and �N−1�=4, respectively, where
the first peak come from the single-particle energy gap be-
tween the s orbital and p1 orbital and the second peak is
associated with the energy difference between the p1 and
higher energy orbitals.

FIG. 8. Electron addition energies of �a� pure InAs/GaAs dots
with base b=25 nm and height h=2.5 nm and 3.5 nm; �b� pure
InAs/GaAs dots with height h=3.5 nm and base b=20, 25, and
27.5 nm; and �c� In1−xGaxAs/GaAs dots with height h=3.5 nm and
base b=25 nm at x=0, 0.15, 0.3, and 0.5.

FIG. 9. Hole addition energies of �a� pure InAs/GaAs dots with
base b=25 nm and height h=2.5 and 3.5 nm; �b� pure InAs/GaAs
dots with height h=3.5 nm and base b=20, 25, and 27.5 nm; and
�c� In1−xGaxAs/GaAs dots with height h=3.5 nm and base b
=25 nm at x=0, 0.15, 0.3, and 0.5.
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�ii� Electron addition energies decrease with increasing
height and base of the dots, and the hole addition energies
share the same trend. However, the electron addition energies
are more sensitive to the base of the dots and relatively in-
sensitive to the height. In contrast, the hole addition energies
are very sensitive to the heights of the dot, and relatively
insensitive to the base. This dependence suggests that the
electron wave functions are more two-dimensional like in the
QDs, while hole wave functions are more extended in �001�
direction.

�iii� Electron addition energies show a simple trend for
alloyed In1−xGaxAs/GaAs QDs, which are consistently
smaller for Ga rich dots. However, the hole addition energies
of alloy dots show more complicated behaviors. The reasons
of this complication are the following: �1� Alloy dots have
different trends in hole single-particle energy level spacings
�see Table I�; �2� the ground state configurations might be
different for different alloy compositions.

IV. SUMMARY

We systematically studied the electron/hole addition en-
ergy spectra using single-particle pseudopotential plus many-
particle CI methods. Considering the single-particle step, we

find for electrons that there is a shell structure and that the
p-p and d-d splittings are about 1–4 meV depending on the
dot geometry. For holes, the single-particle step reveals large
�5–11 meV� p1-p2 splitting and absence of a well defined
shell structure. Considering the e-e and h-h Coulomb inte-
grals, we find that atomistically calculated ratios between
various Coulomb integrals Jij differ by about 20% from those
in the 2D-EMA model calculation. These differences lead to
many-particle phase diagrams that differ significantly from
those predicted by the parabolic 2D-EMA model. In particu-
lar, the “unusual” hole single-particle spectrum and Coulomb
integrals lead to many-particle ground states that defy the
Hund’s rule and the Aufubau principle for holes. The pre-
dicted ground-state configurations and the addition energies
calculated in this pseudopotential plus CI scheme compare
well with experiments.

ACKNOWLEDGMENTS

We thank G. Bester and G. A. Narvaez for fruitful discus-
sions. This work was funded by the U.S. Department of En-
ergy, Office of Science, Basic Energy Science, Materials Sci-
ences and Engineering, LAB-17 initiative, under Contract
No. DE-AC36-99GO10337 to NREL.

1 U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature �London�
400, 542 �1999�.

2 M. Kastner, Phys. Today 46, 24 �1993�.
3 S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L.

P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 �1996�.
4 H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, and P. M.

Petroff, Phys. Rev. Lett. 73, 2252 �1994�.
5 M. Fricke, A. Lorke, J. Kotthaus, G. MedeirosRibeiro, and P. M.

Petroff, Europhys. Lett. 36, 197 �1996�.
6 B. T. Miller, W. Hansen, S. Manus, R. J. Luyken, A. Lorke, J. P.

Kotthaus, S. Huant, G. Medeiros-Ribeiro, and P. M. Petroff,
Phys. Rev. B 56, 6764 �1997�.

7 L. P. Kouwenhoven, T. H. Oosterkamp, M. Danoesastro, M. Eto,
D. G. Austing, T. Honda, and S. Tarucha, Science 278, 1788
�1997�.

8 M. C. Bödefeld, R. J. Warburton, K. Karrai, J. P. Kotthaus, G.
Medeiros-Ribeiro, and P. M. Petroff, Appl. Phys. Lett. 74, 1839
�1999�.

9 D. V. Regelman, E. Dekel, D. Gershoni, E. Ehrenfreund, A. J.
Williamson, J. Shumway, A. Zunger, W. V. Schoenfeld, and P.
M. Petroff, Phys. Rev. B 64, 165301 �2001�.

10 R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K.
Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature
�London� 405, 926 �2000�.

11 D. Reuter, P. Kailuweit, A. D. Wieck, U. Zeitler, O. Wibbelhoff,
C. Meier, A. Lorke, and J. C. Maan, Phys. Rev. Lett. 94, 026808
�2005�.

12 U. Banin, C. J. Lee, A. A. Guzelian, A. V. Kadavanich, A. P.
Alivisatos, W. Jaskolski, G. W. Bryant, A. L. Efros, and M.
Rosen, J. Chem. Phys. 109, 2306 �1998�.

13 D. Reuter, P. Schafmeister, P. Kailuweit, and A. D. Wieck,

Physica E �Amsterdam� 21, 445 �2004�.
14 L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots �Springer-

Verlag, Berlin, 1998�.
15 A. Wojs and P. Hawrylak, Phys. Rev. B 53, 10841 �1996�.
16 R. J. Warburton, B. T. Miller, C. S. Durr, C. Bodefeld, K. Karrai,

J. P. Kotthaus, G. Medeiros-Ribeiro, P. M. Petroff, and S. Huant,
Phys. Rev. B 58, 16221 �1998�.

17 M. Rontani, F. Rossi, F. Manghi, and E. Molinari, Appl. Phys.
Lett. 72, 957 �1998�.

18 L. He, G. Bester, and A. Zunger, Phys. Rev. Lett. 95, 246804
�2005�.

19 A. J. Williamson, L.-W. Wang, and A. Zunger, Phys. Rev. B 62,
12963 �2000�.

20 G. Bester and A. Zunger, Phys. Rev. B 68, 073309 �2003�.
21 G. Bester and A. Zunger, Phys. Rev. B 71, 045318 �2005�.
22 A. Franceschetti and A. Zunger, Europhys. Lett. 50, 243 �2000�.
23 A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Intro-

duction to Advanced Electronic Structure Theory �Dover, New
York, 1996�.

24 M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 �1966�.
25 L. W. Wang and A. Zunger, Phys. Rev. B 51, 17398 �1995�.
26 H. Fu and A. Zunger, Phys. Rev. B 55, 1642 �1997�.
27 H. Fu and A. Zunger, Phys. Rev. B 56, 1496 �1997�.
28 L.-W. Wang and A. Zunger, Phys. Rev. B 59, 15806 �1999�.
29 R. Magri and A. Zunger, Phys. Rev. B 65, 165302 �2002�.
30 A. Zunger, Phys. Status Solidi A 190, 467 �2002�.
31 L. He, G. Bester, and A. Zunger, Phys. Rev. B 70, 235316

�2004�.
32 E. Dekel, D. Gershoni, E. Ehrenfreund, J. M. Garcia, and P. M.

Petroff, Phys. Rev. B 61, 11009 �2000�.
33 D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot

MULTIPLE CHARGING OF InAs/GaAs QUANTUM DOTS¼ PHYSICAL REVIEW B 73, 115324 �2006�

115324-13



Heterostructures �Wiley, New York, 1999�.
34 L. R. C. Fonseca, J. L. Jimenez, J. P. Leburton, and R. M. Martin,

Phys. Rev. B 57, 4017 �1998�.
35 S. Bednarek, B. Szafran, K. Lis, and J. Adamowski, Phys. Rev. B

68, 155333 �2003�.
36 J. Shumway, A. J. Williamson, A. Zunger, A. Passaseo, M. De-

Giorgi, R. Cingolani, M. Catalano, and P. Crozier, Phys. Rev. B
64, 125302 �2001�.

37 L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh,
Appl. Phys. Lett. 76, 339 �2000�.

38 K. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P. M. Petroff,
and G. H. Dohler, Phys. Rev. B 54, 11346 �1996�.

39 K. H. Schmidt, G. Medeiros-Ribeiro, and P. M. Petroff, Phys.
Rev. B 58, 3597 �1998�.

40 For alloyed dots, the same dependence with height of the s-p,
spacing is find. See Ref. 43.

41 The piezoelectric effect also contributes to the p-state splitting of
the electron states, as has been shown in Ref. 21. For the split-
ting of the hole states, the effect is more subtle. We find for a
pure InAs lens shaped dot with 25 nm base and 3.5 nm height,
using piezoelectric coefficients from bulk materials, that the hole
p-p, splitting without piezoelectric effect is 9.5 meV and with

the piezoelectric effect is 9.7 meV, using piezoelectric coeffi-
cients from bulk materials. The change �0.2 meV� due to piezo-
electric effects is rather small. We therefore ignored piezoelec-
tric effects in our calculations.

42 W. Sheng, S. J. Cheng, and P. Hawrylak, Phys. Rev. B 71,
035316 �2005�.

43 G. A. Narvaez, G. Bester, and A. Zunger, J. Appl. Phys. 98,
043708 �2005�.

44 C. Bock, K. H. Schmidt, U. Kunze, V. V. Khorenko, S. Malzer,
and G. H. Döhler, Physica E �Amsterdam� 13, 208 �2002�.

45 C. Bock, K. H. Schmidt, U. Kunz, S. Malzer, and G. H. Döhler,
Appl. Phys. Lett. 82, 2071 �2003�.

46 O. S. Wibbelhoff, A. Lorke, D. Reuter, and D. Wieck, Appl. Phys.
Lett. 86, 092104 �2005�.

47 C. Yannouleas and U. Landman, Phys. Rev. B 68, 035326 �2003�.
48 The electric fields applied to the dots are typically of the order of

50 kV/cm for electron charging devices �as gleaned from Refs.
4–6� and 100 kV/cm for hole charging devices �Refs. 11 and
13�. We performed additional calculations to estimate the effect
of this field on the addition energies and obtained changes for
addition energies to be about 1 meV at 100 kV/cm. We, there-
fore, ignored this correction in our calculations.

L. HE AND A. ZUNGER PHYSICAL REVIEW B 73, 115324 �2006�

115324-14


