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Singlet-triplet splitting, correlation, and entanglement of two electrons in quantum dot molecules
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Starting with an accurate pseudopotential description of the single-particle states, and following by
configuration-interaction treatment of correlated electrons in vertically coupled, self-assembled InAs/GaAs
quantum dot molecules, we show how simpler, popularly practiced approximations, depict the basic physical
characteristics including the singlet-triplet splitting, degree of entanglement (DOE), and correlation. The mean-
field-like single-configuration approaches such as Hartree-Fock and local spin density, lacking correlation,

incorrectly identify the ground-state symmetry and give inaccurate values for the singlet-triplet splitting and
the DOE. The Hubbard model gives qualitatively correct results for the ground-state symmetry and singlet-
triplet splitting, but produces significant errors in the DOE because it ignores the fact that the strain is
asymmetric even if the dots within a molecule are identical. Finally, the Heisenberg model gives qualitatively
correct ground-state symmetry and singlet-triplet splitting only for rather large interdot separations, but it

greatly overestimates the DOE as a consequence of ignoring the electron double occupancy effect.
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I. INTRODUCTION

Two vertically'? or laterally® coupled quantum dots con-
taining electrons, holes, or an exciton constitute the simplest
solid structure proposed for the basic gate operations of
quantum computing.*> The operating principle is as follows:
when two dots couple to each other, bonding and antibond-
ing “molecular orbitals” (MOs) ensue from the single-dot
orbitals {y,} of the top (7) and bottom (B) dots: (o)
=x7(s)+xp(s) is the o-type bonding and ¢(c,)=x7(s)
—xs(s) is the o-type antibonding state. Similarly, ()
=x7(p)+xp(p) and ¥(m,)=x7(p) - xp(p) are the “7” bonding
and antibonding states constructed from the “p” single-dot
orbitals of top and bottom dots, respectively. Injection of two
electrons into such a diatomic “dot molecule” creates differ-
ent spin configurations such as |a}, 0l or |0}, o}y, depicted
in Fig. 1(a). In the absence of spin-orbit coupling, these two-
electron states are either spin-singlet or spin-triplet states
with energy separation Jg_;. Loss and DiVincenzo® proposed
a “swap gate” base on a simplified model, where two local-
ized spins have Heisenberg coupling, H=Js_7(1)S;-S,. Here
S 1 and §2 are the spin-1/2 operators for the two localized
electrons. The effective Heisenberg exchange splitting
Jg_7(r) is a function of time 7, which is measured as the
difference in the energy between the spin-triplet state with
the total spin S=1 and the spin-singlet state with S=0. The
“state swap time” is 7~ 1/J¢_7. An accurate treatment of the
singlet-triplet splitting Jg_; and the degree of entanglement
carried by the two electrons is thus of outmost importance
for this proposed approach to quantum computations.

Theoretical models, however, differ in their assessment of
the magnitude and even the sign of the singlet-triplet energy
difference Jg_7 that can be realized in a quantum dot mol-
ecule (QDM) with two electrons. Most theories have at-
tempted to model dot molecules made of large (50-100 nm),
electrostatically confined®?® dots having typical single-
particle electronic levels separation of 1-5 meV, with
larger (or comparable) interelectronic Coulomb energies
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J,.~5 meV. The central approximation used almost univer-
sally is that the single-particle physics is treated via particle-
in-a-box effective-mass approximation (EMA), where multi-
band and intervally couplings are neglected. (In this work,
we will deviate from this tradition, see below.) Many-body
treatments of this simplified EMA model range from phe-
nomenological Hubbard® or Heisenberg> models using em-
pirical input parameters, to microscopic Hartree-Fock
(HF),'%-12 Jocal spin densities (LSD) approximation,'>!'* and
configuration interaction (CI) method.>!3

The LSD-EMA (Refs. 13 and 14) can treat easily up to a
few tens of electrons in the quantum dot molecules, but has
shortcomings for treating strongly correlated electrons, pre-
dicting for a dot molecule loaded with two electrons that the
triplet state is below the singlet in the weak coupling
region,'3 as well as incorrectly mixing singlet (spin unpolar-
ized) and triplet (spin polarized) even in the absence of spin-
orbit coupling. Since in mean-field approaches like LSD or
HF, the two electrons are forced to occupy the same molecu-
lar orbital delocalized on both dots, the two-electron states
are purely unentangled.

The restricted (R) HF method (RHF-EMA) shares similar
failures with LSD, giving a triplet as the ground state at large

(a) Molecular orbital configurations for the dot molecule
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FIG. 1. Possible configurations for two electrons in two verti-
cally coupled quantum dots. (a) Spin configurations in the MO ba-
sis. g, and o, indicate the bonding and antibonding states, respec-
tively. (b) Spin configurations in the dot-localized basis. “T” and
“B” indicate the top and bottom dots.
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interdot separation. The unrestricted (U) HF (Ref. 11) cor-
rects some of the problems of RHF by relaxing the require-
ment of (i) two electrons of different spins occupying the
same spatial orbital, and (ii) the single-particle wave func-
tions have the symmetry of the external confining potential.
The UHF-EMA correctly give the singlet lower in energy
than the triplet,!> and can also predict Mott localization of
the electrons in the dot molecule, which breaks the many-
particle symmetry.!" However, since in UHF, the symmetry-
broken wave functions are only the eigenstates of the z com-
ponent of total spin S=s,+s,, but not of S2, the UHF-EMA
incorrectly mixes the singlet and triplet.'"!> For the simple
case of dot molecules having inversion symmetry, (e.g., mol-
ecules made of spherical dots but not of vertical lens-shaped
dots), assuming EMA and neglecting spin-orbit coupling,
there is an exact symmetry. For this case, Refs. 16 and 17
indeed were able to project out the eigenstates of 2, yielding
good spin quantum numbers and lower energy. However, for
vertically coupled lens shaped quantum dots (i.e., realistic
self-assembled systems) or even for spherical dots, but in the
presence of spin-orbit coupling, there is no exact symmetry.
In this case, configurations with different symmetries may
couple to each other. To get the correct energy spectrum and
many-body wave functions, a further variation has to be
done after the projection, e.g., using the generalized valence
bond (GVB) method.!® For this case and other cases a CI
approach is needed.

The CI-EMA has been proven®'3 to be accurate for treat-
ing few-electron states in large electrostatic dot molecules,
and predicts the correct ground state. Finally, recent quantum
Monte Carlo EMA calculations'® also show that the singlet is
below the triplet.

The above discussion pertained to large (50-100 nm)
electrostatic-confined dots. Recently, dot molecules have
been fabricated?*2! from self-assembled InAs/GaAs, offer-
ing a much larger Jg_z. Such dots have much smaller confin-
ing dimensions (height of only 2-5 nm), showing a typical
spacing between electron levels of 40-60 meV, smaller in-
terelectronic Coulomb energies J,,~20 meV, and exchange
energies of K,,~3 meV. Such single dots have been accu-
rately modeled®” via atomistic pseudopotential theories, ap-
plied to the single-particle problem (including multiband and
intervally couplings as well as nonparabolicity, thus com-
pletely avoiding the effective-mass approximation). The
many-particle problem is then described via the all-bound-
state configuration-interaction method. Here we use this
methodology to study the singlet-triplet splitting in vertically
stacked self-assembled InAs/GaAs dots. We calculate first
the singlet-triplet splitting vs interdot separation, finding the
singlet to be below the triplet. We then simplify our model in
successive steps, reducing the sophistication with which in-
terelectronic correlation is described and showing how these
previously practiced approximations'®'# lead to different
values of Jg_r, including its sign reversal. This methodology
provides insight into the electronic processes which control
the singlet-triplet splitting in dot molecules.

The remainder of the paper is arranged as follows. In Sec.
IT we provide technical details regarding the methodology
we use for the calculations. We then compare the singlet-
triplet splitting, degree of entanglement, and correlation of
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FIG. 2. Geometry of the two vertically coupled quantum dot
molecule. The interdot distance d is measured from wetting layer to
wetting layer.

two-electron states in different levels of approximations in
Sec. III. Finally, we summarize in Sec. I'V.

II. METHODS
A. Geometry and strain relaxation

We consider a realistic dot-molecule geometry* shown in
Fig. 2, which has recently been used in studying exciton
entanglement*?? and two-electron states.?* Each InAs dot is
12 nm wide and 2 nm tall, with one monolayer InAs “wet-
ting layer,” and compressively strained by a GaAs matrix.
Even though experimentally grown dot molecules often have
slightly different size and composition profile for each dot
within the molecule, here we prefer to consider identical
dots, so as to investigate the extent of symmetry breaking
due to many-body effects in the extreme case of identical
dots. The minimum-strain configuration is achieved at each
interdot separation d, by relaxing the positions {R, ,} of all
(dot+matrix) atoms of type « at site n, so as to minimize the
bond-bending and bond-stretching energy using the valence
force field (VFF) method.?>%® This shows that both dots have
large and nearly constant hydrostatic strain inside the dots
which decays rapidly outside.?* However, even though the
dots comprising the molecule are geometrically identical, the
strain on the two dots is different since the molecule lacks
inversion symmetry. In fact, we found that the top dot is
slightly more strained than the bottom dot. Not surprisingly,
the GaAs region between the two dots is more severely
strained than in other parts of the matrix, as shown in Fig. 1
of Ref. 24 and as the two dots move apart, the strain between
them decreases.

B. Calculating the single-particle states

The single-particle electronic energy levels and wave
functions are obtained by solving the Schrodinger equations
in a pseudopotential scheme,

1
|:_ EVZ + Vps(r):| ‘//i(r) = Eﬂﬂi(l’), (1)

where the total electron-ion potential V,(r) is a superposi-
tion of local, screened atomic pseudopotentials v,(r), i.e.,
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Vis(r)=2, ,v,(r-R, ). The pseudopotentials used for
InAs/GaAs are identical to those used in Ref. 27 and were
tested for different systems.?>27-28 We ignored spin-orbit cou-
pling in the InAs/GaAs quantum dots, since it is extremely
small for electrons treated here (but not for holes which we
do not discuss in the present work). Without spin-orbit cou-
pling, the states of two electrons are either pure singlet or
pure triplet. However, if a spin-orbit coupling is introduced,
the singlet state would mix with triplet state.

Equation (1) is solved using the “linear combination of
Bloch bands” (LCBB) method,?® where the wave functions
; are expanded as

i) =2 2 g (). 2)

nk N\

In the above equation, {d)g"z’g(r)} are the bulk Bloch
orbitals of band index n and wave vector k of material
\ (=InAs,GaAs), strained uniformly to strain €. The depen-
dence of the basis functions on strain makes them variation-
ally efficient. (Note that the potential V,,(r) itself also has
the inhomogeneous strain dependence through the atomic
position R, ,.) We use for the basis set €=0 for the (un-
strained) GaAs matrix material, and an average € value from
VFF for the strained dot material (InAs). For the InAs/GaAs
system, we use n=2 (including spin) for electron states on a
6 X6 X28 k mesh. A single dot with the geometry of Fig. 2
(base=12 nm and height=2 nm) has three bound electron
states (s, p,, and p,) and more than ten bound hole states.
The lowest exciton transition in the single dot occurs at en-
ergy 1.09 eV. For the dot molecule the resulting single-
particle states are, in order of increasing energy, o, and o,
(bonding and antibonding combination of the s-like single-
dot orbitals), and the doubly (nearly) degenerate 7, and ,,
originating from doubly (nearly) degenerate “p” orbitals
(split by a few meV) in a single dot. Here, we use the sym-
bols g and u to denote symmetric and antisymmetric states,
even though in our case the single-particle wave functions
are actually asymmetric.”* We define the difference between
the respective dot molecule eigenvalues as A,=e€(o,)
—€e(o,) and A =e(m,)-€(m,).

C. Calculating the many-particle states

The Hamiltonian of interacting electrons can be written as

EEF

l]kl o0

H=2 & g+ Ul thio o (3)

where ¢;=0,, o,, m,, 7, are the single-particle energy levels
of the ith molecular orbital, while o, o’'=1, 2 are spin indi-
ces. The '} are the Coulomb integrals between molecular

orbitals ¢, ¢, Y., and ¥,
) = f f e g O ED R Gix)

e(r—r')r-r’|

(4)

The J;; F’J and K; F’J are diagonal Coulomb and exchange
1ntegrals respectlvely The remaining terms are called off-
diagonal or scattering terms. All Coulomb integrals are cal-
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culated numerically from atomistic wave functions.>® We use
a phenomenological, position-dependent dielectric function
e(r—r') to screen the electron-electron interaction.’®

We solve the many-body problem of Eq. (3) via the CI
method, by expanding the N-electron wave function in a set
of Slater determinants, |<I>e1 eynniey) = d)i (b |CI)0>
where (;ST creates an electron in the state e;. The Vth many-

particle wave function is then the linear combinations of the
determinants,

Ty= S Aferercen)l®, .

€1,€5..0EN

> ()

N

In this paper, we only discuss the two-electron problem, i.e.,
N=2. Our calculations include all possible Slater determi-
nants for the six single-particle levels.

D. Calculating pair-correlation functions and degree
of entanglement

We calculate in addition to the energy spectrum and the
singlet-triplet splitting Js_r also the pair-correlation functions
and the degrees of entanglement (DOE). The pair-correlation
function P,(r,r’) for an N-particle system is defined as the
probability of finding an electron at r’, given that the other
electron is at r, i.e.,

(6)

P,,(r,r’):fdr3---drN|‘I',,(r,r’,r3,...,

where, W ,(ry,...,ry) is the N-particle wave function of state
v. For two electrons, the pair-correlation function is just
Pv(rsr,) = |‘Pv(r’r,)|2'

The degree of entanglement (DOE) is one of the most
important quantities for successful quantum gate operations.
For distinguishable particles such as electron and hole, the
DOE can be calculated from von Neumann—entropy
formulation.>'3* However, for indistinguishable particles,
there are some subtleties*>~*! for defining the DOE since it is
impossible to separate the two identical particles. Recently, a
quantum correlation function® has been proposed for indis-
tinguishable particles using the Slater decompositions.*> We
adapt this quantum correlation function to define the DOE
for indistinguishable fermions as

S=-> 22 log, 27, (7)

where z; are Slater decomposition coefficients. The details of
deriving Eq. (7) are given in Appendix A. We also show in
Appendix A that the DOE measure of Eq. (7) reduces to the
usual von Neumann—entropy formulation when the two elec-
trons are far from each other.

III. RESULTS

Figure 3 shows the bonding-antibonding splitting A (d)
between the molecular orbitals vs interdot separation d mea-
sured from one wetting layer to the other, showing also the
value &,=€,—¢€, of the splitting between the p and s orbital
energies of a single dot (i.e., d—). The bonding-
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FIG. 3. The bonding-antibonding splitting A,=e€(o,)-€(0,)
(solid line) and singlet-triplet splitting J S_T=E(32)—E(12f:))
(dashed line) vs interdot distance d. We also show the single-dot s,
p orbitals splitting d;,=e,—e,, and the s orbital Coulomb interaction
Jc. We define “strong coupling” by A,~ &,,(<4 nm) and “weak

coupling,” A;< §;,(>5 nm).

antibonding splitting decays approximately exponentially as
A,=2.87 exp(—d/1.15) eV between d~4 and 8 nm. The re-
sult of bonding-antibonding splitting includes two competing
effects. On one hand, large interdot distance d reduces the
coupling between the two dots; on the other hand, the strain
between the dots is also reduced, leading to a lower tunnel-
ing barrier, thus increasing coupling. The local maximum of
A, at d=8.5 nm is a consequence of the this competition.
Recent experiments”®?! show the bonding-antibonding split-
ting of about 4 meV at d=11.5 nm for vertically coupled
InAs/GaAs quantum dot molecules, of similar magnitude as
the value obtained here (~1 meV), considering that the mea-
sured dot molecule is larger (height/base=4 nm/40 nm
rather than 2 nm/12nm in our calculations) and possibly
asymmetric. We also give in Fig. 3 the interelectronic Cou-
lomb energy J- of a single-dot s orbital. We define the
strong-coupling region as A,~ &,,, and the weak-coupling
region A, < §;,. We see in Fig. 3 strong coupling for d<4
nm, and weak coupling for =5 nm. In the weak-coupling
region, the 7 levels are well above the o levels. We also
define “strong confinement” as J,,>J., and weak confine-

sp
ment as the reverse inequality. Figure 3 shows that our dot is

| Coulomb integrals of molecular orbitals |
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FIG. 4. Selected Coulomb integrals for molecular orbitals. J,, is
the self-Coulomb energy of the o, orbital and J,, is the Coulomb
energy between o, and o, orbitals, while K,, is the exchange en-

ergy between o, and o, orbitals.
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FIG. 5. (Color online) (a) Two-electron states calculated from
CI using all confined MO from LCBB (level 1), including the sin-
glet 12;”), D IZ;b) states and the threefold degenerated triplet
states 3EM as well as two threefold degenerated triplet states 3I'IM.
(b) Two electron states calculated from the single-configuration ap-
proximation (level 3). (c) Comparison of the singlet-triplet splitting
calculated from level-1, -3, and -4 theories.

in the strong-confinement regime. In contrast, electrostatic
dots®8 are in the weak confinement regime.

We next discuss the two-electron states in the QDMs and
examine several different approximations which we call lev-
els 1-4, by comparing the properties of the ground states, the
singlet-triplet energy separation Jg_; and the pair-correlation
functions as well as the degree of entanglement for each
state. Starting from our most complete model (level 1) and
simplifying it in successive steps, we reduce the sophistica-
tion with which interelectronic correlation is described and
show how these previously practiced approximations lead to
different values of Jg_; (including its sign reversal), and dif-
ferent degree of entanglement. This methodology provides
insight into the electronic features which control singlet-
triplet splitting and electron-electron entanglement in dot
molecules.
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FIG. 6. Isospin, defined as the difference in the number of elec-
trons occupying the bonding (Ng) and antibonding (N,p) states, of
the IE:I) state in level-1 and level-3 theories.

A. Level-1 theory: All-bound-state configuration interaction

We first study the two-electron states by solving the CI
Eq. (5), using all confined molecular orbitals Ty O and 7,
,, to construct the Slater determinants. This gives a total of
66 Slater determinants. The continuum states are far above
the bound state, and are thus not included in the CI basis.
Figure 4 shows some important matrix elements, including
Jgo (Coulomb energy of o, MO), J,, (Coulomb energy be-
tween o, and 0,,), and K, (exchange energy between o, and
o,). The Coulomb energy between o, MO, J,, is nearly
identical to J,, and therefore is not plotted. Diagonalizing the
all-bound-state CI problem gives the two-particle states,
shown in Fig. 5(a). We show all six 3 states (where both
electrons occupy the o states) and the two lowest threefold
degenerate 3Hu states (where one electron occupies the o,
and one occupies one of the 7 levels). We observe that:

(i) The ground state is singlet 'S for all dot-dot dis-
tances. However, the character of the state is very different at
different interdot separation d, which can be analyzed by the
isospin of the state,* defined as the difference in the number
of electrons occupying the bonding (Np) and antibonding
N,4p) states in a given CI state, i.e., I,.=(Nz—N,3)/2, where
Np and N,p are obtained from Eq. (5). As shown in Fig. 6,
L(d) of the 12;@ state is very different at different interdot
distances: At small interdot distance, the dominant configu-
ration of the ground state is |O’T,0'i,> (both electrons occupy
bonding state and Nz=2), and 1.~ 1. However, in the weak-

€+ €+~ Ky, 0
0 €+ €,+J,,— K,
0 0
H=
0 0
0 0
0 0
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coupling region, there is significant mixing of bonding o,
and antibonding states o,, and I, is smaller than 1, e.g.,
I.~0.2 at d=9.5 nm. At infinite separation, where the bond-
ing and antibonding states are degenerate, one expects
I.— 0.

(ii) Next to the ground state, we find in Fig. 5(a) the
threefold degenerate triplet states °S,,, with S,=1,-1, and 0.
In the absence of spin-orbit coupling, triplet states will not
couple to singlet states. If we include spin-orbit coupling, the
triplet may mix with the singlet state, and the degeneracy
will be lifted. At large interdot distances, the ground-state
singlet 3@ and triplet states *=, are degenerate. The split-
ting of total CI energy between ground-state singlet and trip-
let J5_r=E(’3)-E('S,) is plotted in Fig. 3 on a logarithmic
scale. As we can see, Jg_7 also decays approximately expo-
nentially between 4 and 8 nm, and can be fitted as
Jo_7=5.28 exp(-d/0.965)eV. The decay length of 0.965 nm
is shorter than the decay length 1.15 nm of A,. At small
interdot separations, Jg_y~ A, in Fig. 3, as expected from a
simple Heitler-London model.’

(iii) The two excited singlet states originating from the
occupation of o, antibonding states, 'S, and E () are further
above the °3, state.

(iv) The 1owest 31_[u states are all triplet states. They are
energetically very close to each other since we have two
nearly degenerate 7, MO states. In the weak-coupling re-
gion, the II, states are well above the X states, as a
consequence of large single-particle energy difference
e(m,)—e(o,). However, the I1,, and IES’) cross at about 4.5
nm, where the single-particle MO level 7, is still much
higher than o,. In this case, the Coulomb correlations have to
be taken into account.

In the following sections, we enquire as to possible, popu-
larly practiced simplifications over the all-bound-states CI
treatment.

B. Level-2 theory: Reduced CI in the molecular basis

In level-2 theory, we will reduce the full 66 X 66 CI prob-
lem of level 1 to one that includes only the o, and o, basis,
giving a 6 X6 CI problem. The six many-body basis
states are shown in Fig. l(a) =la},oh), —| LT,
ley=|al, o =lot, o) 0') T =|al,ob). In this
basis set, the CI problem is reduced to a 6 X 6 matrix eigen-
value equation,

0 0 0 0
0 0 0 0
€+ €+, -K,, - Fgg -re ®)
-K,, €+€,+/,, rs rs ’
- re 2€,+ J g rss
re T T e,
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where €, and €, are the single-particle energy levels for the
MOs |(r ) and |0' ), respectively. In the absence of spin-orbit
coupling, the triplet states |a) and |b) are not coupled to any
other states, as required by the total spin conservation, and
thus they are already eigenstates. The rest of the matrix can
be solved using the integrals calculated from Eq. (4). The
results of the 6 X 6 problem were compared (not shown) to
the all-bound-state CI results: We find that the 3, states of
level-2 theory are very close to those of the all-bound-state
CI calculations, indicating a small coupling between o and 7
orbitals in the strong confinement region. We thus do not
show graphically the results of level 2. However, since we
use only o orbitals, the IT states of level 1 [Fig. 5(a)] are
absent in level-2 theory. Especially, the important feature of
crossover between 2, and II, states at 4 and 4.5 nm is miss-
ing.

C. Level-3 theory: Single-configuration in the molecular basis

As 1s well known, mean-field-like treatments such as RHF
and LSD usually give incorrect dissociation behavior of mol-
ecules, as the correlation effects are not adequately treated.
Given that RHF and LSD are widely used in studying
QMDs, %1314 it is important to understand under which cir-
cumstance the methods will succeed and under which cir-
cumstance they will fail in describing the few-electron states
in a QDM. In level-3 theory, we thus mimic the mean-field
theory by further ignoring the off-diagonal Coulomb inte-
grals in Eq. (8) of level-2 theory, i.e., we assume I'§/=I"5)
=I";,=0. This approximation is equivalent to ignoring the
coupling between different configurations, and is thus called
“single-configuration” (SC) approximation. At the SC level,
we have very simple analytical solutions of the two-electron
states,

E(IEE@) =26+ 4 |12fga)> = |e), )
1330 =la),
E(’S,) = (e +€) +J0—Kui V1220 =|b),
020 =) = |d),
(10)
E(lzu) = (eg + Eu) +Jgu + ng |12u> = |C> + |d>7 (11)
E('s) =2e,+7,: ['SP)=1p. (12)

The energies are plotted in Fig. 5(b). When comparing the 2,
states of the SC approach to the all-bound-state CI results in
Fig. 5(a), we find good agreement in the strong-coupling
region for d<5 nm (see Fig. 3). However, the SC approxi-
mation fails qualitatively at larger inter-dot separations in
two aspects: (i) The order of singlet state 'S @ and triplet
state °3, is reversed [see Figs. 5(b) and 5(c). (ii) The IE@
and 3, states fail to be degenerate at large interdot seg)ara—
tion. This lack of degeneracy is also observed for 'E

IS, These failures are due to the absence of correlatrons in
the SC approximation. Indeed as shown in Fig. 6, the accu-
rate level-1 ground-state singlet has considerable mixing of
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antibonding states, i.e., I,— 0 at large d. However, in the SC
approximation both electrons are forced to occupy the o,
orbital in the lowest singlet state 5@ a5 a consequence of
the lack of the coupling between the configuration |e) of Fig.
1(a) and other configurations. As a result, 1n level-3 theory,
the isospins are forced to be /,=1 for 12 9 at all interdot
distances d, which pushes the srnglet energy higher than the
triplet.

D. Level-4 theory: Hubbard model and Heisenberg model
in a dot-centered basis

The Hubbard model and the Heisenberg model are often
used® to analyze entanglement and gate operations for two
spins qubits in a QDM. Here, we analyze the extent to which
such approaches can correctly capture the qualitative physics
given by more sophisticated models. Furthermore, by doing
so, we obtain the parameters of the models from realistic
calculations.

1. Transforming the states to a dot-centered basis

Unlike the level-1-3 theories, the Hubbard and the
Heisenberg models are written in a dot-centered basis as
shown in Fig. 1(b), rather than in the molecular basis of Fig.
1(a). In a dot-centered basis, the Hamiltonian of Eq. (3) can
be rewritten as

— i
H= 2 E (67115’11’72+t7l1772)X771s‘7X7/2"
mn-mn o

2 2 X Xy o X Xy (13)

77 74 0"
where #7=(l,p) and )(TW, creates an electron in the
[=(s,p,...) orbital on the p=(T,B) dot with spin o that has
single-particle energy e,. Here, 7, ,, is the coupling between

the 7, and 7, orbitals, and I"“ ’72 is the Coulomb integral of
single-dot orbitals Xy Xy X,}3 and X,

We wish to construct a Hubbard Hamrltonian whose pa-
rameters are taken from the fully atomistic single-particle
theory. To obtain such parameters in Eq. (13) including
- and le ZZ, we resort to a Wannier-like transforma-
tion, which transform the “molecular” orbitals [Fig. 1(a)]
into single-dot “atomic” orbitals [Fig. 1(b)]. The latter dot-
centered orbitals are obtained from a unitary rotation of the
molecular orbitals ¢, i.e.,

anzun,[lpi’ (14)
i=1

e

where ¢; is the ith molecular orbitals, x,, is the single dot-
centered orbitals, and I are unitary matrices, i.e., U/'U=1. We
chose the unitary matrices that maximize the total orbital
self-Coulomb energy. The procedure of finding these unitary
matrices is described in detail in Appendix B. The dot-
centered orbitals constructed this way are approximately in-
variant to the change of coupling between the dots.** Once
we have the U/ matrices, we can obtain all the parameters in
Eq. (13) by transforming them from the molecular basis. The
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(a) Effective single-particle levels
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FIG. 7. (a) Effective single-particle energy levels of s orbitals
localized on the top (e7) and bottom (ep) dots. (b) Intradot Coulomb
energy Jrr, Jgp, interdot Coulomb energy Jrg and interdot ex-

change energy Ktp (magnified by a factor 100). The dashed line
gives the single-dot s orbital self-Coulomb energy J.

Coulomb integrals in the new basis set are given by Eq. (B2),
while other quantities including the effective single-particle
levels e, for the nth dot-centered orbital, and the coupling
between the 7;th and #,th orbitals L, 7, CaN be obtained from
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ey=lTIxy) = 2 U, Uy i (15)

lmr]2=<X7]||T|X7]2>:Eur]l,iUnz,iei, (16)

where ¢; is the single-particle level of the ith molecular or-

bital, and 7 is kinetic energy operator. Using the transforma-
tion of Eq. (15), Eq. (16), and Eq. (B2), we calculate all
parameters of Eq. (13). Figure 7(a) shows the effective
single-dot energy of the “s” orbitals obtained in the Wannier
representation for both top and bottom dots. We see that the
effective single-dot energy levels increase rapidly for small
d. Furthermore, the energy levels for the top and bottom
orbitals are split due to the strain asymmetry between the
two dots. We compute the Coulomb energies Jyp, Jgg of the
“s” orbitals on both top and bottom dots, and the interdot
Coulomb and exchange energies J1g and Kt and plot these
quantities in Fig. 7(b). Since Jyr and Jgp are very similar, we
plot only Jpr. As we can see, the Coulomb energies of the
dot-centered orbitals are very close to the Coulomb energy of
the s orbitals of an isolated single dot (dashed line). The
interdot Coulomb energy Jrg has comparable amplitude to
Jrr and decays slowly with distance, and remain very sig-
nificant, even at large separations. However, the exchange
energy between the orbitals localized on the top and bottom
dot Ktp is extremely small even when the dots are very
close.

2. “First-principles” Hubbard model and Heisenberg model:
Level 4

In level-4 approximation, we use only the “s” orbital in
each dot. Figure 1(b) shows all possible many-body basis
functions of two electrons, where the top and bottom dots are
denoted by “T” and “B,” respectively. The Hamiltonian in
this basis set is

eT+€B+JTB_KTB 0 0 0 0 0
0 eT+eB+JTB_KTB 0 0 0 0
0 0 eT+€B+JTB _KTB t_l:gBB [—ﬂ?
H= 0 0 K J FTB s | (17
—&rp ertegtJrg —t+Ipg —t+1pp
0 0 r— f%g -+ I?BB 2ep +Jpp 0
0 0 -1t —t+T1F 0 2er+Jrr

where t=t7p and to simplify the notation, we ignore the or-
bital index “s.” If we keep all the matrix elements, the de-
scription using the molecular basis of Fig. 1(a) and the dot
localized basis of Fig. 1(b) are equivalent, since they are
connected by unitary transformations. We now simplify Eq.
(17) by ignoring the off-diagonal Coulomb integrals. The

resulting Hamiltonian is the single-band Hubbard model.
Unlike level-3 theory, in this case, ignoring off-diagonal
Coulomb integrals (but keeping hopping) can still give quali-
tatively correct results, due to the fact that off-diagonal Cou-

lomb integrals such as f?g <t, and the correlation is mainly
carried by interdot hopping z. We can further simplify the
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model by assuming er=eg=¢€; Jrp=Jgg=U; and let Jrg=V,
Ktg=K. We can then solve the simplified eigenvalue equa-
tion analytically. The eigenvalues of the above Hamiltonian
are (in order of increasing energy):

(i) ground-state singlet IE;“),

1
E=2e+ [U+V+K- V162 + (U-V-K)?];  (18)

(i) triplet states (threefold degenerate) >3,
E=2e+V-K; (19)
(iii) singlet 'S,
E=2e+ U, (20)

(iv) singlet IEL}’),

1 [
E=2e+ 5[U+ V+K+V16£2+(U-V-K)?]. (21)

In the Hubbard limit where Coulomb energy U>t, the
singlet-triplet  splitting Jg_;=E(’S)—E( 1Eg) ~42/(U-V),
which reduces the model to the Heisenberg model

H= 4t2§ S (22)
Ty-vh PR

where S and Sp are the spin vectors on the top and bottom
dots. The Heisenberg model gives the correct order for
singlet and triplet states. The singlet-triplet splitting
Js_r=412/(U-V) is plotted in Fig. 5(c) and compared to the
results from all-bound-state CI calculations (level 1), and
single-configuration approximations (level 3). As we can see,
at d>6.5 nm, the agreement between the Heisenberg model
with CI is good, but the Heisenberg model greatly overesti-
mates Jg_r at d<<6 nm.

E. Comparison of pair-correlation functions
for level-1 to 4 theories

In the previous sections, we compared the energy levels
of two-electron states in several levels of approximations to
all-bound-state CI results (level 1). We now provide further
comparison of level-1-4 theories by analyzing the pair-
correlation functions and calculating the electron-electron
entanglement at different levels of approximations.

In Fig. 8 we show the pair-correlation functions of Eq. (6)
for the 'S and 'S states at d~7 nm for level-1 and
level-3 theories. The correlation functions give the probabil-
ity of finding the second electron when the first electron is
fixed at the position shown by the arrows at the center of the
bottom dot (left-hand side of Fig. 8) or the top dot (right-
hand side of Fig. 8). Level-1 and level-2 theories give
correlation-induced electron localization at large d: for the
IEE,“) state, the two electrons are localized on different dots,
while for the 'S? state, both electrons are localized on the
same dot.* In contrast, level-3 theory shows delocalized
states because of the lack of configuration mixing. This prob-
lem is shared by RHF and LSD approximations.
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Pair correlation functions of "= state

FIG. 8. (Color online) Comparison of pair-correlation functions
calculated from (a) level-1 and (b) level-3 theory for the 'E(g“) state
and (c) level-1 and (d) level-3 theory for the 123’) state at
d~7 nm. On the left-hand side, the first electron is fixed at the
center of the bottom dot, while on the right-hand side, the first
electon is fixed at the center of the top dot, as indicated by the
arrows.

F. Comparison of the degree of entanglement
for levels-1 to 4 theories

The DOE of the four “X” states are plotted in Fig. 9 for
level-1, level-3, and level-4 theories; the DOEs of level-2
theory are virtually identical to those of level-1 theory, and
are therefore not plotted. We see that the Hubbard model has
generally reasonable agreement with level-1 theory while the
DOEs calculated from level-3 and level-4 (Heisenberg
model) theories deviate significantly from the level-1 theory,
which is addressed below.

(i) The 12;“) state: The level-1 theory [Fig. 9(a)], shows
that the DOE of 'S increases with d and approaches 1 at
large d. The Hubbard model of level-4 theory [Fig. 9(c)]
gives qualitatively correct DOE for this state except for some
details. However, level-3 theory [Fig. 9(b)] gives DOE
S=0 because the wave function of IEL“) is a single Slater
determinant |e) [see Eq. (9)]. For the same reason, the DOEs
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Entanglement of two electrons
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FIG. 9. (Color online) Comparison of the DOE calculated from
(a) level-1, (b) level-3, and (c) level-4 theories for two-electron
states. In panel (c), both the DOE of the Hubbard model (solid
lines) and of the Heisenberg model for 122,“) state (dashed line) are
shown.

of the IE;’J) state in RHF and LSD approximations are also
zero as a consequence of lack of correlation. In contrast, the
Heisenberg model of level-4 theory gives S(IE;“))= 1. This is
because the Heisenberg model assumes that the both elec-
trons are localized on different dots with zero double occu-
pancy, and thus overestimates the DOE.?+%3

(i1) The 12(b state: The Hubbard model gives the DOE of
the 'S state 1dentlcal to that of 'S' state. This is different
from tﬁe result of level-1 theory, especially at large inter-dot
separations. The difference comes from the assumption in the
Hubbard model that the energy levels and wave functions on
the top dot and on the bottom dot are identical while as
discussed in Ref. 24, the wave functions are actually asym-
metric due to inhomogeneous strain in the real system. At
d>8 nm, the 'S state is the supposition of |E) and |F)
configurations in the Hubbard model leading to S=1, while
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in level-1 theory, the two electrons are both localized on the
top dots (|F)) at d>9 nm,?* resulting in near zero entangle-
ment. For the same reason discussed in (i), the level-3 theory
gives S( E(b)) 0.

(iii) The IS, state: Both the level-3 theory and Hubbard
model give S(! Zu) 1. However, the S('S,) of the level-1
theory has more features as the consequence of the asymme-
try of the system. In contrast to the 5% gtate, in the Iz,
state, both electrons are localized on the bottom dot leading
to near zero entanglement at d>9 nm.

(iv) The ¥, state: All levels of theories give very close
results of DOE for the OEM state. Actually, in level-1 theory,
the DOE of the ; o>y state is only slightly larger than 1, indi-
cating weak entanglement of the o and 7r orbitals (the maxi-
mum entanglement one can get from the total of six orbitals
is Spax=10g,6), while in all other theories (including the
level-2 theory) they are exactly 1 since these theories include
only two o orbitals. The small coupling between o and 7
orbitals is desirable for quantum computation, which re-
quires the qubits states to be decoupled from other states.

IV. SUMMARY

We have shown the energy spectrum, pair-correlation
functions, and degree of entanglement of two-electron states
in self-assembled InAs/GaAs quantum dot molecules via all-
bound-state configuration interaction calculations and com-
pared these quantities in different levels of approximations.
We find that the correlation between electrons in the top and
bottom dot is crucial to get the qualitative correct results for
both the singlet-triplet splitting and the degree of entangle-
ment. The single-configuration approximation and similar
theories such as RHF and LSD all suffer from lack of corre-
lation and thus give incorrect ground state, singlet-triplet
splitting Jg_7, and degree of entanglement. Highly simplified
models, such as the Hubbard model, gives qualitatively cor-
rect results for the ground state and Jg¢_7, while the Heisen-
berg model only gives similar results at large d. These two
models are written in the dot-centered basis, where the cor-
relation between the top and bottom dots are carried by the
single-particle tunneling. However, as a consequence of ig-
noring the asymmetry present in the real system, the degree
of entanglement calculated from the Hubbard model deviates
significantly from realistic atomic calculations. Moreover,
the Heisenberg model greatly overestimates the degree of
entanglement of the ground state as a consequence of further
ignoring the electron double occupancy in the dot molecule.
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APPENDIX A: DEGREE OF ENTANGLEMENT
FOR TWO ELECTRONS

The entanglement is characterized by the fact that the
many-particle wave functions cannot be factorized as a direct
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product of single-particle wave functions. An entangled sys-
tem displays nonlocality which is one of the properties that
distinguishes it from classic systems. So far, the only well
established theory of entanglement pertains to two distin-
guishable particles,>> (e.g., electron and hole). For a sys-
tem made of two distinguishable particles (A,B), the en-
tanglement can be quantified by von Neumann entropy of the
partial density matrix of either A or B,3!-33

S(A,B) ==Tr(py log, ps) == Tr(pg log, pp), (A1)

where S(A,B) is the DOE of the state. p, and py are the
reduced density matrices for subsystems A and B. An alter-
native way to define the DOE for two distinguishable par-
ticles is through a Schmidt decomposition, where two-
nonidentical-particle wave functions are written in an bi-
orthogonal basis,

W(A.B) = 2 \ix) @ lig), (A2)

with \;=0 and E,-)\,-z: 1. The number of nonzero \; is called
the Schmidt rank. For a pure state W(A,B) of the composite
system (A,B), we have

Pa= 2 )\12|iA><iA

, (A3)

Pp= 2 )\l‘2|i3><i3|-

It is easy to show from Eq. (Al) that the DOE for the two
distinguishable particles is

S(A,B) = - > N2 log, \2. (A4)

We see from Eq. (A2) that when and only when the Schmidt
rank equals 1, the two-particle wave function can be written
as a direct product of two single-particle wave functions. In
this case, we have N\=1, and S(A,B)=0 from Eq. (A4).

A direct generalization of DOE of Eq. (A4) for two iden-
tical particles is problematic. Indeed, there is no general way
to define the subsystem A and B for two identical particles.
More seriously, since two-particle wave functions for identi-
cal particles are nonfactorable due to their built-in symmetry,
one may tend to believe that all two identical fermions (or
Bosons) are in an entangled Bell state.> However, inconsis-
tency comes up in the limiting cases. For example, suppose
that two electrons are localized on each of the two sites A
and B that are far apart, where the two electrons can be
treated as distinguishable particles by assigning A and B to
each electron, respectively. A pure state W that has the
spin up for A electron and spin down for B electron is
‘P(Xl,X2)=1/\“E[d’m(xl)(ﬁm(xz)—¢A¢(X2)¢B¢(X1)]~ At first
sight, because of the antisymmetrization, it would seem that
the two electron states cannot be written as a direct product
of two single-particle wave functions, so this state is maxi-
mally entangled. However, when the overlap between two
wave functions is negligible, we can treat these two particles
as if they were distinguishable particles and ignore the
antisymmetrization without any physical effect, i.e.,
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W(X,X;) = aq(x;) dp|(x,). In this case, apparently the two
electrons are unentangled. More intriguingly, in quantum
theory, all fermions have to be antisymmetrized even for
nonidentical particles, which does not mean they are en-
tangled.

To solve this obvious inconsistency, alternative measures
of the DOE of two fermions have been proposed and dis-
cussed recently,®#! but no general solution has been widely
accepted as yet. Schliemann et al.® proposed using Slater
decomposition to characterize the entanglement (or, the so-
called “quantum correlation” in Ref. 35) of two fermions as
a counterpart of the Schmidt decomposition for distinguish-
able particles. Generally a two-particle wave function can be
written as

\P:Z w;iliy @ 1)), (AS)
i

where |i), |j) are the single-particle orbitals. The coefficient
w;; must be antisymmetric for two fermions. It has been
shown in Refs. 35 and 42 that one can do a Slater decompo-
sition of w;; similar to the Schmidt decomposition for two
nonidentical particles. It has been shown that @ can be block
diagonalized through a unitary rotation of the single-particle

states,3>*2 i.e.,

o' =UwU' =diag[Z,,2,,...,.Z,.Z),

Ziz .
=3 0

and Z,=0. Furthermore, X, z?:l, and z; is a non-negative
real number. A more concise way to write down the state ¥V
is to use the second quantization representation,

W= E Zif;i—lf;i|0>s

(A6)

where

(A7)

(A8)

where f. , and f}, are the creation operators for modes
2i—1 and 2i. Following Ref. 42, it is easy to prove that zi2 are
eigenvalues of w'w. The number of nonzero z; is called the
Slater rank.® It has been argued in Ref. 35 that if the wave
function can be written as single Slater determinant, i.e., the
Slater rank equals 1, the so-called quantum correlation of the
state is zero. The quantum correlation function defined in
Ref. 35 has similar properties, but nevertheless is inequiva-
lent to the usual definition of DOE.

Here, we propose a generalization of the DOE of Eq. (A4)
to two fermions, using the Slater decompositions,

S=-, ziz log, z?. (A9)

The DOE measure of Eq. (A9) has the following properties:

(i) This DOE measure is similar to the one proposed by
Paskauskas et al.’® and Li et al.,’® except that a different
normalization condition is used. In our approach, the state of
Slater rank 1 is unentangled, i.e., S=0. In contrast, Paskaus-
kas et al.*® and Li et al.*® concluded that the unentangled
state has S=In 2, which is contradictory to the fact that for
distinguishable particles, an unentangled state must have S
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=0. In our approach, the maximum entanglement that a state
can have is S=log,N, where N is the number of single-
particle states.

(ii) The DOE measure of Eq. (A9) is invariant under any
unitary transformation of the single-particle orbitals. Sup-
pose there is coefficient matrix w, a unitary transformation of
the single-particle basis leads to a new matrix o’ =UwU" and
o' 'w' =Uw'wU'. Obviously, this transformation would not
change the eigenvalues of wlw, i.e., would not change the
entanglement of the system.

(iii) The DOE of Eq. (A9) for two fermions reduces to
the usual DOE measure of Eq. (A4) for two distinguishable
particles in the cases of zero double occupation of same site
(while the DOE measure proposed by Paskauskas ef al.’ and
Li et al.*® does not). This can be shown as follows: since the
DOE of measure Eq. (A9) is basis independent, we can
choose a dot-localized basis set [which in the case here is the
top (7) and bottom (B) dots, Fig. 1(b)], such that the anti-
symmetric » matrix in the dot-localized basis has four

blocks,
N
Wrp — Wrp
w= s
wrp  Wpp

where wyr is the coefficient matrix of two electrons both
occupying the top dot, etc. If the double occupation is zero,
i.e., two electrons are always on different dots, we have ma-
trices wyp=wg=0. It is easy to show that w’w has two iden-
tical sets of eigenvalues ziz, each are the eigenvalues of
whrwgr. On the other hand, if we treat the two electrons as
distinguishable particles, and ignore the antisymmetrization
in the two-particle wave functions, we have pB=w;BwTB and
pr= w;TwBT. It is straightforward to show that in this case
Egs. (A9) and (A4) are equivalent.

(A10)

APPENDIX B: CONSTRUCTION OF DOT-CENTERED
ORBITALS

When we solve the single-particle Eq. (1) for the QDM,
we get a set of molecular orbitals. However, sometimes we
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need to discuss the physics in a dot-localized basis set. The
dot-localized orbitals y,, can be obtained from a unitary ro-
tation of molecular orbitals,

N
anzun,[lpi’ (Bl)
i=1
where i; is the ith molecular orbital, and ¢/ is a unitary
matrix, i.e., U/U=1. To obtain a set of well localized orbitals,
we require that the unitary matrix ¢/ maximizes the total
orbital self-Coulomb energy. The orbitals fulfilling the re-
quirement are approximately invariant under the changes due
to coupling between the dots.** For a given unitary matrix I/,
the Coulomb integrals in the rotated basis are
P77 — i ) i
L= 2 M’ﬂpi Z/[':}le' u’73sk u774sl rk,l’

73574
Tk

(B2)

where 1"}(/1 are the Coulomb integrals in the molecular basis.
Thus the total self-Coulomb energy for the orbitals {),} is

_ A/ * a ij
U= 2 T77=23 2 U, U Uy Uy, TV,
7 n ikl

(B3)

The procedure of finding the unitary matrix ¢/ that maxi-
mizes U, is similar to the procedure given in Ref. 46 where
the maximally localized Wannier functions for extended sys-
tems are constructed using a different criteria. Starting from
U=I1, we find a new U=1+ Je that increases U,. To keep the
new matrix unitary, we require e to be a small anti-
Hermitian matrix. It is easy to prove that
SU . . . .

Gij= 5, =T+ =Ty -T}

7,0

(B4)

and to verify that Gi,jz—G;i. By choosing &¢; ;=—€G, ;,
where € is a small real number, we always have (to the
first-order of approximation) AU,,= €|G|=0, i.e., the proce-
dure always increases the total self-Coulomb energy. To keep
the strict unitary character of the ¢/ matrices in the procedure,
the U matrices are actually updated as U — U exp(—€G), until
the localization is achieved.

'M. Pi, A. Emperador, M. Barranco, F. Garcias, K. Muraki, S.
Tarucha, and D. G. Austing, Phys. Rev. Lett. 87, 066801 (2001).

2M. Rontani, S. Amaha, K. Muraki, F. Manghi, E. Molinari, S.
Tarucha, and D. G. Austing, Phys. Rev. B 69, 085327 (2004).

3E R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L.
Campman, and A. C. Gossard, Phys. Rev. Lett. 75, 705 (1995).

M. Bayer, P. Hawrylak, K. Hinzer, S. Fatard, M. Korkusinski, Z.
R. Wasilewski, O. Stern, and A. Forchell, Science 291, 451
(2001).

5D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

6R. C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, S. J.
Pearton, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 68,
3088 (1992).

7A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der
Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett.

69, 1592 (1992).

8S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L.
P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996).

9G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59,
2070 (1999).

10H. Tamura, Physica B 249-251, 210 (1998).

C. Yannouleas and U. Landman, Phys. Rev. Lett. 82, 5325
(1999).

12X. Hu and S. DasSarma, Phys. Rev. A 61, 062301 (2000).

13S. Nagaraja, J. P. Leburton, and R. M. Martin, Phys. Rev. B 60,
8759 (1999).

14B. Partoens and F. M. Peeters, Phys. Rev. Lett. 84, 4433 (2000).

I5M. Rontani, F. Troiani, U. Hohenester, and E. Molinari, Solid
State Commun. 119, 309 (2001).

16C. Yannouleas and U. Landman, Eur. Phys. J. D 16, 373 (2001).

195307-11



HE, BESTER, AND ZUNGER

17C. Yannouleas and U. Landman, Int. J. Quantum Chem. 90, 699
(2002).

8W. A. Goddard, T. H. Dunning, W. J. Hunt, and P. J. Hay, Acc.
Chem. Res. 6, 368 (1973).

19D. Das (unpublished).

20T, Ota, M. Stopa, M. Rontani, T. Hatano, K. Yamada, S. Tarucha,
H. Song, Y. Nakata, T. Miyazawa, T. Ohshima, and N.
Yokoyama, Superlattices Microstruct. 34, 159 (2003).

2IT. Ota, K. Ono, M. Stopa, T. Hatano, S. Tarucha, H. Z. Song, Y.
Nakata, T. Miyazawa, T. Ohshima, and N. Yokoyama, Phys.
Rev. Lett. 93, 066801 (2004).

21, W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh,
Appl. Phys. Lett. 76, 339 (2000).

B G. Bester, J. Shumway, and A. Zunger, Phys. Rev. Lett. 93,
047401 (2004).

24L. He, G. Bester and A. Zunger, Phys. Rev. B 72, 081311(R)
(2005).

25P. N. Keating, Phys. Rev. 145, 637 (1966).

26]. L. Martins and A. Zunger, Phys. Rev. B 30, 6217 (1984).

27 A. J. Williamson, L.-W. Wang, and A. Zunger, Phys. Rev. B 62,
12963 (2000).

BL. He, G. Bester, and A. Zunger, Phys. Rev. B 70, 235316
(2004).

29L.-W. Wang and A. Zunger, Phys. Rev. B 59, 15806 (1999).

30 A. Franceschetti, H. Fu, L.-W. Wang, and A. Zunger, Phys. Rev.
B 60, 1819 (1999).

PHYSICAL REVIEW B 72, 195307 (2005)

3C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,
Phys. Rev. A 53, 2046 (1996).

M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
England, 2000).

33 A. Wehrl, Rev. Mod. Phys. 50, 221 (1978).

34C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Woot-
ters, Phys. Rev. A 54, 3824 (1996).

357, Schliemann, J. L. Cirac, M. Ku$, M. Lewenstein, and D. Loss,
Phys. Rev. A 64, 022303 (2001).

36R. Paskauskas and L. You, Phys. Rev. A 64, 042310 (2001).

37G. C. Ghirardi and L. Marinatto, Phys. Rev. A 70, 012109
(2004).

33H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91, 097902
(2003).

Y. S. Li, B. Zeng, X. S. Liu, and G. L. Long, Phys. Rev. A 64,
054302 (2001).

40p. Zanardi, Phys. Rev. A 65, 042101 (2002).

41Y. Shi, Phys. Rev. A 67, 024301 (2003).

42C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

43]. J. Palacios and P. Hawrylak, Phys. Rev. B 51, 1769 (1995).

4. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457
(1963).

45J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B 63,
085311 (2001).

46N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

195307-12



