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A first-principles nonlocal pseudopotential approach is shown for the first time to predict accu-

rately the ground-state bulk properties of a semiconductor. The calculated equilibrium lattice

constant, total valence energy, and bulk modulus of Si are within 0.2%, 0.5%, and 5%, respec-

tively, of the observed values.

I. INTRODUCTION

While many of the ground-state electronic proper-
ties of simple and transition-metal elemental solids
are quantitatively well understood within the local-
density formalism (DF), both in its all-electron
(AE)' and valence-only'3 (pseudopotential) versions,
similar nonempirical studies of the opened structure,
covalently bonded solids are scarce. ' For semicon-
ductors in particular, no self-consistent nonempirical
calculation of the ground-state properties exists. For
Si, empirical (local) pseudopotentials fitted to the
spectra of either solids6~' or bare ions6~b~ and used
successfully to predict the one-electron band struc-
ture of semiconductor surfaces, ' chemisorption, and
defects8 have so far yielded small equilbrium bond
lengths for the bulk solid ' and for the Si2
molecule. " Furthermore, these pseudopotentials
have produced systematic errors in the topology of
the ground-state charge density" (i.e., the elipsoidal
density contours in the bulk solid are perpendicular,
rather then parallel to the bond axis) as well as signi-
ficant deviations (70%) between the calculated' and
measured bulk modulus. Empirical tight-binding
methods can be parametrized to successfully predict
geometries at semiconductor surfaces' but fail in

predicting structural information even for the sim-
plest bulk solids. In this paper I show for the first
time that a self-consistent approach using a first-
principles density-functional (nonlocal) pseudopoten-
tial' predicts remarkably well the equilibrium lattice
constant a„, total valence energy E„„bulk modulus
B, and the ground-state charge density of bulk Si
(i.e., with errors of 0.2%, 0.5%, and 5% for a,~, E„„
and 8, respectively). The origin of the discrepancies
previously obtained with the empirical pseudopoten-
tials hence does not lie in the pseudopotential formal-
ism" or in the local-density formalism (used to
screen these potentials), but rather in the approach
adopted to construct the pseudopotentials.

In contrast with previous model pseudopotentials,
the present pseudopotential is derived from a well-
defined electronic-interaction model (the density-

functional formalism) rather then from an empirical
adjustment. The implications of this are: (i) one can
clearly assess the effects of a chosen representation of
exchange and correlation screening potential on the
ground-state properties and (ii) a contact is made
with the all-electron (i.e., treating core plus valence
wave functions on the same footing) theories which
are based on the same electronic interaction model:
at the limit where the underlying pseudopotential
frozen-core approximation is exact, the pseudopoten-
tial results should become identical with the AE
results. In contrast with the AE approach however,
the present method has the advantage of projecting
out from the total energy the large (98%) and struc-
turally insensitive part associated with the nearly inert
core electrons. Hence, while the cohesive energy of
crystalline Si, Ge, and Sn as a fraction of the total AF.

'

energy per atom is as small as 5.5 &10~, 6.2 x10 ',
and 1.7 x 10 ', respectively, the same cohesive ener-
gy expressed as a fraction of the total pseudopotential
energy per atom is 4 x10, 3.4 &10 ', and 3.2 x10 ',
respectively. This increase by two to three orders of
magnitudes in the relative energies, coupled with the
high precision demonstrated here in calculating the
pseudopotential total energy makes it hopeful that
the present approach may come close to predicting
quantitatively structural energies of complex systems
as well as revealing systematic trends in physical and
chemical ground-state properties of classes of solids.

II. METHODOLOGY AND RESULTS

The first-principles pseudopotentials are derived
from a density-functional (DF) formulation of a

pseudoatom interacting with an external potential
Vt(r)." A variational procedure which includes a
number of Lagrange-multiplier constraints designed
to produce a relation between the spectral properties
and charge density of the pseudoatom and the real
atom is used to solve for the nonlocal pseudopoten-
tial VI(r) "This potential .differs from the empirical
potentials V, p(r) used extensively in the literature
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(e.g. , Ref. 7 and references therein) in that (cf. Fig.
1) VI(r) (i) is angularly nonlocal, reflecting the re-
strictions imposed by the Pauli principle, (ii) it as-
sumes its asymptotic value of —4lr faster than

V, ,(r), and (iii) it is significantly "stronger" than

the empirical potentials. These high-momentum (q)
transfer components of VI(q) which are absent in

V, ,(q) are a direct consequence of the imposition of
a minimum pseudowave-function core-amplitude
condition and the "maximum-similarity" constraint
between the "true" and the pseudo wave functions, in

the chemically important valence region. " The latter
condition assures that the chemical information in-

cluded in the tail part of the "true" atomic valence
wave functions is contained in the pseudo wave func-
tions. The former conditions (cf. minimization of
the pseudopotential energy dependence) acts to in-

crease the likelihood that this continues to be a good
approximation even if VI(r) replaces the effect of the
same core in systems other than the atom (e.g. ,
molecule, solid, etc.).

A central point in deriving our pseudopotential is

that we first construct a pseudo eave function which
has certain imposed relations to the "true" all-electron
valence wave function and then we solve for the
pseudopotential which when screened self-consis-
tently, will produce these wave functions as ground-
state eigenstates with energy eigenvalues which equal
those obtained in the full all-electron calculation. In
contrast, the empirical as well as semiempirical pseu-
dopotential approaches assume a parametric anzatz
form for the pseudopotential and vary its parameters
to obtain agreement with certain experimental data,

leaving the pseudo wave functions to be largely deter-
mined implicitly by such an energy-fitting procedure.

Our pseudo wave functions {X„l(r) I are represent-
ed as a sum of core and valence orbitals of the all-

electron density-function problem (P„'(r) ) plus a
wave-function component f„I(r) which lies outside
the core plus valence DF orbital space. ' ' ' For Si
we obtain

X3,(r) C~, p', (r)+Cq, $2, (r)+$3, (r)+A3, r e

X3y(r) = Ctpgte(r) + y3e(/) +A3er e

X'u(r) = yw(r)

The coefficients I C„I.A„I. ul j are determined such
that: (i) the pseudo wave functions are normalized,
monotonic, and nodeless; (ii) the pseudo wave func-
tions have a minimum core amplitude with

X„l(0)= X„'1(0)= X„'l(0) =0; (iii) there is a maximum
similarity between the "true" all-electron valence
wave functions and the pseudo wave functions [i.e. ,
X3, and Q3, ), (X3' and P3~), and (X3q and P3g)]
starting from I' -~ and going inwards to the smallest
r =R, value possible under constraints (i) and (ii).
As there are no core states of I -2 symmetry in Si,
the all electron wave funtion $3q(r) satisfies condi-
tion (i) and hence X3/(f) = $3/(r).

The coefficients (C„I,A„I, a') are given in Table I
2

where the exchange parameter 0.'=
3

and the elec-

tronic configuration j, s 2s 2p 3s'3p' 3d . was used
in solving the all-electron problem for (P„'I. Our
pseudo wave functions are identical to the "true" all-

electron wave functions asymptotically at large r,

lO

~5 0

R*~

~ ~~e

I -0.8
0.6
0.4"IQ
0.0
-02 o
-0.4 O

TABLE I ~ Coefficients of the pseudo wave functions in

Eq. (1), in atomic units. The all-electron orbitals p«(r) are
obtained from a density-functional solution with the config-
uration ls 2s 2p 3si3p 3d and exchange coefficient

2a 3. The orbital energies of the pseudo- as we11 as all-

electron eigenvalue problem are: ~3, = —0.48805 a.u. ,
—0.22987 a.u. , and ~3~ -—0,007324 a.u. The crossing

points Vpg(RI) -0 of the bare pseudopotential, including the
centrifugal term l(l + I )/2r are: R, 0.6847, Rz -0.6679,
and R& 0.5342 a.u. The total energy of the pseudoatom,
solved self-consistently in the 3s'3p 3d configuration is
—3.244726 a.u. Not that &3g(r) is positive while $3p(r) is
negative.

1.0 2.0 3.0 4Q
Distance {a.u. i

FIG. 1. Empirical local potential l emp [Ref. 6(a)) and the
first-principles nonlocal potentials VI. Also shown are the
all-electron 3s orbital XAE(r) ( ) and the pseudo-orbitals
obtained with the empirical (———) and first-principles
( ) pseudopotentials [X,m (r) and XFp(r), respectively].

3s orbital

Ci& =0.011 202 772

C2, -—0.339808 307

A3, - -4.711926
a, -3.85

3p orbital

C2p = —0.252 506008
A 3p 4.257 435

ap -4.2
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have a charge accumulation function
R

Q "(/I) - J) lx„&l'dr,

which equals the all-electron one
R

Q„AE«}=JI le&I»

from R = ~ to a point inwards of the last maxima of
&I&. &( r) (and hence both sets of wave functions pro-

duce an identical electrostatic field in this region). In
addition, the low core amplitude of X„&(r}ensures a
low-energy dependence (and hence high transferabili-
ty) of the resulting nonlocal pseudopotentials. '4

As seen in Fig. 1, the empirical pseudopotential
V, , produces "' in the atom a significant charge
density in the core region at the expense of reducing
it in the valence region. When applied to crystalline
Si, or to the Si2 molecule, V, , leads to a bond
charge which is substantially different from either the
experimental result or the full all-electron calcula-
tion. " W'e find that this reduction in the valence
charge density leads to a lowering of the interelec-
tronic Coulomb repulsion energy. Coupled with the
over attractiveness of the non-Coulombic part of
V, , at the bond center (cf. Fig. I), this leads to an
anomalously small equilibrium lattice constant [e.g. ,
4.7 (Ref. 9)—5.3 (Ref 10) A . instead of the observed
value 5.43 A]. In the case of the empirical potential
of Ref. 6(a), this effect also yields an overly attrac-
tive total valence energy [e.g. , about —8.42 Ry/atom
(Ref. 9) relative to the observed value of —7.9
Ry/atom]. The empirical potential of Ref. 6(b) being
somewhat less attractive at the bond center, was
shown' to yield the correct valence energy. Similar
conclusions are born out by the comparison of the
empirical pseudopotential and the all-electron
density-functional results for Si2."

In the present approach we use the density-
functional pseudopotential VI(r) to solve self-
consistently for the Si band structure as a function of
the lattice parameter and to compute the total
ground-state energy. In a recent calculation, ' the
present Si first-principles pseudopotential was shown
to reproduce the all-electron DF self-consistent bulk
band structure to within an average deviation of 0.06
eV/state over an energy range of 20 eV.

The effective potential we use is a screened nonlo-
cal pseudopotential

V,&r (p(r )) - X X V&(r —R„—r, r' —R„—r )

+ Vc„&(p( r ))+ V„(p( r )) + V, (p( r ))
(2)

where the first term is the total bare pseudopotential
(we include here I -0, 1, and 2 and sum the atomic
potential V&(r) over the unit cells at R„and sites at

&I&~(k, r ) XA/& (k)&p&, (&&:&, k, r )

y X g&(k+G)r«k+o) r (3)
G

This allo~s for an efficiently converged representa-
tion of both the localized pieces of the covalent
charge density (via the first term) and the extended
"free-electron-like" parts (via the second term). The
coefficients A~k (k) and 8»(k +G) are determined
by a linear variation while the exponents (~ for I 0
and 1 are chosen by a nonlinear variation on the total
energy at each lattice parameter (e.g. , g, = g~ -1.5
a.u. 2 for a 5.43 A).

The total energy per cell is calculated in a
momentum-space representation" from the DF ex-
pression.

E„, X N/(k)a/(k) — X Vcgg&(G) p(G)
J, k

20 G~o

X V.(G)p(G)
6~0

+ ~ $ [g (G) —V„„(G)]p(G)
G 0

+ XZ,F (G -0) + E;; (4)

Here N&(k) and a&(k) are the band occupation
numbers and energies, respectively; e„„is the homo-
geneous correlation energy per particle", F (G-0)
is the zero-momentum limit of the non-Coulombic
part of the local pseudopotential (chosen here as the
l -0 component), E;; is the Ewald ion-ion energy,
and Z, 0, are, respectively, the o,th site valence
charge (Z 4 for Si} and unit-cell volume. The
Fourier components of the Coulomb, exchange, and
correlation potentials and the correlation energy are
indicated by Vc,„&(G), V„(G), V„„(G),and
e„„(G),respectively. The self-consistent iterative
procedure is carried to a consistency of 10 ' Ry in
the potential and the Brillouin-zone integration is re-
placed by 10 special k points. The plane-wave ex-
pansion in Eq. (3) is carried to an energy cutoff of 16
Ry (i.e. , 283 plane waves as I'). Higher-momentum
components are represented by the Gaussian Bloch
functions. The charge density and potential include
waves up to an energy of 60 Ry. The internal preci-
sion of the total energy is 10~ Ry. Within the

r ], and Vc«&, V„(with an exchange coefficient of
a -

» ), and V„„are the interelectronic Coulomb,
2

exchange, and correlation' screening due to the
pseudocharge density p( r ). The single-particle equa-
tion with the potential V,rr ( r ) is solved self-
consistently by expanding the wave functions of band

j and wave vector k in a mixed representation' of
Gaussian Bloch functions &p&, ((&, r, k ) (with ex-
ponents g& and site index a) and plane waves
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underlying density-functional pseudopotential ap-

proach, the only approximation made in our present
method is the truncation of basis sets and reciprocal
vectors sums to finite values. This, in turn, is a con-

trolled approximation.
The components of the self-consistent potential

[Eq. (2)1 in Si at the equilibrium lattice constant are
depicted in Fig. 2. The exchange potential is seen to
effectively screen the Coulomb repulsion whereas the
correlation potential is almost an order of magnitude
weaker. The Coulomb and exchange screening are
strongly structured and nonuniform, while the corre-
lation screening is nearly uniform. We find that the
characteristic bond-elongated form of the screening is

lost when the high-momentum components of the
pseudopotential are ignored [viz. in using V, ,(r) l.
Instead, one obtains an ellipsoidal screening which

has its long axis perpendicular to the Si—Si bond.
This leads to forces that tend to push the atoms too
close together.

The self-consistent pseudocharge density p(r ) is

compared with the experimentally synthesized
valence density in Fig. 3. The details as well as the
magnitude of the charge are well reproduced. Table
II shows the experimental x-ray structure factors of
Si (corrected for the Debye-Wailer factor and
anomalous dispersion ') and the results calculated by

numerically Fourier transforming the density ob-

FIG. 2. Components of the self-consistent crystal poten-
tial of Si (in Ry) in the (110) plane. V«„[( r ), Vpgo~ ( r ),
V„( r ), and Vgoff( r ) are the interelectronic Coulomb and
local pseudopotentials (both ~ith the exclusion of the diver-
gent G -0 term), the exchange and correlation potentials,
respectively. The zero of «„[(r ) is set at 0.0.

FIG. 3. Experimental (Ref. 20) and calculated valence
charge density in the (110) plane of Si (in units of electron
per cell).
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TABLE II ~ Experimental (Ref. 21 ) and calculated x-ray
structure factors for Si in units of electrons per crystallo-
graphic unit.

Expt. Present Atomic
) hk/] Ref. 21{b) Ref. 21(a) results superposition

111
220
311
222
400
331
422
333
511
440

10.70
8.48
7.77
0.17
7.08
6.81
6.21
5.87
5.88
7.65

11.12
8.78
8.05
0.22
7.40
7.32
6.72
6.43
6.40
6.04

10./0
8.57
7.79
0.19
7.35
7.03
6.65
6.31
6.35
6.00

10.52
8.70
8.15
0.0
7.47
7.14
6.65
6.39
6.39
6.03

TABLE III. Observed (Ref. 22) and calculated equilibri-

um lattice constant a~, total valence energy Etp) per atom
and bulk modulus B for Si.

a (A) Etpt (Ry B(1012dyn/cm )

Observed
Calc.

5.43
5.44

—7.919
—7.959

0,99
0.94

tained from core orthogonalizing the pseudowave
functions. W'hile both the OPW calculation" and a
superposition of atomic charge densities show signifi-
cant errors, the present approach reproduces these
quantities rather well.

Table III shows the experimental" and calculated
equilibrium lattice constant, total valence energy (ob-
tained experimentally as the sum of atomic ionization
energy and the cohesive energy), and bulk modulus
of Si. The agreement is seen to be very good. The
close agreement with the observed bulk modulus
(i.e., 5'yo too small) may be furtuitous as the quantity
is extremely sensitive to small numerical inaccuracies.

I conclude that the first-principles density-
functional pseudopotential approach yields an excel-
lent representation of the semiconductor ground-state
properties and that previous discrepancies ' result
from the methods used to construct pseudopotentials.

In previous studies we have introduced a r-space
method for calculating the total energy of solids in
the density-functional approach. Applications to dia-
mond, cubic BN and LiF' showed very good
results. The present q-space approach should be
more efficient when compounds formed from atoms
heavier than those appearing in the first row are con-

sidered, as our first-principles pseudopotentials elim-
inate the core electrons and reflect at the same time
an accuracy comparable to that of the all-electron DF
treatment.

An interesting issue is the relation between the cal-
culated cohesive properties and the degree of repul-
siveness of the core pseudopotential. Given the
differences in the ground-state valence charge density
obtained with the soft-core pseudopotential of Ref. 6
(see Ref. 12) and with the present hard-core pseudo-
potential, one may ask whether one could construct a
better soft-core pseudopotential that will produce an
accurate description of the cohesive properties.

Consider the amount of charge Q~(R) of angular
symmetry I which is enclosed between an atomic ori-
gin and a distance R. In the present DF pseudopo-
tential approach the core charge Q~(R, ) (where R, is

some core radius) is determined by the condition that
pseudo wave function X(r) be equal to the all-electron
valence wave function P(r) from r oo to the small-
est value r R, possible under the constraint that
X(r) be nodeless, monotonic, and expressible as a

linear combination of the density functional basis
[Eq. (1)]. Once this "maximum similarity" criteria
between X(r) and p(r) is established outside the
core, the pseudo wave function X(r) is anchored to
the atomic site at r -0 by requiring X(0) X'(0)
X"(0) 0. This allows one to extend the spatial
domain of wave function similarity (between r -~
and r -R, ) closer to the core. At the same time this
produces a hard-core pseudopotential (i.e.,
lim, a irl(r) Ai/r', At )0) with its attendant low-

energy dependence (i.e., the origin dependence of the
wave function is unchanged to within a good approxi-
mation by bonding forces in chemical environments
which are different from the one used for construct-
ing the pseudopotential).

If one now imagines a process in which the pseu-
dopotential is made gradually softer in the core re-
gion [for instance, by mixing in Eq. (1) more core
orbital character than the minimum amount needed
to obtain a nodeless and monotomic pseudo wave
function], the pseudo wave functions will increase
their penetration into the core region, increasing

thereby QI(R, ). As Jt Q~(R) dR is normalized,
such a transfer of charge is accompanied by a de-
crease in the bond charge. In the soft-core pseudo-
potential of Ref. 6 the increase in the core charge is
accomplished by peaking the wave functions at the
bond center and deleting charge density between the
bond center and the core region (ef. Ref. 12). As in-

dicated above, this results in a small equilibrium lat-
tice parameter for bulk Si. Note that shifting Q~(R, )
into the core lowers the (negative) core attraction
contribution X, (X;~ V, ~X, ) to the total energy while

peaking the charge density at the bond center in-
creases the (positive) intereleetronic Coulomb repul-
sion. It is hence likely that one could design a soft-
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core pseudopotential with a "degree of softness"
which will shift just enough charge 0 into the core
region to produce a desired balance between the op-
posing contributions to the total energy, at the ob-
served lattice parameter. This could conceivably be
achieved through the device of controlling the core
orbital overmixture in the formulation of Eq. (1)
(i.e.~ adjusting Ct„C2„C2~), or in other pro-
cedure' by empirically adjusting the position Rl
where the "true" orbital P„'(r) matches the pseudo-
orbital X„'(r) It. will then be of interest to find if
this total energy is physically accurate away from the
equilibrium position (e.g. , the bulk modulus and elas-
tic constants), and if the pseudopotential used is
transferable to other systems. In the present DF
pseudopotential appoach we avoid such empirical ad-
justments altogether by taking the extreme limit of
hard-core pseudopotentials where the pseudocharge

density resembles the all-electron valence charge den-
sity over the largest spacial domain possible.

Finally, I note that although the density-functional
description of exchange and correlation efffects pro-
duces an accurate representation of the ground-state
properties, it does not permit the identification of the
associated energy eigenvalues (i.e., band structure)
with the actual electronic elementary excitations in

the system. Hence, for example, while both AE and
the pseudopotential band structure predict a
minimum energy gap of 0.6 eV for Si, ' the observed
threshold for electronic excitation is almost twice as
high. It would seem that one of the more acute
problems of contemporary electronic structure theory
still lies in identifying simple formulations for the ef-
fective potential which will produce physically mean-
ingful single-particle energies without sacrificing the
accuracy of the calculated ground-state properties.
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