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The efficiency of CuInSe2 based solar cell devices could improve significantly if CuGaSe2, a wider band gap
chalcopyrite semiconductor, could be added to the CuInSe2 absorber layer. This is, however, limited by the
difficulty of doping n-type CuGaSe2 and, hence, in its alloys with CuInSe2. Indeed, wider-gap members of
semiconductor series are often more difficult to dope than lower-gap members of the same series. We find that
in chalcopyrites, there are three critical values of the Fermi energy EF that control n-type doping: �i� EF

n,pin is
the value of EF where the energy to form Cu vacancies is zero. At this point, the spontaneously formed
vacancies �=acceptors� kill all electrons. �ii� EF

n,comp is the value of EF where the energy to form a Cu vacancy
equals the energy to form an n-type dopant, e.g., CdCu. �iii� EF

n,site is the value of EF where the formation of
Cd-on-In is equal to the formation of Cd-on-Cu. For good n-type doping, EF

n,pin, EF
n,comp, and EF

n,site need to be
as high as possible in the gap. We find that these quantities are higher in the gap in CuInSe2 than in CuGaSe2,
so the latter is difficult to dope n-type. In this work, we calculate all three critical Fermi energies and study
theoretically the best growth condition for n-type CuInSe2 and CuGaSe2 with possible cation and anion doping.
We find that the intrinsic defects such as VCu and InCu or GaCu play significant roles in doping in both
chalcopyrites. For group-II cation �Cd, Zn, or Mg� doping, the best n-type growth condition is In/Ga-rich, and
maximal Se-poor, which is also the optimal condition for stabilizing the intrinsic InCu/GaCu donors. Bulk
CuInSe2 can be doped at equilibrium n-type, but bulk CuGaSe2 cannot be due to the low formation energy of
intrinsic Cu-vacancy. For halogen anion doping, the best n-type materials growth is still under In/Ga-rich, and
maximal Se-poor conditions. These conditions are not best for halogen substitutional defects, but are optimal
for intrinsic InCu/GaCu donors. Again, CuGaSe2 cannot be doped n-type by halogen doping, while CuInSe2

can.
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I. INTRODUCTION: THE NEED FOR n-TYPE DOPING IN
CHALCOPYRITES

Whereas solar cells based on high-cost, vapor-phase epi-
taxial growth of single-crystal III-V semiconductors such as
GaInP2/GaAs have high efficiencies ��32% �Ref. 1��, far
less costly solar cells can also be made from simpler growth
techniques of CuInSe2 semiconductors, reaching neverthe-
less efficiencies approaching 20%.2 An important factor that
makes such thin-film CuInSe2 solar cell efficient is that its
surface can be type-inverted to become n-type even though
the bulk of the sample is p-type. This is done via deposition
of CdS �Refs. 3,4� or ZnS �Ref. 5� or doping in Cd2+ elec-
trolyte solution.6 This leads to band bending. The amount of
band bending equals the shift in the Fermi level with respect
to the valence band maximum �VBM� from the p-type to the
n-type region. A Fermi level close to the conduction band
minimum �CBM�, which is needed get the larger band bend-
ing, implies, n-type conditions at the same time. Thus, both
band bending and type inversion are consequences of a com-
mon cause, i.e., the increase in EF at the junction, and are
intrinsically tied to each other. To further increase the effi-
ciency, wider band gap materials must be added to the ab-
sorber layer. The primary candidate is to add CuGaSe2
�“CGS,” band gap Eg=1.68 eV� to CuInSe2 �“CIS,” Eg
=1.04 eV at room temperature�. Unfortunately, as one ap-
plies to CuGaSe2 the same process that would convert
CuInSe2 to n-type �deposition of CdS or ZnS�, the Fermi
level does not rise towards the CBM. As we will show here,
in both CIS and CGS, the formation energy �H�VCu

− � of the

Cu vacancy is lowered as EF moves towards the CBM. Once
EF crosses a point EF

n,pin where �H�VCu
− ��0, Cu atoms leave

the lattice spontaneously. Since such Cu vacancies are accep-
tors which capture free electrons, once EF=EF

n,pin the Fermi
level can no longer rise towards the CBM. The question is
then why in CIS, treatment by n-type dopants does move the
EF towards the CBM, but similar treatment does not have
this effect in CGS. In other words, how different is EF

n,pin in
CIS vs CGS. The inability to shift EF upwards in CGS poses
a severe limitation on making solar cells that contain a wide-
gap CGS layer, or a Ga-rich CuIn1−xGaxSe2 alloy layer. In-
deed, considering a series of compounds with decreasing
band gaps such as AlN→GaN→ InN or C→Si→Ge, it is
often difficult to n-type dope the member with the wider gap.
In this paper we enquire theoretically, using first-principles
methods, what are the reasons that divalent cation dopants
such as Mg, Zn, and Cd or anion-site dopants such as Cl, Br,
I, do not type-convert CGS, while they do type-convert CIS.
We also provide an Appendix describing a practical scheme
on how state-of-the-art defect calculations can be done. We
conclude that n-type doping of CuGaSe2 is impossible under
equilibrium conditions, but could be possible if one could
prevent Cu outdiffusion at high EF via nonequilibrium ef-
fects.

II. GENERAL PHYSICS OF DEFECTS FORMATION
ENERGIES

A. Dependence on EF and �, and the “Doping Rules”

Formation of defects can be viewed as a process in which
a certain number of atoms and electrons are exchanged be-
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tween the host material and some atomic and electronic
reservoirs.7 Thus, the formation energy for a defect compris-
ing of atoms � in the charge state q can be computed using
the expression8,9

�HD,q�EF,�� = �ED,q − EH� + �
�

n��� + q�Ev + EF� . �1�

In the first term, ED,q and EH are the total energies of a solid
with and without defect D, respectively. The second term of
Eq. �1� represents the energy change due to exchange of
atoms with the chemical reservoirs. �� is the absolute value
of the chemical potential of atom �, and n� is the number of
such defect atoms; n�=−1 if an atom is added, while n�=1 if
an atom is removed. For example, the energy �HD,q�EF ,��
to introduce a D=VCu �Cu vacancy� is higher the greater is
the Cu chemical potential �Cu, since the Cu atom ejected
from the solid upon forming VCu must join the Cu reservoir
whose energy is �Cu. The third term in Eq. �1� represents the
energy change due to exchange of electrons and holes with
the carrier reservoirs. Ev represents the energy at the VBM of
the defect free system, i.e., the energy to remove an electron
from the VBM to Fermi reservoir, or to insert an electron
from the Fermi reservoir. EF is the Fermi energy relative to
the Ev. In a non-degenerate semiconductor, EF is bound be-
tween Ev and the CBM, Ec. One can qualitatively understand
the �Ev+EF� dependence of �HD,q�EF ,�� in Eq. �1� as fol-
lows: The energy needed to form a positively-charged defect
�donors� increase the higher is EF in the gap, because the
electron ejected upon forming the positive defect must join
the electron reservoir whose energy is EF. Conversely, the
energy needed to form negatively-charged defects �accep-
tors� is smaller the higher is EF in the band gap.

Since the defect formation energies are conventionally de-
fined with respect to the chemical potential of the elemental
solid�s�, we express �� as ��=��

solid+���. Equation �1� can
thus be rewritten as

�HD,q�EF,�� = �ED,q − EH� + �
�

n����� + ��
solid�

+ q�Ev + EF� . �2�

The relevance of Eq. �2� to doping is that the equilibrium
concentration of defect D in charge state q depends on the
Boltzmann factor exp�−�HD,q�EF ,�� /kT�. Thus, all other
things being equal, positively charged defects �electron-
producing donors� have higher concentration in p-type envi-
ronment �EF near Ev�, whereas negatively charged defects
�hole-producing acceptors� have higher concentration in
n-type environment �EF near Ec�. Furthermore, cation-
substituting impurities have higher concentrations under
cation-poor growth condition ���cation most negative�,
whereas anion-substituting impurities have higher concentra-
tions under anion-poor growth conditions ���anion most
negative�.

These considerations can be summarized in the form of
“doping rules”10 for n-type chalcopyrite shown in Fig. 1.
These rules determine which growth conditions, according to
Eq. �2� minimize the formation energies �H of wanted de-

fects, and maximize �H of unwanted defects. We illustrate in
the following these rules �Fig. 1 exemplified for Cd doping
in CIS�:

�1� Solubility: Maximal incorporation of Cd into the CIS
lattice requires lowering �H�CdCu�. This means, according
to Eq. �2�, Cu-poor �i.e., low ��Cu� and dopant-rich �i.e.,
maximal ��Cd� growth conditions.

�2� Competing phases: The formation of unwanted
dopant-host compounds, such as CdSe, lowers ��dopant by
consuming Cd. To maintain maximal ��dopant needed in
Rule �1�, one needs to maintain host-anion poor �i.e., low
��Se, i.e., host-cation rich� growth conditions.

�3� Killer defects: The Cu vacancy VCu
− is an acceptor,

which compensates the intended donor doping. By Eq. �2�,
its formation energy �H�VCu

− � is lowered as the Fermi energy
rises in the band gap toward Ec. We define a special Fermi
energy EF

n,pin, as the value where �H�VCu
− ;EF�=0. At this

point any further donor doping is compensated by the spon-
taneous formation of VCu

− . For successful doping, EF
n,pin needs

to be as high as possible in the gap. This requirement of
minimizing the concentration of VCu requires Cu-rich growth
conditions ���Cu=0�.

�4� Assisting defects: The antisite InCu
++ or GaCu

++ is a
�double� donor which, when formed, ejects electrons, thus
assists the intended n-type doping. By Eq. �2�, its formation
energy �H�InCu

++� is lowered as the Fermi energy moves
down in the gap towards Ev. At the Fermi energy EF

n,comp we
have �H�VCu

− ;EF�=�H�InCu
++ ;EF� at which point the intrinsic

donors compensate the intrinsic acceptors. For successful
n-type doping, EF

n,comp needs to be as high as possible in the
gap. This requires In-rich conditions, i.e., high ��In.

�5� Wrong-site substitution: n-type doping by divalent
cation requires Cd-on-Cu substitution �a donor�, i.e., low
�H�CdCu

+ ;EF�, but is hampered by Cd-on-In substitution �an
acceptor�, i.e., by low �H�CdIn

− ;EF�. The Fermi level de-
noted by EF

n,site is the point where �H�CdCu
+ �=�H�CdIn

− �. For
successful n-type doping, EF

n,site needs to be as high as pos-

FIG. 1. n-type doping rules for CIS and CGS. The terms “anion”
and “cation” refer to the host atoms, i.e., Cu, In, Ga, and Se.
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sible in the gap. This requires Cu-poor and In-rich �Se-poor�
conditions.

In order to study the limitations of n-type doping, we first
determine the optimum growth conditions for n-type doping
in CIS and CGS. We note that, considering an extended
range of chemical potentials, Rules �1�–�5� impose intrinsi-
cally conflicting requirements, e.g., the Cu-rich conditions
required by Rule �3� conflict with Rules �1�, �4�, and �5� in
case of Cd doping. However, only a limited range of chemi-
cal potentials of the host atoms is allowed thermodynami-
cally. We therefore must establish next the thermodynamic
limit on ��Cu, ��In/Ga, and ��Se, and examine then if Rules
�1�–�5� of Fig. 1 can be accommodated with no conflicts
within the limited, allowed range of ���	.

B. Restrictions posed by equilibrium chemical potentials

The chemical potentials �� are bound by the values that
maintain a stable host compound, and avoid formation of all
other competing phase �including their elemental solids�. We
will formulate these conditions in four steps. The procedure
is based on equilibrium conditions for the crystal growth.
When a nonequilibrium process is proposed, some constrains
should be re-evaluated.

�i� The atomic chemical potential should be smaller than
that of the corresponding elemental solid to avoid precipita-
tion of the latter. That is:

��Cu � 0; ��In,Ga � 0; ��Se � 0; �3�

or

�Cu � �Cu
solid; �In,Ga � �In,Ga

solid ; �Se � �Se
solid. �4�

The point ��=��
solid, corresponds to a “maximum �-rich

condition,” i.e., the chemical potential of � is equilibrium
with elemental � solids.

�ii� To maintain a stable compound the sum of chemical
potentials of its constituent atoms must equal the heat of
formation of the compound. That is

��Cu + ��In,Ga + 2��Se = �H�Cu�In,Ga�Se2�; �5�

or

�Cu + �In,Ga + 2�Se = �H�Cu�In,Ga�Se2� + �Cu
solid

+ �In,Ga
solid + 2�Se

solid. �6�

�iii� The chemical potentials are further restricted by re-
quiring that, other possible competing phases with Cu,
�In,Ga�, and Se do not form. For example, if Cu and Se
forms CumSen naturally, the following condition is applied:

m��Cu + n��Se � �H�CumSen� . �7�

The higher the number of conditions one adds to avoid com-
peting phases, the more realistic is the region of the atomic
potentials. For CIS we consider as competing phases InSe
�having mP8 structure in Pearson’s symbol�, Cu3Se2 �the
tP10 structure�, and CuIn5Se8 �type D in Ref. 10�, while
for CGS we consider GaSe �the hP8 structure�, Cu3Se2,
and CuGa5Se8 �same structure as CuIn5Se8�. All of these
formation enthalpies are calculated theoretically using
LDA, as described in Sec. III.

�iv� Additional constrains are posed by the possibility of
forming compounds between the dopant atoms and the host
atoms. We thus require for halogen doping �exemplified by
Cl� in CIS

��In + ��Cl � �H�InCl� , �8�

��Cu + ��Cl � �H�CuCl� , �9�

whereas for divalent doping �exemplified by Cd� in CIS we
require:

��Cd + ��Se � �H�CdSe� . �10�

��Cd + 2��In + 4��Se � �H�CdIn2Se4�

For CGS we have analogous conditions for Ga2Cl6, CuCl,
CdSe, and CdGa2Se4. The structure assumed in calculating
their �H values are InCl �red crystal phase, see Ref. 11�;
CuCl �zinc-blende�; CdSe �zinc-blende�; CdIn2Se4
�pseudocubic�; CdGa4Se4 �tetragonal�; Ga2Cl6 �gas
phase12�.

Figures 2�a� and 2�b� show the computed chemical poten-
tial domains for CIS and CGS resulting from conditions �i�–
�iii�. The shaded areas are the allowed chemical potential
ranges for the chalcopyrites. In the white regions, the chal-
copyrites are unstable with respect to the competing phases
shown in the figures. For example, the white area at the
bottom right corner of Fig. 2�a� are excluded due to the pre-
cipitation of Cu2Se3, CuSe, and Cu2Se. The white areas on
the left are excluded due to the formation of III-Se
compounds13 and the ordered defect structures.

C. Selecting optimal growth conditions: Cd, Zn, Mg, in CIS
and CGS

Having calculated the allowed regions of ��Cu;
�In/Ga; �Se	, we are now in a position to select points in this
plane of Fig. 2 that represent the best compromise with the
“doping rules” of Fig. 1. Taking into account these restric-
tions, Fig. 3 shows for CIS the dependence of the defect
formation energies on the growth conditions described by
��Cu and ��In �the dependence on ��Se is implicitly con-
tained via Eq. �5��. We see that maximally Se-poor condi-
tions �denoted “point N” in Fig. 3�, fulfill the following re-
quirements in case of Cd-doping: �1� Fig. 3�a� shows that
�H�CdCu� is minimal at “point N” �as required by Rule �1�
of maximal solubility of CdCu�; �2� Fig. 3�c� shows that
�H�VCu� is maximal at “point N” �as required by Rule �3��;
�3� Fig. 3�d� shows that �H�InCu� is minimal at “point N” �as
required by Rule �4��; An analogous argument can be made
for CGS. Thus, these Se-poor conditions satisfy the doping
Rules �1�–�4�, and resolve most of the conflicts indicated by
Fig. 1. The “point N” conditions are defined by the chemical
potentials listed in Table I. The corresponding maximal
chemical potentials of Mg and Zn at “point N” are
−1.40 eV,−0.45 eV for CIS, and −1.37 eV,−0.42 eV for
CGS, as collected in Table I. According to Rule �1�, we used
Fig. 3 the maximal Cd chemical potential allowed by Eqs.
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�10�. Thus ��Cd is limited by formation of CdSe for Cu-rich
conditions �right part of the allowed range, e.g., ��Cu=0�,
and by formation of CdIn2Se4 for more Cu-poor conditions
�left part of the allowed range�. This leads to the “kinks” in
the contour plots of Figs. 3�a� and 3�e�. We see in 3�e� that
the maximal �H�CdIn� required by Rule �5� is obtained at
“point Q”, which conflicts with Rules �1�, �3�, and �4� requir-
ing “point N” growth conditions. However, using the maxi-
mal Cd chemical potential leads to undesirably high Cd in-
corporation �cp. Sec. IV� in either case, e.g., the formation of
CdSe-CuInSe2 solid solutions, at point N. Thus, we use be-

low a reduced value for ��Cd, which yields defect concen-
trations more suitable for the purpose of doping. Experimen-
tally, such a reduction of ��Cd may be obtained by supplying
only a limited amount of Cd. Due to the choice of a reduced
��Cd for the extrinsic dopand Cd, the optimal growth con-
ditions are now governed by the Rules �3� and �4�, which
concern the intrinsic defects. According to these rules, we
find that “ point N” growth conditions, i.e, Cu-rich, In-rich,
and Se-poor, constitute the optimal choice for n-type doping
with divalent atoms. Thus we regard only these growth con-
ditions for Cd-doping in the following.

FIG. 2. The allowed chemical potential domains �shaded area�
for �a� CIS and �b� CGS, shown in the ���Cu,��III� plane. The
white regions are areas which are excluded due to the formation of
competing phases specified in the figures.

FIG. 3. �Color online� Contour plot of the defect formation en-
ergies �H in CIS, illustrating the dependence on chemical poten-
tials ��Cu and ��In �dependence on ��Se is implicit�. Dark shad-
ing corresponds to low �H �high concentration�, light shading to
high �H �low concentration�. The contour spacing corresponds to
0.1 eV. the ideal choices, according to the rules of Fig. 1 are: �a�
Minimize �H�CdCu� for Cd-doping �Rule �1��. �b� Minimize
�H�ClSe� for Cl-doping �Rule �1��. �c� Maximize �H�VCu� �Rule
�3��. �d� Minimize �H�InCu� �Rule �4��. �e� Maximize �H�CdIn�
�Rule �5��.
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D. Selecting optimal growth conditions for Cl, Br, I in CIS
and CGS

In the case of anion-site doping, some of the conflicting
requirements noted in Fig. 1 do remain, even if we consider
the restricted chemical potential range. Figure 3�b� shows the
contour plot for �H�ClSe�, where ��Se is maximized as far
as allowed by Eqs. �8� and �9�. Comparing Figs. 3�b�–3�d�,
we see that minimal �H�ClSe� required by Rule �1� is ob-
tained at “point P,” but maximal �H�VCu� and minimal
�H�InCu�, as required by Rules �3� and �4�, are both fulfilled
only at point N. We thus decided to use two different growth
conditions. Under the first strategy �“point P”� we will maxi-
mize the concentration of halogen, thus following Rule �1�.
This is consistent with Rules �2� and �3�, but conflicts with
Rule �4�. We will refer to this as “halogen favored condi-
tions,” and “ClSe favored conditions” when the halogen dop-
ant is Cl. This gives values collected in Table I. “Point P”
corresponds to “Se, In intermediate, Cu-rich.”

Under the second strategy �“point N”� we minimize
�H�InCu� according to Rule �4�, which is referred as “InCu

favored conditions.” Under these conditions, the Cl chemical
potentials are limited by InCl and Ga2Cl6 formation ���Cl
=−1.74 eV in CIS, and ��Cl=−1.47 eV in CGS, given with
respect to the diatomic Cl molecule, i.e., �Cl

solid= 1
2�Cl2

�.
Analogously, the maximal chemical potentials of Br and I at
“point N” are −1.53 eV,−1.27 eV in CIS, as listed in Table
II. “Point N” growth conditions corresponds to Cu-rich
�equilibrium with metallic Cu�, In- or Ga-rich �equilibrium
with InSe or GaSe�, and Se-poor.

III. METHOD OF CALCULATING �HD,q„EF ;�…

A. Formation energies

The present computational method for determining the
formation energies and the transition energies of neutral and
charged divalent donors and acceptors in Cu�In,Ga�Se2 are
based on the projector augmented wave �PAW� potentials
within the local density approximation �LDA�,14 using the
relaxed LDA crystal lattice parameters a=5.789 Å and c /a
=1.980 for CIS, and a=5.537 Å and c /a=1.970 for CGS.
The total energies of neutral and charged doped Cu�In,Ga�
Se2 systems are calculated using 64 atoms simple-cubic su-
percells and a � centered k-mesh containing six special
k-points. The charge density is obtained from the corrected
tetrahedron k-space integration method14 with an energy cut-
off of 400 eV. The atom positions are fully relaxed for both
the neutral and the charged dopants. The chemical potentials
of the elemental solids are obtained from fully converged
LDA/PAW total energy calculations.

The procedure for calculating defect formation energy
from Eqs. �1� and �2� involves a number of crucial technical
issues that are often overlooked. These can cause significant
differences in the results, even if the cell size, LDA approxi-
mation, and convergence parameters are the same. We
present in the Appendix a detailed technical description of
the main issues to be dealt with in LDA supercell calcula-
tions of defects energies. Here, we briefly describe the phys-
ics behind these five corrections.

�i� Determining the valence-band maximum: In principle,
the Ev in Eqs. �1� and �2�, should be determined from total

TABLE I. Chemical potentials ��� in eV� for the host atoms and the group II atoms in CIS and CGS at
“point N” �cf. Fig. 3�: Cu-rich, In/Ga-rich, maximally Se-poor, and group-II dopants rich.

��Cu ��In /��Ga ��Se ��Mg ��Zn ��Cd

CIS 0 −0.07 −0.83 −1.40 −0.45 −0.21

CGS 0 −0.21 −0.86 −1.37 −0.42 −0.18

TABLE II. Chemical potentials ��� in eV� for the CIS and CGS host atoms and the halogen atoms for
“halogen favored” conditions �point P in Fig. 3�b�� and for “InCu favored” conditions �point N�. Point P is
Cu-rich, In- and Se-intermediate, and halogen rich. Point N is Cu-rich, In-rich, maximally Se-poor, and
halogen rich.

CIS ��Cu ��In ��Se ��Cl ��Br ��I

ClSe favored �P� 0 −0.70 −0.51 −1.11

BrSe favored �P� 0 −0.70 −0.51 −0.90

ISe favored �P� 0 −0.63 −0.55 −0.77

InCu favored �N� 0 −0.07 −0.83 −1.74 −1.53 −1.27

CGS ��Cu ��Ga ��Se ��Cl ��Br ��I

ClSe favored �P� 0 −1.29 −0.32 −1.11

BrSe favored �P� 0 −0.53 −0.70 −0.90

ISe favored �P� 0 −0.33 −0.80 −0.77

GaCu favored �N� 0 −0.21 −0.86 −1.47 −1.22 −0.89

n-TYPE DOPING OF CuInSe2 AND CuGaSe2 PHYSICAL REVIEW B 72, 035211 �2005�

035211-5



energy difference between the neutral host and the host with
a VBM electron removed. We found that the energy differ-
ence converges to the eigenvalue of VBM, �VBM, in the limit
of dilute hole concentration. Therefore, �VBM could be used
as the value of VBM for the diluted defects along with a
potential alignment between two supercell calculations. This
is described in Sec. 1 in the Appendix.

�ii� LDA energy gap correction: The LDA underestimates
the fundamental band-gap energies of semiconductors. This
LDA error will also be reflected in underestimated donor and
acceptor single-particle eigenstates. Traditionally, one cor-
rects the LDA band-gap error by keeping the energy of the
VBM fixed, and shifting upwards the conduction bands. This
approximation may hold for most common semiconductors.
However, Cu-III-VI2 have strong Cu, d character at the
VBM, and it is well known that LDA does not describe
d-states accurately.15 For example, the LDA Cu, d resonance
inside the valence band has a too low binding energy relative
to photoemission.16 Using the LDA+U method, and apply-
ing an on-site Coloumb energy for Cu of Ud�Cu�=6 eV on
the Cu, d-like states, results in a downward energy shift of
0.37 eV for both CIS and CGS. With this potential correc-
tion, the Cu, d-like valence band resonances agrees better
with photoemission measurements.17 We therefore correct
the band-gap energy by a shifting the VBM downward by
0.37 eV in both CIS and CGS. To set the experimental gaps
of 1.04 and 1.68 eV in CIS and CGS we add an upwards
energy shift of the CBM 0.58 eV and 1.03 eV in CIS and
CGS, respectively. This is described in Sec. 2 of the Appen-
dix.

�iii� Band filling correction: The use of finite supercell
entails two types of corrections: the band-filling correction
and an image charge correction. In a finite supercell, the
impurity-impurity interaction forms an impurity band instead
of a single donor �or acceptor� eigenstate. The donor elec-
trons �or acceptor holes� now also populates states with
higher energies compared to the single donor �acceptor� state
in the dilute limit. Thus, one has to correct the total energy of
the finite supercell due to this band dispersion and band-
filling effects. The correction is �0.7–0.9 eV for the present
divalent donors in Cu�In,Ga�Se2 and �0.06–0.13 eV for the
acceptors. This is described in Sec. 3 of the Appendix.

�iv� Potential alignment correction for charged defects
(any cell size): The calculation of the total energy of a system
containing a charged donor �or a charged acceptor� may not
necessarily refer to the correct host crystal potential, since
ionizing the donor �acceptor� means removal of one electron
from �adding one electron to� the system. We determined the
potential alignment from the deeply lying III-d state which
has a sharp density-of-state peaks at �15 eV below the
VBM. This potential alignment yields a correction to the
total energy by �0.05–0.25 eV in the present calculations.
This is described in Sec. 4 in the Appendix.

�v� Image charge corrections due to finite supercell
(charged defects only): A finite supercell which contains a
charged donor or a charged acceptors, usually implies18 mul-
tipole interaction between the close-lying equivalent super-
cells. This multipole interaction according to Makov and
Payne,18 could yield a correction in the order of �0.1 eV for
the present divalent dopants. We present the calculated for-

mation energies and corresponding transition energies both
with and without the multipole correction. However, the de-
fect levels calculated here are rather shallow, having ex-
tended wave functions, we do not use the truncated multipole
expansion of Ref. 18 for the image charge correction, i.e., we
use the values of defect formation energies without image
charge correction for calculating the defect and carrier con-
centrations. This is described in Sec. 5 of the Appendix.

B. Electronic transition energy

The transition energy ��D ,q /q�� is defined as the Fermi
energy at which the charge state of defect D spontaneously
transform q↔q�. Thus, the transition energy is the Fermi
energy for which �H�D ,q�=�H�D ,q��. From Eq. �2� one
obtains:

��D,q/q�� =
E�D,q� − E�D,q��

q� − q
− Ev. �11�

In the Appendix, we described the procedure for calculating
the VBM and E�D ,q� using the LDA finite supercell ap-
proach, which requires certain corrections. No additional
corrections are required for the transition energies.

C. Self-consistent determination of concentrations

The equilibrium defect concentration is calculated from
the defect formation energies, according to Boltzmann distri-
bution

cD,q�EF,��,T� = N exp�− �HD,q�EF,���/kT� , �12�

where N is the concentration of atomic sites that are substi-
tuted by the defect, the chemical potentials �� correspond to
the growth conditions described above, and T is the tempera-
ture used in the growth of solar cell devices. We used here
T=800 K.19 Since the defect concentrations depend explic-
itly on EF, and, in turn, EF depends on the concentrations of
the charged defects and the free carriers �via the requirement
of overall charge neutrality�, we determine self-consistently
�cD,q; EF; carrier concentration	. Here, the electron and hole
concentrations are calculated as a function of EF and T by
numerical integration of the Fermi-Dirac distribution func-
tion using an effective-mass like approximation for the host
bands.20

Using the self-consistently calculated defect concentra-
tions, we define the “net doping balance”

�c = cClSe
+ 2cInCu

− cVCu
, �13�

in the case of Cl doping, and

�c = cCdCu
+ 2cInCu

− cCdIn
− cVCu

, �14�

in the case of Cd doping. Here, defect concentrations include
all possible charge states as the charge state index q is not
shown. The doping balance �c indicates whether net donor
doping ��c	0� or net acceptor doping ��c
0� is obtained
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�InCu is a double donor and, accordingly contributes 2cInCu
to

�c�. On account of the charge neutrality condition, the self-
consistent equilibrium Fermi energy EF

eq is pinned around
EF

n,comp in case of Cl doping �Fig. 4�. For n-type doping, EF
eq

generally needs to be high in the gap.
In order to compare our results with measured electron

concentrations for Cl and Cd doping in CIS, we perform an
additional self-consistent calculation for room temperature
�T=300 K�. It is assumed that due to kinetic barriers, the
total defect concentrations at T=300 K, including all charge
states, is frozen-in at the values calculated for 800 K. For
self-consistent solution, however, we use now T=300 K to
calculate carrier density according to the Fermi-Dirac distri-
bution. Also, the ration between the concentrations of the
different charge states of the defects is calculated according
to the Boltzmann distribution at 300 K.

IV. DEPENDENCE OF �H ON EF AND CRITICAL VALUES
OF THE FERMI ENERGY

As the doping rules of Fig. 1 suggest, the main defect
formation events controlling doping are formation of killer
defects �Rule �3��, of assisting defects �Rule �4��, and wrong-
site defects �Rule �5��. There are corresponding critical val-
ues of the Fermi energy associated with these events. Figure
4 shows �H vs EF for Cl doping, whereas Fig. 5 gives analo-
gous results for Cd doping. Tables III and IV give the calcu-
lated formation energies for divalent and halogen dopants,
respectively.

A. Spontaneous formation of killer defects

The Fermi energy where �H�VCu
− ;EF�=0 is denoted

EF
n,pin; ideally, it should be as high in the band gap �or inside

the conduction band� as possible for then free electrons can
be formed before they are destroyed by the reaction VCu

0 +e
→VCu

− . Figure 4 shows that the energy needed to form VCu
when EF is close to the VBM is rather similar in CIS and
CGS. This reflects the fact that in both materials the valence
band is constructed mostly from Cu d and Se p orbitals with-

out participation of Ga or In. This is illustrated in the calcu-
lated density of states �DOS� in Fig. 6. This is also reflected
by the existence of a small21 valence band offset between
CIS and CGS, and a similar Cu-Se bond length in both
materials.16 However, Fig. 4 also shows that EF

n,pin occurs in
CIS rather close to the CBM, making this material n-type
dopable, whereas in CGS the pinning level is below midgap,
suggesting that electron killers form spontaneously before
the Fermi level has a chance of approaching the conduction
band. The main reason for this difference is the fact that the
CBM in CGS is higher in energy �closer to vacuum� than in
CIS.10

B. Formation of assisting defects

The Fermi energy where the lowest intersection point be-
tween donors and acceptors, is denoted EF

n,comp; ideally, it

TABLE III. Formation energies �H of substantial neutral and
charged group-II donors and acceptors in CIS and CGS. The Fermi
energy EF is relative to the VBM Ev. Values within bracket are the
formation energies in the absence of the Makov-Payne correction.

�H�D ,q� �eV�
�E�D ,q�−E�0��+��n���

solid ��n����+q�Ev+EF�

CuInSe2 CuGaSe2

MgCu
0 −1.22 −0.25 −��Mg+��Cu

ZnCu
0 −0.11 +0.71 −��Zn+��Cu

CdCu
0 +0.13 +1.12 −��Cd+��Cu

MgIII
0 −0.65 −0.49 −��Mg+��III

ZnIII
0 +0.52 +0.43 −��Zn+��III

CdIII
0 +0.61 +0.89 −��Cd+��III

MgCu
+ −2.12�−2.20� −1.81�−1.90� −��Mg+��Cu+ �Ev+EF�

ZnCu
+ −1.01�−1.08� −0.77�−0.86� −��Zn+��Cu+ �Ev+EF�

CdCu
+ −0.80�−0.90� −0.38�−0.51� −��Cd+��Cu+ �Ev+EF�

MgIII
− −0.52�−0.60� −0.35�−0.43� −��Mg+��III− �Ev+EF�

ZnIII
− +0.57�+0.50� +0.60�+0.50� −��Zn+��III− �Ev+EF�

CdIII
− +0.68�+0.61� +1.05�+0.95� −��Cd+��III− �Ev+EF�

FIG. 4. ClSe and related defect formation energies under “point
N” growth conditions. EF

n,comp indicates the Fermi energy where �H
of the donor InCu

++ �GaCu
++� and the acceptor VCu

− intersect. The vertical
line indicates the self-consistently calculated equilibrium Fermi en-
ergy EF

eq at T=800 K.

FIG. 5. CdCu and related defect formation energies under “point
N” growth conditions. EF

n,site indicates the Fermi energy where �H
of the donor CdCu

+ and the acceptor CdIn
− �CdGa

− � intersect. The ver-
tical line indicates the self-consistently calculated equilibrium
Fermi energy EF

eq at T=800 K.
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should be as high as possible in the gap. At this point the
intrinsic donors tend to compensate the intrinsic acceptors.
Figure 4 shows the energy needed to form GaCu in CGS and
InCu in CIS. We see that �H�GaCu�	�H�InCu�. This reflects
the larger band gap of CGS. Note from Fig. 4 that the self-
consistently calculated EF

eq is therefore higher in the gap for
CIS than for CGS. Since, in the present case, the concentra-
tion of the ionized defects VCu

− , InCu
++ are much higher than the

carrier concentration, EF is pinned to the vicinity of the point

where the concentrations of the ionized defect alone yield
charge balance. Due to the strong, i.e., exponential, depen-
dence of the concentration on �H, this point is given by the
lowest lying intersection point of donor and acceptor forma-
tion energies, �H�InCu�=�H�VCu� defining EF

n,comp in Fig. 4.
The exact value of the equilibrium Fermi level in the self-
consistent solution is temperature dependent. It will, how-
ever, be pinned around EF

n,comp. Significant deviation of the
equilibrium EF�T� from EF

n,comp will be restored, because,
e.g., for EF	EF

n,comp, the �H of the negatively charged de-
fects �acceptors� becomes lower, increasing their concentra-
tion. The excess negative charge has to be compensated by a
higher hole concentration, which requires that the Fermi
level lowers again. The same argument, vice versa, holds for
EF
EF

n,comp, so that EF is pinned to EF
n,comp.

C. Formation of wrong site defects and their electronic
properties

The Fermi energy when �H�CdCu;EF�=�H�CdIn;EF� is
denoted EF

n,site; ideally, it should be as high as possible in the
gap. Figure 5 shows that it is lower in the gap in CGS than in
CIS. Note that EF

n,site can be controlled by the chemical po-
tential difference ��Cu−��In. The smaller ��Cu−��In, the
higher EF

n,site will be in the energy gap due to easier CdCu
formation and harder CdIn formation. This can be understood
by comparing Fig. 3�a� and 3�e�.

D. Electronic structure of Cd in CIS and CGS

Figure 6 compares the electronic structure of Cd-on-Cu to
that of Cd-on-Ga in CGS. In pure CGS the valence band

TABLE IV. Formation energies �H of neutral and charged halo-
gen donors and intrinsic defects. Values within bracket are the for-
mation energies in the absent of the Makov-Payne correction.

�H�D ,q� �eV�
�E�D ,q�−E�0��+��n���

solid ��n����+q�Ev+EF�

CuInSe2 CuGaSe2

V Cu
0 +0.83 +0.63 +��Cu

IIICu
0 +0.90 +2.43 −��III+��Cu

ClSe
0 +0.51 +1.31 −��Cl+��Se

BrSe
0 +0.54 +1.43 −��Br+��Se

ISe
0 +0.73 +1.77 −��I+��Se

V Cu
− +0.90�+0.85� +0.71�+0.61� +��Cu− �Ev+EF�

IIICu
+ 0.01�−0.06� +1.07�+1.01� −��III+��Cu+ �Ev+EF�

IIICu
++ −0.73�−1.01� 0.05�−0.28� −��III+��Cu+2�Ev+EF�

ClSe
+ −0.40�−0.47� −0.17�−0.26� −��Cl+��Se+ �Ev+EF�

BrSe
+ −0.36�−0.42� −0.05�−0.14� −��Br+��Se+ �Ev+EF�

ISe
+ −0.18�−0.26� +0.24�+0.14� −��I+��Se+ �Ev+EF�

FIG. 6. Total DOS of �a� CGS:CdCu and �b� CGS:CdGa, as well as the corresponding atom PDOS of the �c� CdCu and �d� CdGa dopant.
The presented density-of-states includes a Gaussian broadening of 50 meV. Dotted lines indicate the VBM.
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occurs between Ev and Ev−5 eV and has two peaks: the
deeper one is bonding Cu, d-Se, p and the upper one is
antibonding Cu, d-Se, p. The conduction band is made of
Ga, s-Se,p orbitals. Deeper in the valence band we find
the Ga, s-Se, p bonding states �Ev−6 eV�; the Se s-band
�Ev−14 eV�, and the Ga 3d band �Ev−16 eV�.

The projected density of states �PDOS� of the CdCu
0 and

CdGa
0 show strong similarities, with Cd,d-like resonance state

at ��Ev−9.0� eV. This is consistent with the atomic Cd,
4d-states which are �7 eV below the Cu,3d-states and
�5 eV above the Ga,3d-states. The Cd,d-Se,p interaction
yield pronounced Cd,d-like peaks also at ��Ev−13.5� eV
and ��Ev−3.0� eV. The PDOS of the CdCu

0 donor electron
states at ��Ev+2.5� eV is well above the experimental band-
gap energy of 1.68 eV. This indicates a shallow character of
the CdCu donor. The acceptor CdGa

0 , has its acceptor hole
states at the VBM �the s-like states at ��Ev+2.5� eV are
unoccupied�. The PDOS of CdGa show stronger PDOS at the
VBM, than of that of the CdCu donor.

V. TRANSITION ENERGIES

Table V shows the calculated transition energies accord-
ing to Eq. �11�. They are depicted graphically in Fig. 7. In
Fig. 7, we do not include the Makov-Payne correction since
the defect levels calculated here are rather shallow, and thus
the truncated multipole expansion18 is no good for the image
charge correction.

In Fig. 7, we show schematically the transition energies of
divalent doping of donors ��IICu,0 / + � and acceptors
��IIIII ,− /0�. The trend is that CGS has somewhat deeper
group-II donors than CIS, and this trend is more pronounced
for the group-II acceptors. However, the calculated transition
energies indicates that the group-II donors could be ther-
mally ionized both in CIS and in CGS. The multipole cor-
rection gives �0.1 eV deeper donor and acceptor level since
the correction increase the formation energy for charged
states. The multipole correction is probably somewhat over-
estimated for shallow defect, and one would expect that the
transition energies lies between the values with and without
this correction.

VI. DEFECT AND CARRIER CONCENTRATIONS:
CAN CGS BE DOPED n-TYPE?

Having calculated the optimal chemical potential growth
conditions �Secs. II C and II D�, the formation energy �Sec.
III A� and transition energy �Sec. III B�, we can now calcu-
late self-consistently the defect concentration and carrier
concentration. They are shown for divalent doping in CIS
and CGS in Fig. 8 and for halogen doping in Fig. 9. In case
of Cd-doping of CIS under Se-poor �“point N”� conditions,
and using a Cd chemical potential corresponding to equilib-
rium with CdSe �maximal ��Cd�, we find undesirably high
Cd incorporation. Therefore, we used a slightly lower ��Cd
�by 0.2 eV�.

TABLE V. Transition energies ��D ,q /q�� of substitutional neu-
tral and charged group-II donors and acceptors in CIS and CGS
relative to the CBM, Ec, for the donors and to the VBM, Ev, for the
acceptors. Values within bracket are the transition energies without
the Makov-Payne correction.

�q /q�� ��D ,q /q�� �eV�

CuInSe2 CuGaSe2

MgCu �+/0� Ec−0.14�−0.06� Ec−0.11�−0.02�
ZnCu �+/0� Ec−0.14�−0.06� Ec−0.20�−0.11�
CdCu �+/0� Ec−0.10�−0.00� Ec−0.18�−0.06�
MgIII �0/−� Ev+0.13�+0.05� Ev+0.15�+0.06�
ZnIII �0/−� Ev+0.05�−0.02� Ev+0.17�+0.07�
CdIII �0/−� Ev+0.07�+0.00� Ev+0.16�+0.07�

FIG. 7. Schematic picture of the transition energies �in units of
eV� of divalent donors �+/0� and acceptors �0/−� in CIS and CGS,
referenced to the CBM and VBM, respectively. The transition en-
ergy values shown are without Makov-Payne correction.

FIG. 8. The self-consistently calculated defect concentrations
for Cd doping in CIS and CGS at T=800 K. The doping balance
�c=cCdCu

+2cInCu
−cCdIn

−cVCu
is shown in black bars.
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Using T=800 K,19 the calculated concentrations for the
“halogen favored” and the “InCu favored” conditions are
shown as a bar chart in Figs. 9�a� and 9�b�, respectively.
Here, the doping balance, e.g., �c=cClSe

+2cInCu
−cVCu

for Cl-
doping, indicates whether net donor doping ��c	0� or net
acceptor doping ��c
0� is obtained under the respective
conditions. We see that under “halogen favored” conditions
�Fig. 9�a��, the halogen donors have concentrations of about
1019 cm−3, but are overcompensated by Cu vacancies. The
sample ends up being p-type with net acceptor concentra-
tions in the 1017 cm−3 range �cf. Fig. 9�a��.

Under the “InCu favored” conditions, we find that the con-
centrations of the intrinsic defects InCu and VCu are practi-
cally independent on the type of the halogen dopant, being
present in only low concentration, halogen chalogen
�1017 cm−3 �Fig. 9�b��. In fact, cInCu

=2�1020 cm−3 and
cVCu

=3�1020 cm−3 are practically equal to the concentra-
tions obtained under Se-poor conditions without additional
halogen doping, and show a high compensation ratio. The
sample ends up being n-type with a net donor concentration
of �c=1018 cm−3 �Fig. 9�a��. In order to determine the re-
sulting free electron concentration at room temperature,22 we
perform another self-consistent calculation, now for T
=300 K, but maintaining the total concentrations of InCu and
VCu obtained for 800 K. The calculated carrier concentration
is ce�2�1014 cm−3, meaning that only a relatively small
fraction of electrons are thermally activated into the conduc-
tion band. This is a consequence of the high compensation
ratio and the ensuing very high total �neutral + ionized� con-

centration of donors. The calculated carrier concentration is
somewhat below the range of experimentally observed elec-
tron concentrations23 5�1015−1.5�1017 cm−3, probably be-
cause of a slight overestimation of the ionization energies
within the LDA supercell approach.

We find that the calculated electron concentrations at
room temperature are much lower than the net donor concen-
trations, i.e., ce�2�1014 cm−3 in the case of Cl and intrinsic
doping, and ce�2�1015 cm−3 in the case of Cd doping of
CIS. These numbers are below the maximal electron concen-
trations observed after Cl and intrinsic n-type doping, and
after Cd doping, being about 1017 cm−3 and 1018 cm−3, re-
spectively. We attribute this discrepancy mostly to a slight
overestimated of the donor ionization energies within the
LDA supercell approach. Nevertheless, these results qualita-
tively explain why the limit ce�1017 cm−3 of intrinsic dop-
ing can be exceeded by Cd doping, but not by Cl doping.

Since our calculated formation energies indicated that
equilibrium n-type doping by Cl or Cd can be achieved in
CIS but not in pure CGS, we now address the question
whether n-type doping can be achieved under equilibrium
conditions with any other donor dopant. The growth condi-
tions discussed here �“point N”� are Cu-rich in the sense of a
maximal ��Cu �equilibrium with Cu-metal�. This maximizes
the formation energy of the electron killer VCu, minimizing
its concentration. Still, �H�VCu� is rather low, and EF

n,pin the
Fermi level where �H�VCu

− �=0 �cf. Figs. 4 and 5�, lies in the
lower part of the CGS band gap. EF

n,pin defines an upper
bound for the equilibrium Fermi energy EF

eq, because
EF

eq	EF
n,pin would correspond to a situation where donor and

acceptor formation energies intersect at a negative �H. In
such a case the CGS host material would no longer be stable,
e.g. if �H�CdCu

+ � and �H�CdGa
− � would intersect at negative

�H, the spontaneous substitution of Cu and Ga sites by Cd
would lead to CdSe formation. Since EF

n,pin defines the maxi-
mal equilibrium Fermi energy, its position in the lower part
of the band gap of CGS indicates that n-type doping under
equilibrium conditions cannot be obtained in CGS, irrespec-
tive of the used donor species. In any case, donor doping is
overcompensated by the electron-killer VCu.

VII. SUMMARY

We conclude that �i� the halogen incorporation is limited
by chemical potential bounds imposed by precipitation of
Cu- and In-halides and, hence, halogen incorporation is over-
whelmed by the doping effect of the abundant intrinsic de-
fects InCu and VCu. �ii� The formation of the intrinsic InCu
double donor in CIS under Se-poor growth conditions results
in net n-type doping. �iii� Due to the low formation energy of
the compensating acceptor VCu, even at Cu-rich conditions
��Cu, a high degree of compensation will always be present
for n-type doping in CIS. �iv� Under Se-poor conditions,
which simultaneously imply Cu- and In-rich conditions, the
Cu-site defect concentrations �VCu, InCu� are in the 1020 cm−3

range �Fig. 9b�, meaning that several percent of the Cu sites
are not occupied by Cu. Thus, CIS is highly nonstoichiomet-
ric Cu-poor even at this “Cu-rich” ���Cu=0� growth condi-
tion. �v� Due to the fact that �H�VCu

− � becomes zero in CGS

FIG. 9. The defect concentration of halogen defects and intrinsic
defects under “halogen favored” �point P� and “InCu favored” �point
N� conditions in CIS. The growth temperature of 800 K is used. The
doping balance �c=cXSe

+2cInCu
−cVCu

�X represents halogen at-
oms� is shown in black bars.
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already at a low value of EF=0.7 eV , it is not possible to
shift EF to higher values under equilibrium conditions. Thus,
future attempts should focus on nonequilibrium conditions,
in which the atomic Cu reservoir is decoupled.

ACKNOWLEDGMENTS

This work was supported by DOE-EERE, under Grant
No. DEAC36-98-GO10337.

APPENDIX : TECHNICAL DETAILS ON HOW TO
CALCULATE DEFECTS ENERGIES IN THE LDA

SUPERCELL APPROACH

Determining the valence-band maximum

In this section, we show how the energy of the VBM, Ev,
in Eq. �2� is determined from the total energy of the charged
pure host crystal: The formation energy of charged defects
depends on the Fermi energy. In a nondegenerate system, the
Fermi energy lies in the band-gap energy region. It is, there-
fore, convenient to determine the energy of the VBM, Ev,
and regard the Fermi energy EF as a free parameter 0�EF
�Eg.

We define the energy of the VBM, Ev, as the energy dif-
ference between the pure host crystal with and without a hole
at the VBM, i.e.,

�EH�q� = �EH�0� − EH�q��/q , �A1�

where q is the number of electrons removed in the calcula-
tion of the charged host. In the nondegenerate case, the en-
ergy of the VBM corresponds to that of a dilute hole gas, and
one thus has to take Ev=limq→0 �EH�q�, or, equivalently,
increasing the supercell size to infinity with q=1. Figure 10
shows the energy difference defined in Eq. �A1� as a function
of 1/q in an 8 atom unit cell of CIS and CGS. Obviously, the
energy difference �EH�q� converges in the limit of a dilute

hole gas to the Kohn-Sham eigenvalue of the VBM, �VBM.
Thus we may set Ev=�VBM for the calculation of �H in Eq.
�2�. Here, the problem is, however, that �VBM depends on the
unknown average potential, and is defined only up to a con-
stant. For consistency between the charged defect total en-
ergy ED�q�0� and the energy of the VBM, �VBM, it is re-
quired to align the average potentials of the pure host and
host + defect calculations. This is described in Sec. 4 of the
Appendix.

LDA energy gap error

LDA is believed to accurately describe the total energy of
pure intrinsic semiconductors. However, the LDA underesti-
mates the fundamental band-gap energies of semiconductors
by �50%. This LDA error will also be reflected in those
impurity single-particle eigenstates which are in or above the
energy region of the band gap. For intrinsic semiconductors,
the LDA band-gap error is not a problem since the total
ground state energy does not depends on the conduction
band energy states. Of course, the problem can be avoided by
using calculations beyond LDA, such as the GW method,
where this problem is not present. However, the calculations
beyond LDA currently are not feasible for defect calculations
so far, and we must therefore find some reasonable approach
for this band-gap correction based on LDA calculations.

In the first-order approximation, the energy correction of
the fundamental band gap consists of of constant downward
energy shift �Ev0 of the valence bands and a constant
upwards energy shift �Ec0 of the conduction bands. The
total correction of the band gap is �cp. Fig. 11�

�Eg = �Ec + �Ev = Eg
Expt − Eg

LDA �A2�

In this work, we assume that shallow donor levels follow the
energy correction of the CBM, whereas shallow acceptor
levels only follow energy correction of the VBM. That is, we
assume that an energy correction consisting of shifting the
conduction bands higher in energy will affect those shallow
delocalized donor states which are energetically located near
or above the CBM. Similarly, an energy correction consisting
of shifting the valence bands lower in energy will affect
those shallow delocalized acceptor states which are energeti-
cally located near or below the VBM. The energy correction
of the occupied donor or acceptor states will affect the total
energy containing the defect. Thus, for shallow donors one
has to correct the LDA total energies by the same energy
required to correct the single-particle energies for host elec-
trons in the CBM, and for shallow acceptors one has to cor-
rect the LDA total energies by the same energy required to
correct the single-particle energies for host holes in the
VBM, i.e.,

�Eg�D,q� = 
ze�D,q��Ec; donors

zh�D,q��Ev; acceptors,
� �A3�

where ze�D ,q�=� j,kwk� jk is the number of donor electrons
occupying the donor states near or above the host CBM.
Here, the sum index are energy levels �j� and k-points �k�,
and wk represents the weight at the reciprocal point k while

FIG. 10. Total energy difference �E per hole between the neu-
tral semiconductor host and the positively charged �q� host, acco-
modating a hole gas in the valence band. The calculation is done for
the 8 atom elementary cell of CIS and CGS. 1/q=1000 corresponds
to a hole concentration of about 5�1018 cm−3.
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� jk is the electron occupation number at level j, reciprocal
point k. For example: ze�D ,q�=1 for shallow neutral diva-
lent donors �e.g., ZnCu

0 �, while ze�D ,q�=0 for shallow
charged divalent donors �e.g., ZnCu

+ �, and ze�D ,q�=2 for
shallow neutral double donors �e.g., GaCu

0 �, and ze�D ,q�=1
for shallow partially charged �q=+� double donors �e.g.,
GaCu

+ �, and ze�D ,q�=0 for shallow charged �q= ++� double
donors �e.g., GaCu

++�. Analogously, zh�D� is the number of ac-
ceptor holes occupying the acceptor states near or below the
host VBM.

If the VBM is shifted downward by �Ev, one also has to
shift the reference energy Ev in Eqs. �2� and �11� by

Ev = Ev
LDA − �Ev, �A4�

and this correction will affect the formation energy of
charged defects due to the term q�Ev+EF� in Eq. �2�.

Band filling correction

The formation and transition energies of dopants are nor-
mally referenced to a doping concentration in the dilute limit
i.e., �1018 cm−3. However, for a single defect in a finite
supercell calculation, the defect concentration is much
higher, e.g., �1021–1022 cm−3 in a 64-atom supercell. The
high doping concentration implies an unwanted impurity-
impurity interaction. Due to this interaction, the impurity
electrons form a impurity band instead of a single localized
electron state. This incorrect impurity band dispersion need
to be compensated to obtain the total energy of the crystal
with a defect concentration in the dilute limit. Moreover, if
the impurity band is energetically above or close to the host
conduction �or valence� bands, then the impurity band can
easily hybridize with the host electron states, and the donor
electrons can partly populate the host conduction bands �cp
Fig. 11�. Thus, one needs to take into account possible band
filling of the host energy bands. To correct the total energy
E�D ,q� of the finite supercell due to this band-filling effects,
one has to subtract the higher energy populations. For
charged shallow donors, the correction is

�Ebf�D,q� = − �
jc,k

�wk� jk� jk − �c0� . �A5�

Here, � jk is the single-particle eigenstates of the donor elec-
trons, and �c0 is for shallow donors the lowest populated
donor electron state, normally located at the �-point. The
weights wk of the k-points are determined from the k-mesh,
and the weights � jk of the electron population are obtained
from the tetrahedron k-space integration.14

In Eq. �A5� we assume that the electron state �c0 is ener-
getically close to the single populated electron state in the
dilute limit. This is true for very shallow donor levels which
has most of their energy states well above the CBM, but it
might be less accurate assumption for less shallow donor
states which strongly hybridize with the CBM.

The correction to the band-dispersion and band-filling ef-
fects is a consequence of employing the finite supercell ap-
proach for the calculation of the total energy of systems in
the dilute limit. However, if one aims to calculate the total

energy of highly doped semiconductors, the correction of Eq.
�A5� should be zero �or at least smaller� since band distortion
and heavily band filling should be present in those systems.

Potential alignment correction of charged defects
(any cell size)

In a momentum-space formalism with periodic boundary
conditions, the violation of the charge neutrality condition,
which occurs for the calculation of charged defect states,
leads to the divergence of the Coulomb potential. Usually,
one circumvents this problem by setting the G=0 component
of the electrostatic potential VH�G=0� to zero. As a conse-
quence, the spectrum of the Kohn-Sham eigenvalues is de-
fined only up to a constant. The value of the constant offset
is, in general, not known and depends on the average crystal
potential and the choice of pseudopotential �e.g., hard or
soft�. Despite this arbitrariness of the eigenvalues, the total
energy of a charge neutral system is well-defined, because
the neglect of the constant offset in the eigenvalue sum is
counterbalanced by other terms in the total energy
expression.24 As shown in Fig. 10, the total energy difference
of the pure host in the neutral and positively charged state
�modeling a hole in the valence band� converges to the ei-
genvalue of the VBM. Thus, the total energy of the charged
system, calculated with the total energy expression which
was originally derived for a charge neutral system, is obvi-
ously subject to the same arbitrariness as the eigenvalue
spectrum. It is emphasized that the nonuniqueness of the
total energy of charged supercells is a consequence of the
periodic boundary conditions and would not occur in a finite
cluster calculation, where the violation of charge neutrality
constitutes no problem in principle. Clearly, the development
of a unique total energy expression for charged periodic sys-
tems would be desirable.

Since the unknown offset occurs at two places, namely for
the calculation of Ev and for the energy E�D ,q� of the
charged defect �see Eq. �2��, one needs to make sure that
these energies are consistent with respect to potential align-
ment. Introducing a charged defect into a supercell can
change the average potential significantly, resulting in a shift
of the eigenvalues, even of those corresponding to states of
host atoms far from the defect. In order to achieve consis-
tency, the potentials of the charged defect and the host cal-
culation have to be aligned. The total energy of a charged
defect is then corrected by

�Epa�D,q� = q · �VR�D,q� − VR�0�� , �A6�

where �VR�D ,q�−VR�0�� is the difference of the potential at a
reference point in the defect and the host calculations. In
order to determine the potential alignment, one can monitor
either �i� the eigenvalues of localized states at host atoms far
from the defect, or �ii� the electrostatic potential preferably at
interstitial sites far from the defect.

Image charge correction, due to finite supercell
(charged defects only)

Calculation of the energy of a charged system is of inter-
est for charged impurities in crystalline solids. However, the
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energy of a periodically repeated electrically charged system
diverges, and thus a jellium background is adopted to neu-
tralize the charge in general. Makov and Payne18 argued that
the charge density in a crystalline solid with a point defect
can be the sum of two contributions—the periodic charge
density of the underlying crystalline solid and the charge
density of the aperiodic defect, which is the charge differ-
ence between with and without the defect. The multipole
correction �Emp of the total energy of a practical finite su-
percell with respect to the total energy of an ideal infinite cell
of a charged aperiodic system is18

�Emp�D,q� = +
q2�M

2�0Vc
1/3 +

2�qQ

3�0Vc
+ O�Vc

−5/3� . �A7�

Here, �M is the lattice-dependent Madelung constant and Vc
is the volume of the cubic supercell. �0 and Q are properties
of the periodic density and the aperiodic density; �0 is the
static dielectric constant and Q is the second radial moment
only of that part of the aperiodic density. The first and second
correction terms in Eq. �A7� are the monopole and quadru-
pole corrections, respectively. Typically, the quadrupole cor-
rection is �30% of the monopole correction with opposite
sign. In principal, also higher order of the multipole correc-
tion should be included.

We notice that Eq. �A7� is based on the assumption that
defect charge is rather localized. However, the defect charge

of very shallow levels might be rather delocalized, and the
restriction to monopole and quadrupole corrections in Eq.
�A7� may not be sufficient, i.e., higher order terms may be
needed. In the limit of completely delocalized charges, the
multipole correction should be zero since an uniform elec-
tron gas does not have a net charge moment. One can there-
fore argue that the Makov-Payne correction is the upper limit
of correction for shallow defects. We therefore present the
formation and transition energies both with and without the
multipole correction.

As in the case of the correction for the band-filling �see
above�, the multipole correction should be zero �or at least
smaller� if one intentionally calculates total energies of
heavily doped semiconductors. For those highly doped sys-
tems, the choice of assuming periodic instead of, for in-
stance, randomly distributed donors may however have an
effect on the impurity-impurity interaction.

With the corrections above, the total energy of the crystal
with a defect is

E�D,q� = EFSC
LDA�D,q� + �Ebf�D,q� + �Emp�D,q� + �Epa�D,q�

+ �Eg�D,q� , �A8�

where EFSC
LDA�D ,q� is the LDA total energy of the finite super-

cell with the defect �see Fig. 11�.
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