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BEYOND THE LOCAL SPIN DENSITY APPROXIMATION
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A self-consistent self-interaction correction to the local spin density
approximation is shown to remove many of the anomalies in the pre-
dicted exchange, correlation and total energies of atoms, stability of
negative ions and band gaps of insulators. It also suggests a new inter-
pretation of the calculated cohesive energies of transition metals.

DESPITE the striking success of the local density (LD)
[1] and spin-density (LSD) [2] functional approaches
to many-electron systems, some significant discrepancies
remain. These include the facts that: (i) While the LSD
total energy of a metal surface is foo low when com-
pared with the exact value [3], the LSD energy for
atoms is oo high [4] . Furthermore, the lowest-order
correction to the LSD exchange-correlation energy
predicted by many-body theory, i.e., the density-
gradient correction [5], is positive, and so can only
worsen the calculated energies of atoms. (ii) For atoms
[4] the magnitude of the exchange energy in LSD is
consistently underestimated by 10—15% while the mag-
nitude of the correlation energy is overestimated by
100--200%. (iii) The experimentally stable negative ions
(e.g. H", 07, F") are predicted to be unstable [6]. (iv)
Self-consistent LD band structure calculations under-
estimate the one-electron energy gap of insulators by as
much as 40% (see [7—11]), and more generally the LSD
one-electron eigenvalues are not close to physical re-
moval energies from bound states. The conventional
remedies have been delta-SCF or Slater transition-state
type calculations, which are very tedious, especially for
solids where they break the translational periodicity.

In this letter we show that these problems are inter-
related and that a simple, physically transparent
correction to LSD — the subtraction of spurious self-
interaction — accounts for and corrects the qualitative
as well as most of the quantitative discrepancies. This
self-interaction correction is a “non-homogeneity
correction” which vanishes for systems of uniform
density, like the gradient correction [5], but unlike the
latter it arises only for localized electronic states. A

more detailed account of our work will be presented
elsewhere [12].

Spin-density functional theory [1, 2] expresses
the ground-state energy of a many-electron system,
coupled to an external potential Ve, (r) and charac-
terized by electron density p(r) = p4(r) + p,(r) and
spin-polarization {(r) = (o1 —p,)/p, as:

E = T[p, i'] +Eext[p] + %Eee [P] + Exc[p: ﬂ; (1)

where T is the non-interacting kinetic energy, Eeyy =

J 437 p(r)Vexe () is the interaction of p with Veyy, Eee
is the interaction of p with the time-averaged Coulomb
potential V. ([p];r)=Jfd3 p(d)/Ir—1'|, and E, is
the sum of exchange and correlation energies. The self-
consistent one-electron equation found variationally
from equation (1) is

{— ivz + Vo(r)} Vaol(t) = €aoVas (D), 2)

where the potential (with spin index o) is implicitly a
functional of p and ¢{:

Vem) = Vet + Veellp] i + Vie(lp, 8151, ()

and the density is determined via p(r) = Zp5 Poo (r)
from the spin—orbital densities pog(r) = Nog oo (DI2.
(Nyg is an occupation number, O or 1). The exchange-
correlation potential V2, is the functional derivative of
E,. with respect to p,(r).

The imperfectly-known exchange-correlation func-
tional E . is usually replaced by the local (LSD)
approximation [1, 2] : EXSP = 1 @3 p(r) e, [0(Y),
¢(r)], where e, (p, {)is the exchange-correlation
energy per particle of a uniform electron gas; this
approach reduces to the LD approach in the unpolarized
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Table 1. (— 1) x total energy in eV for atoms

Atom Exact SIC LSD

H 13.6 13.6 13.0
He 79.0 794 77.1
Li 203.5 204.2 199.8
Be 399.1 399.8 393.0
B 6708 6720 662.5
N 1485.3 1489.0 1472.8
F 2713.5 27209 2696.7
Ne 35079 35179 3489.1

limit { = 0. In the present study we use Ceperley’s
correlation [13], which we have matched to the exact
high-density limit and generalized to arbitrary spin
polarization [12] ; we have used an accurate e,.(p, {),
in order to uncover the real errors of LSD and of our
self-interaction-corrected scheme.

We note that £, [p] and ELSP[p, ¢] in equation
(1) contain spurious electron self-Coulomb 4F .. [pes]
and self exchange-correlation £=SP[p,, 1] contri-
butions from each spin orbital, which are negligible
only for very diffuse orbitals. (By { = 1 we express the
fact that each orbital is fully spin-polarized.) The partial
success of LSD in describing localized states (atoms,
molecules, deep impurities, etc.) rests on the fact that
often most of the positive self-Coulomb energy is can-
celled by the negative self-exchange-correlation energy.
The corresponding spurious contributions to the poten-
tial of equation (3) in LSD are V.([pac] ;1) and
VILSP([pao, 11;1). Retention of these self-interactions
results in a misrepresentation of the long-range behavior
of the potential for systems with localized orbitals (e.g.
the large r electrostatic limit — (Q + 1)/r of the poten-
tial for ions of charge Q is not realized).

To generalize the LSD formalism for systems with
localized states, we propose a self-interaction corrected
(SIC) energy functional:

ESIC = ELP[p,¢] — ¥ 8o, @)
«&o

with £SP given by the LSD version of equation (1).

We have explicitly subtracted the self-interaction

Zoo 840, Where

800 = %Eee[Pw] +EaIchSD [Pas, 1]. )

(The SI correction term in equation (4) belongs to E,...)
The corresponding variational one-electron potential is

ng’c(r) = Visp(®) — Vee([Pacl; 1)

— V2P ([pacs 11.1),
where the p,, (r) are now the orbital densities that are
self-consistent with the potential (6). This kind of
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scheme was used by Lindgren [14] as a way to obtain
better trial orbitals for the Hartree—Fock total energy;
its application to the LSD energy functional has been
proposed by Zunger and Cohen [15] and Perdew [16].
In the present approach, we solve the one-electron
Schrodinger equation self-consistently in a central field
approximation. (As in the Hartree approximation, the
resulting orbitals are not automatically orthogonal. At
each iteration we have performed a Schmidt ortho-
gonalization of the orbitals, which we find has only a
very small effect on the density and total energy (e.g.
1072 eV for second-row atoms).)

The scheme proposed above is an ansatz which will
be used to test the utility of self-interaction corrections
to LSD. It is an orbital functional [16] and not a den-
sity functional scheme, and we will defer to the end of
this letter the problem of incorporating self-interaction
corrections within a true density-functional scheme.
(Furthermore, even within an orbital-functional scheme
the absolute minimum of equation (4) over all ortho-
gonal orbitals will be given, not by our self-consistency
scheme, but by the introduction of off-diagonal
Lagrange multipliers into the Euler equation for the
orbitals.)

Figure 1 shows rV§% (r) for Ni in the 3d®4s? con-
figuration, compared with the LSD potential 7V {gp (1)
The removal of self-interaction (SI) has resulted in a
pronounced orbital dependence (decreasing with the
delocalization of the orbital), an overall deepening of
the potential, a reduced spin-dependence, and correct
r—> oo behavior.

Gunnarsson and Iundqvist [2] have argued that
LSD gives reasonable total energies outside its domain
of formal validity (densities that vary slowly in space)
because it satisfies the sum rule that the exchange-
correlation hole n(r, r') around an electron at r must
contain — 1 electrons: f d3# n(r, )= — 1. The LSD
and SIC holes may be constructed by inspection of

Exe = § f darp(l‘) fdsr, n(r, r')/lr—r'l.

The SIC hole so constructed clearly satisfies the sum
rule (for occupation numbers 0 or 1). Unlike the LSD
hole but like the true one, it is not spherically sym-
metric. Details will be presented elsewhere [12].

Total energy calculations for atoms (Table 1)
show that, while the LSD values are substantially
higher than the experimental ones [17, 18], the SIC
values are slightly lower. Thus SIC brings the atomic
results into line with LSD calculations on the jellium
surface (for which the orbitals are de-localized and
the LSD = SIC energy is slightly lower than the exact
value [3]).

Table 2 compares the self-consistent SIC exchange
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Table 2. (— 1) x exchange and (— 1) x correlation
energies in eV for atoms

Exchange Correlation
Atom Exact SIC 1.SD Exact SIC LSD
H 8.5 85 73 00 00 06
He 279 286 234 1.1 1.5 30
Be 726 729 623 2.5 31 60
Ne 329.5 338.1 2984 100 114 199

Table 3. Sl corrections Agyc to the LSD band-structure
error AE, in the band gaps of rare-gas solids and the core
ionization in LiF (eV)

Solid Egxper ELSP AE, Asic
Ne 21.4@ 112© —10.2 99
Ar 14.2@ 83@ — 59 5.8
Kr 11.6® 6.8@ — 49 49
Xe 9.3® - - 42
LiF(Li 1s)  644® 472@® —172 18.0
LiIF(F2s)  37.6® 3019 - 75 79
@Ref. [7]; ®Ref.[8,11]; ©Ref.[9]; @Ref.
[10]; ©Ref. [11].

E . and correlation E, energies with LSD and exact
values [17, 18] . The long-known [4] 10—15% discrep-
ancy of ELSP from the exact value is largely corrected.
Similarly, the large (100—200%) errors in EFSP, which
have been attributed [19] to the effect of the discrete
atomic energy spectrum on £, are reduced by a factor
of 5.

We also find that the SIC approach correctly pre-
dicts the stability of negative ions, in contrast to LSD
which often has no self-consistent negative-ion solution
[6], and to Hartree—Fock which seriously under-
estimates the binding. The observed electron affinities,
and the ASCF- calculated affinities from the SIC and
Hartree—Fock approaches, are respectively (in eV):

H 0.8,09,—0.3;071.5,1.6,—0.5;F 34,36,14;
C1"3.6,3.8,2.6.

In the spirit of Koopmans’ theorem, we would like
to identify the eigenvalues of the one-electron
Schrodinger equation with physical removal energies,
at least for the more loosely-bound electrons for which
relaxation effects are expected to be small. However,
the change in the total energy functional due to removal
of an electron from orbital ao, including relaxation, is
strictly [16, 20] ~ [} dN oo €an(NVag), and not — €4 (1)
(the eigenvalue at full occupancy). Even for rather
weakly-bound electrons, e,, depends strongly on N,
in LSD because of the spurious self-interaction in the
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Fig. 1. The LSD and SIC atomic potentials for Ni
3d%4s®. Shaded areas indicate the spin splitting.

one-electron potential. But in our SIC approach, since
an electron is “forbidden” to interact with itself, €y,
can depend on N,, only indirectly (hence less strongly),
through the reflection back onto orbital ao of its self-
consistent effect on the other orbitals. Thus, to the
extent that physical relaxation effects are small, the

SIC eigenvalue gives the change in total energy func-
tional due to removal of an electron.

The energy eigenvalues of the SIC approach do in
fact approximate the corresponding ionization energies
better than the LSD eigenvalues do. For example, the
measured first ionization potentials [17] and the neg-
atives of the corresponding SIC and LSD eigenvalues
are respectively (in eV): He 24.6, 25.8, 15.3; Kr 14.0,
14.0,9.4;1i5.4,5.4,3.2;Cr6.8,6.7,4.0.

Turning now to solids, we note that LD and LSD
band calculations have had some striking successes in
relating the band eigenvalues and related spectral func-
tions to observed excitations. However, in many of the
calculations for insulators, if additional approximations
such as artificial exchange scaling are avoided, ano-
malously small optical gaps £, are frequently obtained
in LSD (e.g. [7—11]). We show in Table 3, along with
the LD band structure error AE,, the difference Agyc
between the LSD and SIC eigenvalue of the outermost
atomic orbital forming the valence band edge (e.g. 2p,
3p, 4p for Ne, Ar, Kr respectively). Clearly the SI of
this orbital accounts for almost 100% of the LSD error
in the insulating gap of the solid. We also show in
Table 3 the error of the 1L.SD band structure prediction
of the energy of core electrons, relative to vacuum, in
the insulator LiF; again SI correction of the eigenvalue
removes most of the discrepancy.
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We next consider the implications of SIC for cal-
culations of the cohesive energy £g of metals within
LSD [21]. These assume that Eg is the difference
between the calculated atomic and solid LSD total ener-
gies, and agree closely with experiment except in the 3d
transition series (e.g. E'g is overestimated by 70, 45, 45
and 25% for Mn, Fe, Co and Ni respectively [21]). It
seems reasonable to assume that the core SI corrections
are similar in the atom and the solid, and nearly cancel
in Eg. This still leaves the SI corrections — §,, for the
valence orbitals, which we find are sizeable for atomic
3d electrons (— 0.1 to — 1 eV/electron) on the scale of
Eg (1—6 eV/atom). One is then tempted to analyze the
discrepancies between the LSD and observed £'g as the
result of incomplete cancellation between the SI cor-
rections of the atomic 3d orbitals and the lesser S1
corrections of the more diffuse Wannier-like orbitals in
the solid. Using the LSD and observed Ep and our 64,
values for atoms, we find that the valence SI in the solid
ranges from 10% at the beginning to as much as 80% of
the atomic value at the end of the 3d series. The same
analysis yields negligible valence SI for the alkali metals
(1021073 eV), in accord with their free-electron
character. This suggests that SI effects may be important
in transition metal physics.

The numerical results of our orbital-functional
calculations suggest that self-interaction corrections can
dramatically improve the LSD approximation in atoms
and in solids. In contrast to an orbital functional [16],
a self-interaction-corrected density functional formalism
would have several advantages, including the full sanc-
tion of the Hohenberg—Kohn—Sham theorems [1] and
the computational convenience of a single, local one-
electron potential for all orbitals. Such a formalism can
be defined in principle as follows: (i) To each pair of
trial spin densities p,(r) there corresponds a pair of trial
potentials ¥°(r) which produce the same spin densities
in a non-interacting system. Solve equation (2) using
these potentials. (ii) Perform a unitary transformation
(which leaves the spin densities invariant) of the result-
ing occupied molecular or Bloch orbitals to localized
orbitals having maximal self-interaction, and so minimize
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the SI corrected total energy of equation (4). The result
of this first minimization is the energy corresponding
to pt and p; a further minimization over p; and p,
gives the ground-state energy.
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