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domains of Al ,Ga;_,N alloys
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We analyze the optical and transport consequences of the existence of ordered and random domains
in partially ordered samples of Aba N alloys. Using atomistic empirical pseudopotential
simulations, we find that the band alignment between random and ordered domains changes from
type | to type Il atx=0.4. This leads to an increase by two to three orders of magnitude in the
radiative lifetime of the electron—hole recombination. This can explain the experimentally observed
mobility-lifetime product behaviors with changing Al concentration. The type | to type Il transition
results from a competition between the ordering-induced band folding effect and hole confinement
on Ga-rich monolayers within the ordered structure.2@4 American Institute of Physics.

[DOI: 10.1063/1.1687464

During vapor-phase growth of ABGa N and monolayer (-12.6 nm) thick slabs of AlGa, _,N with order
In,Ga,_,N alloys!~® long-range order develops, whereby parametery,.(X) alternating with 40-monolayer thick areas
the Ga and Alin) atoms organize spatially on the two crys- of =0 Al,Ga _,N random alloy. The simulation supercell
tallographic sites of the wurtzite unit cell. The ordering is covers 288 atomg144 cation sites within each (11D)
imperfect in two ways. First, the degree of long-range ordemmonolayer, with a total of 23040 atoms per supercell. The
7 could be below the maximum valug,,(X), which de-  electronic structure of such supercells is modeled fully ato-
pends orx via 0= < 7may, Where n,»=1—|2x—1]. Thus,  mistically via the empirical pseudopotential mettfodith a
for x=0.5 the maximum order corresponds 4o=1, but  pseudopotentiaV/(r)==, v .(r —R,,) made of a superpo-
lower homogeneous ordersOp<1, is possible too. Second, sition of screened atomic pseudopotentiate=Ga,Al,N)
the ordering could bénhomogeneoysn that highly ordered situated on atomic siteR,,. Spin—orbit interaction is ne-
domains are surrounded by unorde(ezhdom alloy matrix,  glected. The atomic site positions are determined via relax-
as observed experimentally in Refs. 3 and 6. Such an inhdng the total elastiovalence force fielf'*) energy of the
mogeneous ordering was predicted theoretiédbiyproduce  supercell. Here the atomic pseudopotentials include explic-
a larger band gap reduction for,8a_,N than what would itly local environment® and local straiff dependencies. The
be expected from equivalent homogeneous ordering. Hergamiltonian H=—1V?+V(r) is diagonalized in a plane-
we investigate the consequences of the existenciatef-  wave basis set via the folded spectrum methtthe atomic
facesbetween ordered domains and random-alloy domaingseudopotentials for AlGaN systérare determined by re-
on optical and transport properties of,&la, N alloys. We  quiring that the properties of bulk AIN and GaN are correctly
use large supercel23 000 atoms) realizations of ordered- reproduced. This includesi) measured principal band
random domains, treated via atomistic empirical pseudopogaps!® (ii) local density approximatiofLDA) calculated
tential simulations. We find that the alloy is “type I,” with crystal field splittings and AIN/GaN valence band off¥et,
both holes and electrons localized on the ordered domains, &g ) GW-approximation quasiparticle band enerdles high
long as the Al concentration is below 40%, or above symmetry points, (iv) measured band gap pressure
~90%. In the intermediate concentration range of 40%-—oefficients'® and(v) LDA calculated absolute valence band
90% Al the holes are localized on the random alloy domainsyolume deformation potentidfsfor zinc blend structure. The
whereas the electrons are confined to the ordered domaingehieved quality of the fit is described in Ref. 7.

This type | to type Il transition is accompanied by a sharp  Figures 1a) and ib) describe the band edge energies
drop in the interband transition dipole matrix element. ThisSvsm(X,ﬂ) and scpy(X,7) of the homogeneously random
could explain the experimental observafiaghat at Al con- alloy (=0) and the homogeneously ordered allpy
centrationsx~0.4—0.5 the mobility-lifetime&u7) product for = TmadX)]- We see that fox=0.4 (andx=0.9) the valence
AlyGa N is two orders of magnitude higher than for GaN pand maximum(VBM) energy is higher and the conduction
(x=0) with the same resistivity, as being due to trapping ofyang minimum(CBM) energy is lower on the ordered do-
holes and electrons on different domains, as suggested Byain than on the random alloy domain, leading to a small
Misra et al® We explain the type | to type Il transition as styne |” offset with both electrons and holes residing on the
being due to a competition between the enhanced hole locasrgered domains. This is evident from the plot of the CBM
ization on the Ga-rich layers of the ordered structure a”QeIectror) and VBM (hole) wave functions in Fig. @),

ordering-induced “band folding.” o showing that both states are localized on the ordered domain.
To model ordered and random domains in®& N On the other hand, Fig. 1 shows that for x%<0.9, the
alloys, we use a periodic sequence of (Q)riented 40- M of the ordered domain ibelowthe VBM of the ran-

dom alloy domain, whereas the CBM of the ordered domain
¥Electronic mail: azunger@nrel.gov is still below that of the random alloy domain. This corre-
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? 4021 X x i VBM (for holeg states of a system consisting of an interface between the
% x random (7=0) and ordered §= 7,,,,) domains of an inhomogeneously
g. ordered AlGa, _,N alloy. (a) x=0.2, where electrons and holes are local-
BTi02 | (c) Dipo|e i ized on the ordered domaiftype 1" ); (b) x=0.5, where electrons are still

£ localized on the ordered domain, but the holes are on the random alloy
: domain(“type II").
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g : x strong optical transitions, as expected, in the type Il regime
*;:'; 107 TR TR YR I R R R TETE of 0.4=x=0.8 the transition dipoles are two to three orders
2 GaN Al concentration, x AIN of magnitude v.veak-er. Based on the Fe-rmll golden rule in the
= dipole approximation, the radiative lifetime for VBM

—CBM transition (electron—hole recombinatipnis in-
FIG. 1. (a) Conduction band minimurfiCBM) and (b) valence band maxi- versel roportional to the amplitude sauared of the dipole
mum (VBM) eigenenergies, as functions of Al concentratiofor a system y prop P q P

composed of ordered and random domains, in comparison with those fcﬁnatri)f element for the same tranSij[i_o['ﬁ_g- 1(0)] Thus, the
homogeneously random and homogeneously ordgreimal ordering,, experimental behavior of the mobility-lifetime produgtr)

= 7maXX)] alloy systems. The bottom pan@) shows amplitudes squared of measured in Ref. 6, showing a two to three orders of mag-
the dipole matrix transition elements between the CBM and the top five . : . _ _
VBM states as a function of Al concentratiéerosses The solid line shows nitude higherur for x=0.4-0.5 than fox=0, for samples

the Boltzmann averagéusing temperaturd =300 K) of the matrix ele- ~ With the same resistivity, can be explaifgds being due to
ments squared for those five transitions at each concentration. a similar drop in the the dipole matrix amplitude squared due
to a type | to type Il transition.
sponds to a “type II” offset with holes on the random alloy Explanation of why the VBM of the ordered domain
domain and electrons on the ordered domain. This is demorghifts below that of the random domain@#é<x=<0.9: The
strated by the wave function plot in Fig(l#, showing local- ~ ordered AlGa,_,N alloy is an alternating sequence of two
ization on different domains. types of(0001) cation monolayers, which have different Al
Consequences of the type | to type Il transitiGigure  concentrations, one is Al-podiconcentrationx;) and the
1(c) shows as crosses the dipole matrix element versus conother is Al-rich (concentratiorx,), with x=(x;+X,)/2 and
position, for transitions between the top five valence bandy=X,—Xx;. As illustrated by Fig. 8a), the maximal allowed
states and the CBM. A Boltzmann average of those transidifference x,—X;= 74, under the constraint ok, ;=0
tions at temperaturd =300 K is shown as a solid line. grows withx for x<<0.5. It reaches;,,,=1.0 atx=0.5, and
While in the type | regime ok=0.4 (and x=0.9) we see then decreases back to zeraxat0.5. There are three physi-
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