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To predict the ground-state structures and finite-temperature properties of an alloy, the total energies of many
different atomic configurationsr={o;;i=1,... N}, with N sitesi occupied by atom Acg,=-1), or B (o;
=+1), must be calculated accurately and rapidly. Direct local-density approxim@tiaf) calculations pro-
vide the required accuracy, but are not practical because they are limited to small cells and only a few of the
2N possible configurations. The “mixed-basis cluster expangiMBCE) method allows to parametrize LDA
configurational energeticg palo;;i=1,... N] by an analytic functionaEygceloi;i=1, ... N]. We extend
the method to bcc alloys, describing how to seldgtordered structuregor which LDA total energies are
calculated explicitly and N pair and multibody interactions, which are fit to the, energies to obtain a
deterministic MBCE mapping of LDA. We apply the method to bcc Mo-Ta. This system reveals an unexpect-
edly rich ground-state line, pitting Mo-ricf100) superlattices against Ta-rich complex structures. Predicted
finite-T properties such as order-disorder temperatures, solid-solution short-range order and the random alloy
enthalpy of mixing are consistent with experiment.

DOI: 10.1103/PhysRevB.70.155108 PACS nuni®er61.66.Dk, 71.15.Nc
I. INTRODUCTION = —
AHcg(o) =Jo + (2x-1)J;, + 2 ‘]paieraierair(a)
A. The cluster expansion method: Definition and scope pairs
Alloy thermodynamics, including properties &t0, re- + 2 JueDusllye(0). ©)
quire the knowledge of the excess energy MBs

The interaction parametefd;} now signify all possible in-
AHgirecd @) = Eqt(A1,By; @) = (1 =X)Eo(A) = XEo(B), equivalent pairs and many-bodB) figures f. They are
(1)  configuration independeftwith D; as each figure’s symme-
try degeneracy per site—any configuration dependence is

] ) ) ) contained in the lattice-averaged correlation functions
of the solid A _,B, relative to the total energy of its constitu- —

ents A and B. For a given underlying lattice, the degrees opf(")' Although Eqs(2) and(3) contain, in principle, many

freedom form a configurational vecter, whose components Interactions, the energetics of bonding is usually determined

o;=%1 record whether a lattice sites 6ccupied by element by relatively short _Iength scales. Therefore, already a finite

AI (6:=-1) or B (¢;=+1). Since AHy, (@) is difficult to number of interaction parameters is expected to provide the
1= 1= . Irec

calculate quantum mechanically for an exhaustive set Ogesired mapping of energetics with sufficient accuracy. The

structureso, it is often described by way of a cluster expan- IESV%?Jéaalléﬁlgtseu daltl)y fltr;[gazeItgc?r;r:igjgt%;zfrzmr;ae?ﬁg de'?o_ be
sion (CE) Hamiltoniart—6 P y

mapped[local-density approximatiofLDA) in our casg
Note that there is no requirement for atoms to remain spa-
AHeg(o) = Jg+ > aidi + >, Ji o0+ > JikOiTjOKF ... tially fixed at the exact positions of a rigid lattice, since the
i ij ijk effect of relaxation can be accounted for simply by minimiz-
ing AH pa With respect to the unit-cell volume, shape, and
2 : ; .
internal coordinates for each inpat Once numerical values
for the parameters of E@3) are available, the payoff is fast
{J} are the interaction parameters for each pair or many-bodyccess to many quantities of interest. For metallic and semi-
combination of lattice sitesi, j, k, etc. The cluster conductor alloys, these are, e.g., ground-state structures,
expansiofi*° attempts to describe the energies of all differ- order-disorder transition temperatures, or short-range order
ent configurations with the accuracy of present-day densityat finite T (see Refs. 13—19 for typical examplewhich are
functional methods. It is based on the fact that @yallows  directly measurable in experiment.
to map an arbitrarily complex Hamiltonian with electronic  when constructing a CE for a specific system, the major
degrees of freedorexactlyonto a simple sum over crystal- tasks are to decid¢) what type of figures(pairs, three-
lographic degrees of freedofrfor practical purposes, Eq. pody,..) and how many are needed for a given alloy system,
(2) is typically recast in terms of symmetry-inequivalent and (i) how to obtain the magnitude of the chosen interac-
figurest* Also, without a loss of generality one may subtfact tions{J} from a well-posed microscopic theory of alloy elec-
a configuration-dependent reference eneligy from AH.  tronic structure. Over the recent yeafs} were often pro-
We may expand\H, pa =AH, pa —Eef asAHcg, So that vided by the “mixed-basis cluster expansid#*2°(MBCE)
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Ta-W. A more recent theoretical assessment of T&W@lso

Al AB) Nb Ta Mo using two pair interactions for thermodynamics, corroborates
LRO T, this finding and suggests an additional F&@pe ground state
R TaWs; at very low T. The comparison of predicted A2-B2
Ta transition temperatures finds Mo-Ta in the lead again, with a
supposedr, just above 1000 K.
Mo —97 meV® | —114 meV? We select Mo-Ta for this study since it shows the largest
B2/800K° | B2/1040K° magnitude ofAH,,, and the highest predicted, of the
above refractories, and because short-range order of Mo-Ta
W | 80meV® | -89 mevi| +5meVv® was already experimentally observed.

B2/920K°

Il. SHORT-RANGE REAL-SPACE CLUSTER-EXPANSION

FIG. 1. Properties of refractory binary alloys from earlier ex- FOR MO-TA

perimental and semiempiricgl theoretic_a_l work: E_nthalpies of mix- T4 use Eq(3), one must extract the relevant interactions
ing AHp;x for the equiatomic composition, predicted long-range gnq their numerical values for a particular alloy. To illustrate
order (LRO) and critical temperature$,. References(a) experi- i e first examine a short-range cluster expansion in real
mental(Refs. 25-27, (b) Colinetet al. (Refs. 28 and 29 and(¢)  gpace: one whose input structures and figures are user-
Sigli and SancheRef. 30. selected based on intuition alofe.

Many CE-based work$33-0consider only a set of the
formalism for many fcc-based alloys. In this paper, we de-gpatially smallesf;, which are then combined with a similar
scribe how to construct a deterministic, LDA-quality MBCE, number of “usual suspect” ordered input configurations.
i.e., how(i) and(ii) are addressed by a systematic assessme@onsider the Connolly-Williams meth&don the fcc lattice:
of the predictive power of a given CE within a set of input |t employed the five shortest figures, obtained from five
AH\pa (cross validatiof#), and the iterative enlargement structural energies—a fully determined fit. Here, we pursue a
of the LDA input data base as a whdf?? We extend the pcc equivalent of this approadfFig. 2). We use theNg=6
formalism to abcc-basedvinary alloy, Mo-Ta. In addition to  simplest figures, those with a maximum intracluster distance
predicted ground statéd,we address the system’s finife- yp to second nearest neighbors: the empty and point interac-
thermodynamicgorder-disorder transitions, short-range or-tjons, the two smallest pairs, and the smallest triangle and
der, and random alloy limitin relation to experimental tetrahedron. They are fit td,=6 AH,ps Values for elemen-
work 242> tal A and B, the D@ structures AB and AB;, and the B2 and

B32 structure.
B. Why Mo-Ta Figure 3a) shows the resul;ing interactipns of this ap-
] . proach for Mo-Ta: The dominant term is the nearest-

The most prominent group of fully bec-based binary al-peighpor interaction, with higher interactions of considerably
loys (no known phases based on a different type of underlysmajler magnitude. In fact, the second nearest-neighbor pair
ing lattice, e.g., fcpis formed from the refractory elements s so much weaker than the first that a casual observer might
Nb, Ta, Mo, and W, located in groups VA and VIA of the gjready claim “convergence.” We now use these interactions
per_|od|c §ystem of elgments. Figure 1 summarizes some qh predict from Eq.(3) AHcg for the 3000 000 bcc-based
their pertinent propertieS:*° The atomic size mismatch of crystal structures with up to 20 atoms per unit cell, as given
all six possible binary alloys formed between them is belowyy the exhaustive structure enumeration scheme of Ref. 13.
5%. Their experimental phase diagrams show only continuThe results are plotted versus composition in Figh)3
ous bco(A2) solid solutions! so it is not known if at lower  \yhere one can identify the predicted ground states as the
T these form any long-range ordered compounds, or phasgeaking points of the convex hull encompassing all struc-
separate. Regardinghortrange order in the solid solution, y,res. Convexity is needed because any identified ground
the only available experimental report pertains to Mo*Ta, gtate o, of compositionx, must be lower in formation en-
where x-ray diffuse scattering showed cléabO-centric in-  thaipy than a phase-separated combination of the closest
tensity for 21% and 37% Ta. FQV_MO"\?B'MO'TE‘-% and  nejghboring ground statas;_, and o;,,. We call the differ-
Ta-W?’ negative enthalpies of mixing were observed, withence between these cases the “energetic depth of a ground
Mo-Ta giving the most negative valudAHe AB)  giate n,,
=-114 me\. No experimental results are available for the
remaining combinations, but a number of earlier semlemplr-Ai = AH(0r) - Xi+1 — X AH(o_p) + X~ Xi-1 AH(oy) |,

ical tight-binding-based calculations extét3°These sources Xie1 = Xie1 Xiv1 = Xiq

agree upon a clearly less negatixél for Nb-W, and even 4)
slightly positive values for the in-group combinations Nb-Ta

and Mo-W. and demana,; < 0. Indeed, this short-range CE exhibits only

Where available, Fig. 1 also contains theoretical predictwo ground states: BeMoTa), and DG (MosTa). Both were
tions regarding long-range order. Focusing on the two shortalso LDA input structures, and one might again conclude
est pair interactions, the theoretical model of Sigli and“convergence” of the CE from the consistency of the ground-
Sanche? predicted stable B2 order for Mo-Nb, Mo-Ta, and state line and the LDA input set.
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Short-range CE: LDA input structures

bee Mo D03 MozTa B2 MoTa B32 MoTa DO0s MoTag bee Ta FIG. 2. (Co|0r on|ine |nput
structures and figures for the
Short-range CE: Figures short-range real-space CE of
Mo-Ta.
0269 0269 0269 0269 02 e? 029
@ | o | | ]
OQT*QO 0° o° Sawre QQ_OO O > O
empty point smallest 2nd smallest smallest smallest
figure figure pair pair triangle tetrahedron

The pitfall of using a small number of intuitively selected AH, ;o —AHcg are much larger than typical intrinsic LDA
structures and figures is the resulting lack of predictiveerrors. For instance, the short-range CE is off by 31 meV
power. This can be assessed by comparing its results with @7% of AH p,), 31 meV(20%), and 44 meM30%) for the

fully converged cluster expansion of Mo-Ta, described inthree

structures  C}MMo,Ta), Cli(MoTa), and

Sec. VI, which is based on 56 input structures. The importanB11(MoTa), respectively.(2) The ground-state line of the

failures of the short-range CE argt) Its prediction errors

‘ Mo-Ta: Short-range CE (real space) |
T T T F .
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FIG. 3. () Symmetry-weighted interactiori3:J; extracted from
the short-range cluster expansiofb) Exhaustive ground state

short-range CE is quantitatively far from the converged CE
[see Fig. )], by up to 24 meV. Furthermore, the short-
range CE misses all but the B2 ground statéssed six (3)

As pointed out by Lakst al,?° the limiting AHcg of both
elements phase separated on the same coherent lattice is
wrong. In a short-range CE, the predictAiig of A,B,
superlattices must converge to zero with growing period.
However, simple elasticity theory shows th&H;, in fact,
remains finite even for the fully phase-separated configura-
tion, since both constituent element crystals must fit the same
coherent underlying lattice. Even worse, the limitiag;

may depend on superlattice orientatios- this is known as
the “k— 0 singularity.”

In principle, there are several reasons for the qualitative
failures(1)—<(3): (i) No information on coherency strain in the
infinite superlattice limit is includedThe short-range CE is
strictly finite ranged and therefore cannot capture kheO
singularity. (i) Unphysically few figuresSince the number
of figures is limited by the number of input structures, the
“cutoff” of relevant figures is mandated by fit technicalities
rather than their physical decay with distan@é.) Limited
information on atomic relaxatianThe short-range CE is
based on high-symmetry ordered structures, which are pro-
hibited by symmetry to relax, both with respect to unit-cell
shape and internal coordinatéis.) No measure of predictive
power. The short-range CE lacks a quantitative criterion to
assess the predictive power of its fitted interactiqu$.No
mechanism to extract relevant input structures and figures
The short-range CE does not ensure either the suitability of
its figure set to describe the material in question, or of its
input structures to sample the configuration space optimally

search(three million structuresbased on the short-range cluster for a given material. As a consequence(bHv), a short-
interactions. The ground-state line of the converged cluster exparfange CE approach may yield deceptively “converged” re-

sion of Sec. VI (broken line and trianglgsis included for
comparison.

sults with respect to ground states and interactions, but as we
see, any coincidence with truly converged results is acciden-
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tal. While an intuition-based approach which already in-pair separatiorR,,; is enforced by weight factonﬁgai,.
cludes other “usual suspect” structures such as,®dduld Using this definition, the individual pair interactiodg.;
potentially come closer to the trutfi)—(v) will nevertheless have been replaced as user-adjustable degrees of freedom by
remain as qualitative issues. We will next discuss the cont, A, and the cutoff pair number,;.s In contrast, the selected
ceived cure to problem@)—(v). multisite interactiongJyg} remain direct degrees of freedom
of the MBCE.

IIl. THE MIXED-BASIS CLUSTER EXPANSION METHOD:

PREVIOUS IDEAS TO OVERCOME DIFFICULTIES C. Description of alloy atomic relaxation

0-(v) . o ,
Atomic relaxation in alloy$2°4243includes(a) homoge-
A. Correcting for coherency strain in the superlattice limit neous volume deformationséV, (b) relaxation of cell-

We correct the K— 0” singularity of the long-period su- externalcoordinatesa;,a,,as} [€.9.,(c/a) ratio in tetrago-

perlattice limit as described in Refs. 10, 20, and 41. We sefal compounds and (c) relaxation ofcell-internal atomic

finite-ranged configurations effects of (b) and (c) depend on the type of configuration
. considered: High-symmetry structures such as the cubic B2,

AEZY(x,k) B32, or DQ; compounds are prohibited by symmetry from

Eref(‘r):% —4x(cl—x) Sk, 0)[PF (k). (5 having any cell-external or -internal relaxation. Tetragonal

structuregsuch as the AB superlattice of b¢t10) planes,
Here,Sis the structure factor of configuratiam (the lattice ~ Ai] can have important cell-externalc/a) relaxation,
Fourier transform ofr), andF a |k|-dependent damping fac- whereas structures that possess a large number of degrees of
tor (F=1 in the present wopk*! freedom not fixed by space group symmetry have significant
AESY(x,k) is defined as the energy limit of an infinite cell-internal relaxation contributiongfor instance, changes

hase-separated all erlatticg on the same coherent un- in ‘“te”a-‘/.ef spacing of Iongjperiod cqherent superlattices
Z Vi Ip . . h@upf Q. ik A,B, which lead to a net shift of the interface between A
erlying lattice, with interface orientati and B within the cell.

a . The “relaxation energy” is the difference between relaxed
AExK = min {(1-X)AEN & plane (C/a)A] gy

Bin-plane (CA)A (Tl and unrelaxed total energies. In the MBCE with a finite set of
figures, relaxation energy includes a piece due to explicit
+ XAEg[&n.piane (C/2)g ]} (6)  figures{J} and the constituent strain, E€5). The first part

can be written by inverting Eq23),

B. Use of an unrestricted set of pair interaction figures — ~
_ _ - Ji= 2 [l (0)AHce(0). 9
Reference 20 also outlines how to include @m prin- pu

ciple) unlimited number of pair interactions by way of a __ _
constrained fit approach. This procedure defines the types 6Fl; (o) here denotes the inverse of thtrix I1i(o).] This
parameters to be extracted by the “deterministic MBCE” apcan be reinserted into E¢B), yielding

proach described later in this work. Consider a straightfor-

ward fit of N pair and many-body figures td,, previously AHce(o') = > Qoo AF|CE(0-) +Ecq0’), (10
calculated LDA input formation enthalpi¢dAH, pa(o)}. The o
CE must then be truncated b <N, interactions, since the — — o
usual least-squares sum whereQ, ,=3I1:(a")I1; (o). For the random alloy limit at
compositionx, we take the configurational average over all
Slsq=EWU|AHLDA(O') - AHce(0)2 (7)  configurationse’ of compositionx, (AHcg(0”)), x. Since
a

(I{(0")),r x=(2x=1)'t for a figuref with I; vertices, we see
(with possibly different fit weightswv, for each configura- that each input structurer entersAH,,dX) with a well-
tion) does not allow for more parameters. So, longer-rangedefined weight
figures are forced abruptly to zero, regardless of their actual ~
physical value. As a remedy for pairs, one formally includes AHandX) = 2 Qrand ) AHce(0) + (Ecd(0))yr  (11)
all pair terms, but amendss, with an additional constraint o '
per pair. We minimize

with
t R )’ _
Swiace = Sisq — 2 RoaiDpaidzair a=<2 : = - ' I
BCE = Sisq apairstalr pairpair =N Dy Qiand 0) ; (2x- 1) T (o).
(8

We may apply the same approach to formally expand the
The pairs sum is now only mathematically limited to a maxi-relaxation contribution of an ordered configuration. The con-
Mum Ny,is tis @ Lagrangian multiplier and is a normal-  ventional relaxation energy, without separating out constitu-
ization factor. The proper spatial decayJyf;, with growing  ent strain, is
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rel (1 — rel ( \ _ A pgunrel (b) For ordered structures, the model of Et¢) does not
Ford ) 2(,: Qo o[ AHce(0) ~ AHce )] (12 incorporate relaxation effects that distinguish differently ori-
] ] ] ented superlattice®. In the ETM, this relaxation energy is
So, the re_zl_axatlon energy of the random alloy is a weightedarg in the long-period limit.
superposition of relaxation energies of ordered compounds (c) As noted by Rubaret al, the model of Eq(14) rep-
resents the random alloy of compositivas having aingle
5E£§L0(X) = 2 Qfano("')[AHEelE(") B AH%nErd("')]' (13 value of A-A relaxed interatomic distanc@ikewise for A-B,
7 B-B). The general model of Eq13) contains contributions
Constituent strain is implicit in this equation as a piece dugrom a distribution of values for each of these bonds. This
to long-range relaxation, and would appear as an additionalistribution can be broat?.
term in the actual MBCE formalism. (d) The model of Eq(14) attempts to capture all relax-
Recently, Rubaret al** proposed a simplified theory of ation forms by volume relaxation alone, similar to tke
relaxation for the random alloy alone, based on breakingelaxation proposed early on by Wet al*® The general
down each configuration into the smallest possible tetrahedraodel of Eq.(13) includes all three forms of relaxation.
that allow for a space-filling tiling of the alloy“effective We may test the validity of the ETM approach by com-
tetrahedron model,” ETM Their approximation forsg'®! paring with LDA: Determining relaxation energy differences

rand . .
consists of three steps: FirgdE™! | is written as a sum only for lower-symmetry structures which consist of more than

of volume energy changes of rZ\rllldinequivalent tetrahedra in @ne type of tetrahedron. For instance, for Ma C11, the
given structure. Second, the volume deformation energy for 8DA relaxation energy 6E pa=-7.1 meV while for
particular tetrahedron A,B, (n=0,...,4 is approximated MoTa, Cll, 6E. pa=—23.4 meV. In the ETM, we note
by the volume deformation energy of a crystal structure thathat the C13 unit cell consists of 24+8A3;B +8A,B; tetra-
consists exclusively of this tetrahedron type. Third, the rehedra. Using the LDA relaxed tetrahedal volumes together
laxed volume of each tetrahedron typg£B,, in the random  With LDA-derived E(V) curves for A, A3B, and AB, (de-
alloy at compositiorx is estimated from a harmonic spring scribed by the bcc, DOand B2 structures, respectivglyve
model. For fcc, we have five tetrahedra corresponding to fcarrive at oEq gry=-4.9 meV for MgTa C1}, and
(Ay), L1, (A3B), L1, (A,B,), L1, (ABy), and fcc(B,), re-  —5.1 meV for MoTa C11,. The obvious asymmetry in re-
spectively. On the bcc lattice, there are two inequivaleniaxation energies between Mia and MoTa is missed en-
forms for AB,, i.e., n=1,...,6 inequivalent tetrahedron tirely by the model of Eq(14). A failure of the ETM for
decorations A_,B,,, which correspond to the six structures relaxation energies of early transition metal impuritispe-
pure bce(A and B), DO; (AsB and AB;3), B2 (A,B,), and cifica_lly NDb, M_o) in Cu was a!ready pointed out in Ref. 44,
B32 (A,B,). The complete ETM expression thus resemblesand it is possible that the failure we observed is related to
Eqg. (13), but with the sum limited to the six specific high- those results. For the present purposes, we conclude that we
symmetry configurations, an@,..{ o) replaced by the Ber- require a converged expression like @) to capturest

noulli probability p™(x) to find a given tetrahedron decora- correctly, rather than a limited sum based on the volume
tion n at compositiorx deformation of high-symmetry structures, Ed4).

D. Measures for the predictive power of a CE

6
SEE™(x) = 2 P O{EM VIR (x)] = EM Vim0 1} In earlier MBCE paper10.13.16.18problem (iv) was ad-
n=1 dressed by constructing the CE from a subset of the input
(14 LDA {AH(o)} and using the ensuing} to predictAH g for

the remainingAH, p (o) outside the subset. The average er-
(n) LDA

Here,V (x? _denotes_the volume of a tetrahedron of structure AHcge—AH, ps of the predictions was then used to gauge
n, but equilibrated in a random alloy of volumé.,{x).

M i . . . _ the quality of a chosen set of interactions. In mathematical
VI"(x) is approximated by calculating diatomic lengths A-A, giaistics, this procedure is known as “hold-out set cross-

A-B, and B-B in the random mediunwith bulk moduli  \5jigation” (HOS-CV),2! the hold-out set being the set of
instead of atomic force constahjt@and combining these to predicted LDA structures. Van de Walle and Cédérave
get the total volume of each tetrahedron tyBE[V,0()]is  recently used “leave-one-ogtO0) CV: Given N, input
the value of the equation of the state of structarat the  structures and a set of pairs and many-body interactigps,
volume V' (x). E[; Vynef¥)] is the same quantity for un- successive cluster expansions are performed with @ely
relaxed random alloy. Comparing the general expression Eg:1) structures in the fit, and subsequently the one left out is
(14) to Eq.(13) of the MBCE formalism helps to reveal their predicted. The LOO-CV score is the average over the predic-
important distinctions. tion errors for each omitted structure. Both HOS-CV and
(a8 The model of Eq.(14) includes random alloy relax- LOO-CV have their own disadvantages. Since the configu-
ation only due to high-symmetry ordered structures @&c rations in the fit set are never predicted for HOS-CV, a CE
and B, D03 (A3B and ABy), B2 (AB), and B32(AB), which  selected this way will overemphasize the configurations in
each have an isolated, single type of local environment. Inhe prediction set at the expense of those in the input set.
contrast, the model of Eq13) allows all types of ordered LOO-CV solves this problem, but on the other hand was
configurationse to participate in determining relaxation en- shown by Sha¥f to favor articifially complex interaction
ergies. sets.
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E. Selection of input structures and interactions

Regarding pointv), the choice of pair figures is facili-
tated by the constrained fit EB) above. However, in earlier
work?10.13.16.18he choice of relevant many-body figures re-
quired tedious comparison of predicted and actual propertig
of an alloy to ensure that the optimum fit had been chosen. |
this process, additional LDA input structures were intro-
duced as needed, e.g., as ground-state structures of so
previous prediction, but might also be excluded again if they
were too high in energy and could not be fit accurat@ly.

IV. OPTIMIZED APPROACH TO THE SELECTION OF
INPUT STRUCTURES AND FIGURES

A. Leave-many-out cross-validation

PHYSICAL REVIEW B 70, 155108(2004)

—)‘ LDA input set {AH pa(o)} ‘

v
|

Identify predictive interactions sets {{, X, 7pairs; { JmB}}
Criterion: Cross-validation

¢ ¢ + + equivalent
e e [ e 1}camﬁqate
v v v 2 cE
’ Identify distinguishing configurations o ‘

v

additional LDA calculations for selected o
— estimated true prediction errors

Refine & apply optimum CE

|

As mentioned above, the most promising technique to

judge the predictive power of a CE frowithin a given set of
input AH, pa (o) [problem(iv)] is cross-validation However

FIG. of MBCE construction

algorithm.

4. Schematic flowchart

the two previously used approaches may either be prone to

overoptimizationHOS-CV), or allow for artificial complex-
ity of the fit (LOO-CV).*"

To address both issues, we follow Sh4db6suggestion and
use a form of “leave-many-ouf{LMO)-CV?! to distinguish
givent, N, Np,irs and the choseflyg}. From a totaN,, input
structures, seledi, prediction sets oN, structures. For each
set, use only the remaining,—N, input structures to obtain

potentially infinite multitude of possible combinations. Our
approach is twofold: first, we restrict the allowed many-body
figures to a large but finite pool of possible candidates—in
the present work, 47 MB figurgsee Sec. V B Second, we

search for the optimum combination of figures for a given
total number one by one, i.e., we first identify the MB figures

the numerical pair and many-body interaction values whichyhich give bests,, when fit with otherwise only pairso,

minimize sygce Of Eg. (8). Then, determine the prediction
errors for theN,, validation structures from the best-fit inter-
action values. Here, we usé,=2N,/N, prediction sets, se-
lected randomly with the constraint that each individual in-
put structure appears in at least two prediction sets. Finall
the CV score is the average prediction error over the differ
ent prediction sets

> X

b set$ (N, o in seb

_ 1

= 15
N, (15

Sev |Hee(o) = HLDA(O')|2-

B. Iterative determination of input structures and figures

Our iterative algorithm to determine simultaneously both

the relevant input structures and the relevant MBCE param- ; i i i
| reflect the region of configuration space which we are most

eters{J} is schematically outlined in Fig. 4. Given an initia
LDA input set of configurationgr, we compares., for many

different MBCE parameter se{d}. Formally, we distinguish
between different combinations of many-body terfdgg},

while {t,\,nyaird become dependent variables by minimizing
Sy 0N a three-dimensional grid. We place an additional con
straint on each candidate CE: As also pointed out by van d
Walle and Cedet? any cross-validation score can still be
subject to overoptimization by including too many free pa-

and J; in the CE. Next, we identify a second many-body
figure which gives optimuns,., when included together with
one of the optimum first figures, etc. This strategy has been
found to work quite reliably in practice. Yet, it is not exhaus-

Yive in the sense that correlations in the search space could

still be missed(e.g., the optimum set of five MB figures
might not include one of the best single-MB candidates
Normally, the result of the cross-validation analysis is not
a single, “definitive” sefJyg}, but rather a number of dif-
ferent combinations which yield similar CV scoréabeled
“CE 17,..., “CE n" in Fig. 4). To further distinguish these,
we investigate theia posterioripredictive power, by calcu-
lating additional AH, (o) and comparing to predicted
AHce(o). These new configurations are handpicked to best

interested in—e.g., a number of ground-state structures pre-
dicted by thes,-equivalent CEs. If the estimated true pre-
diction error becomes sufficiently low for the optimum CE,
and the predicted ground-state line agrees with what is
known from LDA within the projected error limits, we ac-
gept this combination of interaction parameters; otherwise,
we add the newly calculated LDA results to the initial input
set and reinitiate the construction cycle.

rameters for too few input structures. To address this risk, we The resulting “optimum CE” is ready for use already at

simply limit the maximum number of many-body figures al-
lowed in the cluster expansion. In practice, we used a maxi

this stage. In practice, however, it is advantageous to add the
newly calculated LDA results to the initial ones anyway, and

mum of five many-body figures in the final construction steprefit the exact same combination of parameters for the full set

of the Mo-Ta MBCE.
An important issue is the identification of those MB fig-
ures which minimizes,, for a given LDA input base from the

of available input data, possibly using fit weights. This may
further improve the CE’s reproduction of particularly desir-
able features of configuration space.
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TABLE I. Convergence of the B2 compound formation enthalpy bic bcc unit cel) give sufficient accuracies wherever forma-
with respect to cutoff energl.,; and Monkhorst-Pack typespace  tion enthalpies can be calculated using equivakemtids for
grid. The error is defined with respect to the best converged casglements and compoun#sin a few cases, the equivalent
consideredf,=300 eV and the 18 16X 16 k-space grid. Con-  k-point method proves impractic.g., for 13-atom unit
vergence is sufficient already &,=250 eV and a 1X12X12  ¢g|ls); here,k-grid convergence was achieved explicitly, us-

grid. ing Blochl's tetrahedron methéifor Brillouin zone integra-
tion. The most significant approximatio@xcept possibly
Ecut (6V) k mesh AH¢(B2) (meV)  Error (meV) LDA itself) is the use of the PAW pseudopotential approxi-
250 8x 8% 8 ~203.0 +1.6 gl?tion'.trll:or the B% s};[ructl[:rei thte erro['&sp@ughl?/ 1? trp%v, or
~ ~ o with respect to all-electron calculatiotfs:
;28 ig ii iz _igjg +8'i AHyjee=—195 MeV (LAPW) vs AHjguq5—205 meV
: : (PAW).
800 8x8x8 2032 1.4 To obtain Ecs(x,k) for the infinite superlattice limit ac-
300 12<12x12 —204.9 03 cording to Eq.(6) [and, subsequentl,.{ o) for each con-
300 16x16x 16 —204.6 0.0 figuratior], we calculated the deformation energies of bcc
Mo and Ta explicitly as a function ad,_pane @and c/a, for
V. DETERMINISTIC CLUSTER EXPANSION OF MO-TA k=(1,0,0,(1,1,0, (1,1, (2,1,0, and(3,1,1; for other ori-
_ _ _ entations, these results were interpolated using Kubic har-
A. Constructing the MBCE input: LDA calculations monic functions'®6 Figure %a) shows the calculated con-

To obtain the MBCE parameters defined in Eg) as  Stituent strain energig@finite superlattice limitfor the five
described in the preceding section, we require two distincgXplicitly calculated orientations. For the particular case of
types of input from total-energy calculation: The formation M0-Ta, Ecsis relatively small[Ecs=17 meV) compared to
enthalpiesAH,p (o)} for a set of selected input configura- typical formation enthalpies-205 meV for B2 MoTa. It is
tions ¢ including full structural relaxation, and the corre- @S0 nearly isotropic, as reflected in the almost spherical,

sponding constituent strain contributi@i.{ o). interpolatedEc4(k) landscape shown in Fig(#%) for x=0.5.
Total energiesE,,, for elemental Mo, Ta, and their com-

pounds were obtained in the LDA to density-functional B. MBCE construction for Mo-Ta

theory, using the momentum-space total-energy méthasi o )

implemented in thesasp program packag®:5° Mo and Ta 1. Cluster expansion iterations

were represented by projector augmented waRAW) The mixed-basis cluster expansion of Mo-Ta was created

potential§*-52 including 4p and 5 semicore states, respec- in five iterations of increasing LDA input size. The full al-
tively, together with the exchange-correlation functional ofgorithm of Sec. IV(Fig. 4) was employed from iteration 3
Perdew and Zung&. The momentum-space basis setsforward, while minor differences prevailed in iterations 1
(plane-wave cutoff energ¥.; and grid ofk pointg were  and 2. To better illustrate the capabilities of the full strategy,
chosen to give converged formation enthalpies of meV accuwe also include here MBCE's constructed for the LDA data
racy, as illustrated in Table I. All compound geometries werebases of the first two iterations, obtainadhosteriori using
fully relaxed according to their symmetry, including both the exact strategy of Sec. IV. The final regalptimum CE of
cell-external (lattice parameter and shapeand internal step 5 is independent of this history.
(atomic coordinatesdegrees of freedom. As described in Fig. 4, our strategy is to iteratively in-
Table | gives basis set arldpoint convergence tests for crease the pool of available LDA input structures. In each
the simplest compound structure, B2 MoTa. These tests shoiteration (fixed LDA input se}, several “candidate CE's” are
E..=250 eV to be sufficient. Likewise, Monkhorst-P&tk constructed that help predict structures of interest to be cal-
k-point grids of 12< 12X 12 or dense(pertaining to the cu- culated in LDA for the next iteration. In Appendix A, Table

| Constituent strain in Mo-Ta|

Sos————————

E

:2 (110) (111)

5207 @101\ /(100) i i i
o (311) FIG. 5. (Co[or onling (a) Constituent strain
©15¢ b energyAEZL(x,k) as a function ok for different
© interface orientation&. (b) Polar representation
@ 101 ] of interpolatedE2y(x,k) as a function ofk for
& x=0.5.
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6 lteration 1 4.41 meV
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FIG. 6. Optimum many-body figures of the final MBCE itera- 2: final 3.59 meV
tion, extracted from a pool of 47 candidate clusters. ol T e I S

IV lists all LDA-calculated input structures for Mo-Ta, to- Predictio
gether with their formation enthalpies and the iteration in o _
which they were first introduced. The input for iteration 1 FIG. 7. Leave-many-out cross-validation for the best candidate
consisted of a set of 24 structures, marked “1” in the lasMBCE of each iteration of the construction process. We show the
column of Table IV. In iterations 2-5, the input set was in- prediction error for each indi_vid_ual set. Ten sets of_fiv_e structures
creased to 34, 43, 49, and 56 structures, respectively, witheh (.10./ 5 were averaggd in iteration one, 1078 In iteration 2,
the additions in each iteration also marked in Table IV. Inlz/8 in iteration 3, 12/8 in iteration 4, .an.d 12/12 in iteration 5.
. . . ., Dashed lines show the average prediction erspy, for each

each iteration, the pool of many-body figures from Wh'Chiteration

candidate CE’s were selected comprised 47 candidate clus- '

ters: 13 inequivalent three-body terms up to fifth-nearest-

neighbor maximum intersite separation, 27 inequivaleml‘s_.z' S0y can b? used as a.qual|tat|ve criterion to j.udge
four-body figures up to fourth-nearest-neighbor maximumpredictiveness within one iteration, but not as a quantitative

intersite separation, 4 inequivalent five-body figures up tg°"€ across different CE steps. For the latter purpose, knowl-

third-nearest-neighbor intersite separation, and the smallegfgf\’/lgfcsféa' (i.e.t, m?nitqring aﬁditiqnal iNpuH, o, after
s!x—body figqre, the octahedrc(third—nearest-neighbor ipter- elt o app;:)ennst :‘lrjgrrlmo'rl]'alglsalllcth;)eﬁ rgi‘;i?ﬁ;y'to 6 meV
site separation As examples, Fig. 6 shows the optimum li.e., 3% of the minimum\H (82)331205 eV in the sve-
many-body figures used for the final Mo-Ta MBCE: four '~ LDA - y

three-body figures and one four-body figure, extending up tgem for the first iteration of the MBCE construction process.
fifth-nearest-neighbor intersite separation at most. In a final €"C€, Some average thermodynamics of Mo-Ta can be cap-
step, the optimum CE of iteration 5 was refined once mordured already with a MBCE based on the 24 initial LDA

using the same LDA data base, but by applying fit weights ofnput §tructures. ,However, what .is not yet captured at this
10 to the CE ground-state structures. This procedure imstage is the alloy’s ground-state line. Its development across

proved the representation of this particularly interesting redifférent iterations is also summarized in Table Il for the
=0.2. Of the seven ground states at-

gion of our without severe impact to other areas of the fit, COMPOSItion ranger,
Figure 7 illustrates the LMO-CV score for the optimum TABLE II. Perf  th lidati imized CE i
MBCE of each iteration. LMO-CV scores for different itera- __ %~~~ irtﬁrmﬁg%‘? t etcroi_s-vauEatlog Opt”t";'zel t n
tions are not directly comparable numerically since the inquaC teration ot the constructiosy, [Eq. (N] s the least-
L s%uares fit error of the LDA results known in each sigg, is the
structure set changes, and prediction sets are freshly chose dicti £ all K . cular | .

h time. Nevertheless, an interesting trend is apparent: ttgre iction error of a structures unknown in a particular iteration
each I. | d, f h h. Tt known in the final one. Also listed is the number of ground
numerical values OfS,CV 0 not fluctuate very muc . aS, t € states of the final CE which were correctly identifiédorrect”),
LDA.st_ructure base increases. O'nly the sca’gter of individua},ose which were not identifieimissing”), and those which were
prediction set errors around their average is somewhat r&urongly predicted“wrong”).
duced.

It is interesting to compare the developmentsgf [EQ. Ground states=20% Ta
(15)] to that of the least-squares fit erreg, [Eq. (7)], tabu- Sev Sisq Sreal
lated in Table Il for each successive iteratisyg; is always lteration (meV) (meV) (meV) Correct Wrong Missing
clearly smaller thars,,, i.e., of little value to gauge a CE’s

predictive performance. To assess the latter, we can use our 1 44 1.6 52 5 3 2
a posterioriknowledge of the complete LDA input sgfable 2 40 26 60 6 3 1
IV in Appendix A). We may compars,, of each iteration to 3 3.5 25 4.6 4 3 3
the averaged prediction errors for those structures not yetin 4 2.9 2.2 3.3 7 1 0
the LDA data base. These values are termggglin Table I, 5 3.3 292 7 1 0
and can be directly compared with,. While of the same Final 36 25 7 0 0

order of magnitudes., is quantitatively larger by factors
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‘ Mo-Ta: Converged cluster expansion ‘ Sev=3.6 meV, its CV scorglowest panel of Fig. Yis reas-
= ————— : suringly  small—less than 2% _o_f AHf(_BZ MoTa)
e Jo0k 1L | =-204.8 m_e\(. As an additional rgllabll!ty estimate, the av-
> é W e B erage prediction erros,, between iterations 4 and 5 of the
3 I 11 ] CE constructior{i.e., the error of the seven LDA input struc-
LE 0 tures calculated after iteration 4, when predicted by the op-
2 i 1T 1 timum MBCE of iteration 4 amounts to 3.3 meV. The fact
£ -100 thatsgg S ands., are all of the same magnitude is a good
= indicator for the absence of any overoptimization. The

present MBCE of Mo-Ta is a reliable parametrization of the
underlying LDA-PAW energetics.

The converged MBCE allows us to reexamine the short-
range CE approach of Sec. Il and explore the reasons for its
guantitative failure. The short-range and the converged CE
both identify the main qualitative feature of Mo-Ta: a strong
nearest-neighbor pair interaction. However, the short-range
CE neglects all other parts of the full MBCE, and its predic-
tion errors(several tens of melare of the same order as the
missing interactions. Beyond,, the interactions of the
B short-range CE have little to do with the converged results:

(B2 , Its second-nearest-neighbor pair has the wrong sign, and its
0.2 0.4 0.6 0.8 1 smallest three-body interaction is not even part of the final
®) Mo T gontat Is CE. Rather, its value is determined by the numerical neces-
sity to compensate for the point interactidn There are two
obvious reasons for this wrong description of interactions.
ground-state searctthree million structuresbased on the con- First, the number of input structures_ in the _short-range CEis

; . . _too low for the number of relevant interactions. Second, the

verged cluster interactions. Seven ground states are clearly IdemlUIB interactions of the final MBCE would be impossible to
fied between 20% and 80% Targe circles. S .
guess from intuition alone. Overcoming both obstacles ne-

. . ) . o . cessitates a systematic construction algorithm, such as de-
tested by the final CE, five are identified in the first iterationgriped above.

and two are missed; however, the first iteration CE predicts
another three ground states which are “wrong,” i.e., they are VI. RESULTS: GROUND STATES AND ALLOY
not ground states when calculated in LDA. This situation THERMODYNAMICS
improves significantly only in iteration 4, after which one
incorrect ground-state prediction remains. The latter is rem-
edied in the final step by the application of fit weights. A Figure 8b) shows theAHcg(o) versus the concentration
sufficiently large LDA data base is necessary to capture th&ap of all three million structures with bce-based supercells
correct ground-state line of Mo-Ta. up to 20 atoms. As in Sec. Il, ground states can be read from
this plot as the breaking points of the convex hull about all
structures. There are seven distinct deep breaking points in
Fig. 8b). Full atomic coordinate sets as computed\vbgr

The final CE for Mo-Ta employs the five MB shown in can be found in Appendix C. The five distinct small-cell
Fig. 6, andn,,s=8 pair interactions, constrained by9 and  ground states between 20% and 60% Ta are all superlattice
A=4 [Eq. (8)]. Figure 8 shows the symmetry-weighted sequences ofL00) atomic planes: 4B, A,B (C11,), A3B,,
interaction strength®J; for the pairs and MB figures se- AB (B2), and AB5. They are contrasted by two much more
lected by the MBCE construction scheit®ec. V B and Fig.  complex Ta-rich nonsuperlattice structuresBéand A,B;».
6). The clearly dominant interaction is an attractive nearestan in-depth discussion of these structures and their interme-
neighbor termD,J,,=108 meV, which is more than three diate regions is given in Ref. 23. The unexpectedly feature-
times stronger than any other in the system. However, théich ground-state line of Mo-Ta emphasizes the power of a
many further interactions are by no means numerically negsystematically constructed MBCE. Five of these structures
ligible. Pair interactions are of considerable magnitude upare truepredictionsof the MBCE construction process, and
the eighth nearest neighb@DgJg,,=21 meV), and at least only subsequently confirmed by direct LDA calculations.
two many-body figureglabeled M2 and M#are of similar  Simply guessing this variety of atomic arrangements from an
strength. intuition-based, short-range CE approa&8ec. I)) is practi-

By all available criteria, the predictive accuracy of this cally impossible.
CE is of the order of very few meV: The findlHg for all _ -
56 input configurations compared wittH, , (both listed in B. Order-disorder transitions of Mo-Ta
Table 1V, Appendix A gives an average fit errogg, In the approximation of nearest-neighbor interactions
=2.5 meV and a maximum deviation of only 6.3 meV. With only, the transition between the ordered B2 and disordered

=

-50

-100

-150

Formation enthalpy [meV]

FIG. 8. (a) Symmetry-weighted pair and many-body interactions
D¢J; of the converged cluster expansion of Mo-Tla) Exhaustive

A. Ground-state structures

2. The converged cluster expansion for Mo-Ta
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Nearest-neighbor only: TABLE Ill. Critical temperatures of ordered ground states from
A2-B2 transition 3 Monte Carlo simulationgcell sizes 20k 20X 20 and above
_ 440k MCeel:iexipxte |7 2
%E, I e 125F Ground state Transitionto T, (K)  Transitionto T (K)
2 1o A,B A2 195
£ 180 1, .8 A.B B2 400 A2 560
° T A3B, B2 275 A2 550
£ 2000 12 AB A2 600—1000
L% 220 i losa AsBs A2 610
i A N S A4Bg A2 490
4% 1000 2000 3000 AsB1y A2 385
(a) Temperature [K] —
aSecond-order transition.
Converged CE
A2-B2 transition ) . .
0 MG cell: 16x16x16 & Ref. 59 when restricted to the nearest-neighbor-only approxi-
= los® mation[Fig. 9a)]: As expected for a second-order transition,
E.-140 - AHpn.ony Varies smoothly withT, and a clear peak in the
t_“? o_a:§ specific heat indicate$.=1980+50 K. In striking contrast,
£ -1601 2] the maximum ofC, is located around 800 K for th&ull
g 048 Mo-Ta CE [Fig. Ab)], more than a factor of 2 below the
= 180} 5 short-range approximation. The transition is still of second
g 023 order, but the presence of additional high-order pair and MB
* oook I § figures leads to a dramatic slowdown. Once more, the use of
o 1000 20'00 3000 a shor.t-range approximation proves severely dangerqug, and
(b) Temperature [K] underlines the need for a full MBCE even for qualitative
purposes.

FIG. 9. (Color onling (a) Monte Carlo simulation of the classic  Table Il lists critical temperatures, i.e., the upper limits of
A2-B2 transition in the nearest-neighbor-only approximation, USingthermodynamic stability, also for the remaining ground states
Jnn of the full Mo-Ta MBCE.(b) Same, but using all interactions of of Mo-Ta. In each case, supercell sizes abovex 20X 20
the full MBCE for Mo-Ta. e . . .

were found sufficiently accurate, and clearly pinpointed first-
rder transitions occur everywhere but for B2. Reassuringly,
ll ordered ground states are thermodynamically stable only
well below 1000 K. Additionally, the canonical MC simula-
tions suggest an extension of B2 long-range order to the
Mo-rich side at finiteT. Both the C1] and AgB, ground

A2 states is theoretically well understood as a model secon
order transition. For this case, both the analytseries-
expansionlimit>® and early Monte Carlo simulatiotfsagree
on a transition temperatutgT.=6.35],, Since the nearest

neighbor interactiod,, is the clearly dominant term of our R . .
Mo?Ta MBCE [Fig "é‘(a)] it woulg seem natural that a States transition into a B2 arrangement with one disordered

simple nearest-neighbor-only formula should give a gOOdTa-rich.sublattice rathe_r than direptly into A?. qu fixed con-
idea of the true A2-BZT,. In this approximation, D Jy, centration and accessible cell sizes, possible interfacial ef-
=108 meV of Mo-Ta corresponds toTa of almost 2000 K. fects preclude a defir_1itive co_nclusion on whether_thg Qisor—
This conflicts with experiment, since the published phasélered B2 area prevails also in the thermodynamic limit, or
diagram reports only a continuous A2 solid solution, andWhether a phase-separated A2-B2 regime could provide an
early x-ray diffraction measuremePsrevealed no super- €ven lower free energy on a very large scale. In any case, the
structure for samples sintered either at 17785Kh) or  full MBCE predicts all transitions well below the tempera-
673 K (100 H. Ordering might have been inhibited at 673 K ture range a_ssessed in earlier experiments, and thus yields a
since diffusion in Mo-Ta is slo! but should have been COnSistent picture of Mo-Ta.

sufficiently fast at 1773 K.

This failure can be related to the neglected high-order pair
and many-body interactions of real Mo-Ta. To verify this, we
performed canonical Monte Carlo simulations using our con-
verged MBCE Hamiltonian. We used Mgla, 5 supercells

sized up to 3X 32X 32 unit cells, cooling down stepwise - Y .
from the highT solid solution into the B2-ordered regime, — ), the mixing enthalpyAH (X, T) is given analytically

with 2000 or 4000 spin flips per site and step for propert.’y inserting correlation fy_nctiqn averages over aII.comfigura—
equilibration. Figure 9 displays the resulting mixing enthalpy!ions @ at fixed compositiorx into the MBCE Hamiltonian
AHce and the configurational heat capacy for 16x16  EQ. (3). Since(Ily),|,=(2x-1)" for figuresf with | vertices,

X 16 supercells. The Monte Carlo simulation agrees withwe obtairf®

C. Mixing enthalpies

The MBCE also allows us to investigate finifeenerget-
ics of the A2 solid solution. In the fully random limitT
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gether with our data in Fig. 10; at face value, the experimen-
tal error limits cover our prediction well.

To quantify the impact of short-range order in the solid
solution at finiteT, we performed another set of canonical
Monte Carlo simulations at fixe@i=1200 K, and across the
entire concentration range in steps of 10%. The resulting
AH,,ix(x,1200 K), also shown in Fig. 10, lies below the ran-
dom limit by up to 50 meV. Short-range order is a strong
effect in Mo-Ta, even clearly above thHe range of long-
range order formation. However=1200 K is also the very
temperature to which the above-cited experimental data cor-
respond. If so, ouT=1200 K prediction underestimates the
truth substantially. In principle, this could be a systematic
error of LDA; however, a quick test for the B2 structure
shows that AH(B2)=-199 meV in the Perdew-Wang
generalized-gradient approximati®h,only 6 meV away
from the LDA result(Table ). On the other hand, it is un-

clear how the sample was equilibrated in Ref. 25 and

FIG. 10. Enthalpy of mixing of the random alla§T==") and whether true configurational equilibrium (which requires
at 1200 K, predicted from the converged MBCE and compared tdong diffusion times was ever attained. In any event, the
experimental data pointeRef. 25. For comparison, direct LDA MBCE Ham_Htoman achieves our stated_goal o_f representing
calculations for special quasirandom structures are also shown. the energetics of full-scale LDA calculations with reassuring
accuracy.

AHpix(X,%0) = Jp + (2x = 1)J; + 2 (2x - 1)2Dpai|Jpair

pairs D. Short-range order

Monte Carlo simulations also provide the actual atomic
distribution of the Mo-Ta solid solution at 1200 K. By con-
vention, short-range order is visualized through pair correla-
tions in reciprocal space, since these determine the chemical
contribution to experimental diffuse diffraction intensities

+ 2, (2x=1)'DygJye +f AEEY(k X)d%.
Q

MBs
(16)

This predicted functional dependence & () on x is
shown in Fig. 10. It is almost symmetric, with minimum
AHix=—127 meV atx=0.47.

To verify the magnitude and slight degree of asymmetry
of AHp,, we performed additionadirect LDA calculations,  \here R, is the real-space vector of pai, ng is a suffi-
modeling the random alloy limit by quasirandom structures iently high real-space cutoff, and

which mimicIl;=(2x-1)' for short-ranged figures as closely
as possible. Figure 10 includes results for special quasiran-
dom structure® Mo, _, Ta, with 16 atoms per unit cellSQS-

16) and x=0.25, 0.5, and 0.75, which fuIIﬁIHp:(Zx—l)2
exactlyfor at least the first four pairs. For other concentra-

tions, meeting even onlil,,=(2x—1)? exactly is not always
possible, i.e.strict SQS cannot be constructed. To capture
the range closer ta=50% in direct LDA calculations any-

way, we define 14-atom structures Ma@s and MQTa  he(100) superlattice structural motif. This structure is domi-
(dubbed “SQS-14'which minimizeX[ll{(o) - (2x-1)'[*for  nant also ax=0.4, but it is now topped by a very narrow,
a certain number of local figurgbere, the first ten pairs, and ringlike structure around the00) point itself—possibly in-
three- and four-body figures up to a maximum vertex dis-dicative of a tendency for antiphase domains of local order.
tance of third-nearest pajrsAppendix D gives the structure In sharp contrastesgrdX,k) (x=0.9) is much weaker in the

of SQS-16 and SQS-14. As can be seen in Fig. 10, theifa-rich limit. The intensity a{100) itself is zero, and re-
directly calculated formation enthalpies coincide quantitaplaced by a low, extended ring in the plane of interest. It is
tively with both the magnitude and tentative asymmetry ofinteresting to compare this to the prediction of the short-
the MBCE-predictedAH ,(x,2)—the converged MBCE ranged real-space CE in Sec. II.4t0.2 and 0.9, this would
provides a reliable mapping of LDA. The general magnitudeyield a simple sharp peak arourfd00). At x=0.4 andT

of AHnx(X,%) is also in line with the only available =1200 K, our calculations show that the material would al-
experiment® as well as earlier semiempirical ready exhibit B2-like long-range order, sintgfor the short-
calculationg®-306364The experimental data is plotted to- ranged real-space CE is close to that obtained for stoichio-

aSRC(X! k) = E a’SRdX; n)eikRn' (17)
n=1

1_Ipair n— (ZX - 1)2
1-(2x-1)>?

For x=0.2, 0.4, and 0.9, Fig. 11 plots the predicted
asrd X, k) at T=1200 K in a(100) section through reciprocal
space. As anticipated fromH,,,, short-range order is a
strong effect in the Mo-Ta solid solution. At&0.2, the main
feature is a single peak centered ab@@0), consistent with

a(x,n) = (18

155108-11



V. BLUM AND A. ZUNGER PHYSICAL REVIEW B 70, 155108(2004)

(020)

&

LA
(010)
= SRR
= e
Sl e
55
S
2

oo
S

S\
RIS
AN
e ?“’"

’
2
(A Jasos;
e
S ()
Ne% Setaniesle
S
T
i

(000) (100) (200)

(020)

FIG. 11. (Color onling Predicted short-range
(010)@ @ order of Mo-Ta alloys atT=1200K for
(a) x=0.2,(b) x=0.4,(c) x=0.9 in the(001) plane
of reciprocal space. Monte Carlo cell size:
20X 20X 20, equilibration: 8000 flips/site total.

RIS
SRS,
CSBECSKSS
SIS
&5
N3

S (000) (100) (200)

@
«
ia

D

(020)

N )
NN BN
o
N §
s : (010)
39558 S g
o s
S :
“{‘“\‘ S
o5

AN

(000) (100} (200)

metric B2 MoTa and a nearest-neighbor-only model in Fig.sing-like model Hamiltonian in the framework of the

9(a). MBCE method. For the example of Mo-Ta, we show that a
Experimentally, diffuse intensity measurements along theshort-range, “intuition-based” cluster expansion approach is

(000)-(400) line on Mo-Ta forx=21%, 37%, and 91% have quantitatively insufficient—it misses essential features, both

been reported by Predmore and Arsen&ulfthese authors with respect to ground states and finftethermodynamics

presented uncorrected diffraction da&i®., agggis overlaid  (transition temperaturgsin contrast, our converged MBCE

by fundamental Bragg peaks, thermal scattering, lattice disHamiltonian identifies ground states of a complexity not an-

tortion, etc), and did not specify a temperature of equilibra- ticipated in body-centered cubic alloys, finds low transition

tion, so that we may only attempt a qualitative comparisortemperatures that are compatible with the experimental ab-

with our predictions. Still, this comparison is quite favorable: sence of long-range ordered phases, describes short-range

At x=21% and 37%, clear peaks at rouglihp0) positions order in the solid solution consistent with earlier experi-

in reciprocal space are found by Predmore and Arsenaultnents, and finally allows to extract finileenergetics up to

very similar to those predicted by us ®t0.2 and 0.4. In the fully random alloy limit with LDA quality.

contrast, no strongl00-centered peak is apparent for the

91% sample. Instead, there is a low, bulgelike structure ACKNOWLEDGMENTS

somewhat off th€100) position—again, very consistent with . . .

our findings atx=0.9. The finiteT behavior of Mo-Ta is knngcsésupport by DOE-SC-BES-DMS is gratefully ac-

convincingly represented by our MBCE Hamiltonian. ged.

APPENDIX A: LISTING OF LDA INPUT DATA USED IN
VIl. CONCLUSIONS THE MO-TA MBCE

We have presented a consistent, deterministic approach to Table IV lists formation enthalpies for the 56 fully re-
map a first-principles configurational Hamiltonian onto anlaxed input structures which were used as a basis for the
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TABLE IV. Formation enthalpies of the 56 LDA input structures used for Mo-Ta, and besH#it of the
converged CE.

Composition Structure AH, pa AHcg First present
(meV) (meV) (iter.)
Mo A2 0.0 0.9 1
MogTa “AgB” (App. B) -66.3 -60.9 2
Mo, Ta (210 A;B SL -63.3 -65.7 2
“A+B” (App. B) -65.4 -64.3 5
MogTa (100 AgB SL -78.0 -79.1 3
(111 AgB SL -74.3 -74.6 5
MosTa (433 AgBA,B SL -86.6 -88.7 3
Mo,Ta (111 A,B SL -103.1 -101.3 3
(100) A4B SL -111.1 -111.5 5
(3100 A4B SL -107.0 -103.1 5
MosTa DO; -128.9 -128.5 1
L6g -128.7 -124.7 1
(100 AzB SL -134.6 -131.8 1
(110 A3B SL -77.5 -79.7 1
(310 A3B SL -132.0 -129.3 1
“A 1,B4-I” (App. B) -125.9 -129.2 2
“A4B1o" (App. ©) -130.9 -134.5 4
“A 1,B4-II” (App. B) -128.4 -130.9 4
MosTa, (100 A3BA,B SL -150.8 -151.7 3
(111) A,BAB SL -148.8 -146.9 3
Mo,Ta C1} -179.1 -178.4 1
(110 A,B SL -101.0 -101.9 1
(111 A,B SL -119.4 -119.2 1
MogTag (710 A,BsA4BAB SL -175.6 -180.5 2
MosTag (210) A3B(AB), SL -180.5 -180.3 2
MosTa, (210) A3B(AB); SL -181.8 -186.8 2
(111) A,BAB SL -177.4 -179.5 3
(1000 A,BAB SL -195.6 -195.1 4
Mo,Tag (100) A,B(AB), SL -196.0 -197.6 3
(111 A,B(AB), SL -193.8 -195.2 3
MoTa A -117.6 -117.4 1
B2 -204.8 -204.4 1
B11 -147.5 -144.5 1
B32 -110.8 -109.1 1
(110 A,B, SL -86.0 -86.9 1
(310 A,B, SL -191.9 -193.8 1
“AgBg” (App. B) -135.3 -135.7 4
MosTa, (100) A,B(AB), SL -183.6 -189.2 3
(111D A,B(AB), SL -186.0 -185.6 4
Mo, Tag (100 A,BAB SL -180.1 -183.4 2
MoTa, C1y, -157.6 -159.2 1
(110 AB, SL -86.6 -84.1 1
(11) AB, SL -105.6 -108.2 1
Mo, Tay “A4Bg” (App. O -153.5 -150.7 5
MoTag DO0s -79.4 -82.2 1
L6, -80.5 -81.4 1
(100 AB; SL -105.6 -101.3 1
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TABLE IV. (Continued)

Composition Structure AH, pa AHce First present
(meV) (meV) (iter.)
(110) AB3 SL -63.9 -65.7 1
(310 AB; SL -113.3 -116.4 1
“A4B1y" (App. © -125.7 -124.6 2
“A 12B4-1I" (App. B) -97.8 -96.5 4
MoTay, (100 A4B SL -84.6 -86.4 5
(310 A,B SL -92.8 -99.1 5
MoTa, (210 A;B SL -51.3 -51.8 2
MoTag “AgB” (App. B) -44.0 -48.6 2
Ta A2 0.0 1.1 1

cluster expansion of Mo-Ta. Both direct LDA calculations A;:(1.0,0.0,0.0, A,:(0.5,-0.5,0.5 A;:(0.5,0.5,0.5,
and the fitted cluster expansion formation enthalpies aré,:(0.0,0.0,1.0, As5:(1.0,0.0,1.0, A4:(0.5,-0.5,1.5,
listed. Structures are defined either by a common name, or in,:(0.5,0.5,1.5, B;:(0.0,0.0,0.0.

a superlattice notation. For the cases where neither nomen-

clature exists, the actual lattice occupation is described in

Appendix B. 3 Al
Description: This is a body-centered tetragonal structure
APPENDIX B: DEFINITION OF NONSUPERLATTICE LDA of (100-oriented, pure B, and alternating AB columns em-
INPUT STRUCTURES IN TABLE IV bedded into an A matrix.

Space group:l4;/amd (No. 141 in the International
The present section defines those LDA input structureJables for Crystallograpl§§).
(Table IV) which have no common name, and cannot be Primitive cell (Cartesian coordinatgs
described by a superlattice notation. To emphasize the con- a,=(2.0,0.0,0.0, a,=(0.0,2.0,0.0, a3=(1.0,1.0,2.0
nection between superstructure and underlying bcc lattice, Atomic coordinategCartesian coordinatgs

atomic coordinates are given in Cartesian coordinates, in A;:(0.0,1.0,0.0, A,:(1.0,1.0,0.0, A;:(0.5,0.5,0.5,
units of the(cubic) bec lattice parameter, and without relax- A,:(0.5,1.5,0.5 A:(1.5,0.5,0.5, Ag:(1.5,1.5,0.5,
ation. A,:1(2.0,1.0,1.0, Ag:(2.0,2.0,1.0, Ag:(1.5,1.5,1.5,
A0:(25,25,1.5 A;;:(25,1.5,1.5 A;,:(1.5,2.5,1.5

1. AB B;:(0.0,0.0,0.0, B,:(1.0,0.0,0.0, B;3:(1.0,1.0,1.0,

Description: This structure is a body-centered tetragona?“:(1'0’2'0'1'0)'

“3 X 3X 1" defect cell of minority atoms embedded in the
majority matrix. 4. A B4l
Space group:l4/mmm (No. 139 in the International

Tables for Crystallograpl¥). Description: This is a cubic structure witg X 2 X 2) unit

Primitive cell (Cartesian coordinatgs cell. — . )
a;=(1.0,0.0,0.0, a,=(0.5,1.5,1.5, a;=(0.5,-1.5,1.5 Space groupPm3m (No. 221 in the International Tables
Atomic coordinategCartesian coordinatgs for Crystallograph). _
A;:(1.0,-1.0,1.0, A,:(0.5,-0.5,0.5, A5:(0.5,0.5,0.5, Primitive cell (Cartesian coordinatgs
A4:(0.5,-0.5,1.5, A5:(1.0,0.0,1.0, Ag(1.0,1.0,1.0, 2,=(2.0,0.0,0.0, 8,=(0.0,2.0,0.0, 3,=(0.0,0.0,2.0
A,:(1.0,0.0,2.0, Ag:(0.5,0.5,1.5, B,:(0.0,0.0,0.0. Atomic coordinategCartesian coordinatgs
A;:(1.0,1.0,0.0, A,:(0.5,0.5,0.5 A3:(1.5,0.5,0.5,
A,:(0.5,1.5,0.5 A (1.5,1.5,0.5 Ag:(1.0,0.0,1.0,
2. A7B A,:(0.0,1.0,1.0, Ag:(1.0,1.0,1.0, A¢:(0.5,0.5,1.5,
Description: This structure is a primitive tetragonal defectA,:(1.5,0.5,1.5, A;1:(0.5,1.5,1.5, A;,:(1.5,1.5,1.5,
cell of minority atoms embedded in the majority matrix, in aB,:(0.0,0.0,0.0, B,:(1.0,0.0,0.0, B;:(0.0,1.0,0.9,
sequence of one(2x2) (100) AB plane followed by three B,:(0.0,0.0,1.0.
pure A planes.
Space group:P4/mmm (No. 123 in the International
Tables for Crystallograpl§§). 5 AdBs
Primitive cell (Cartesian coordinatgs Description: This structure has(ax 2 X 2) primitive cu-
a,=(1.0,-1.0,1.9, a,=(1.0,1.0,0.9, a3=(0.0,0.0,2.0 bic unit cell, but is of trigonal symmetry due to the unit cell’s

Atomic coordinategCartesian coordinatgs atomic content.
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Space groupRgm (No. 166 in the International Tables for ~ Pearson symboti 10

Crystallograph$p). Unit-cell parametergprimitive cell):
Primitive cell (Cartesian coordinatgs a=3.161 A,b=3.161 A,c=8.1246 A
a,=(2.0,0.0,0.9, a,=(0.0,2.0,0.9, a3=(0.0,0.0,2.0 @=78.95°,3=78.95°,y=78.95°
Atomic coordinategCartesian coordinatgs Fractional atomic coordinates:

A;:(1.0,1.0,1.0, A,:(1.5,1.5,0.5 A3:(1.5,0.5,1.5 Mo;: (0.000,0.000,0.000 Mo,: (0.797,0.797,0.406
A,:(0.0,1.0,0.0, As5:(0.5,15,1.5  A4:(1.0,0.0,1.0, Mos: (0.203,0.203,0.594 Ta: (0.401,0.401,0.199
A;:(1.0,1.0,0.0, Ag:(1.5,15,1.5 B;:(0.0,0.0,0.0, Ta,: (0.599,0.599,0.801
0,0
0,1

B,:(0.5,0.5,1.5 B;:(0.5,1.5,0.5 B,:(1.0,0.0,0.0,
Bs:(1.5,0.5,0.5  B4:(0.0,1.0,0.0, B;:(0.0,0.0,1.0,
Bg:(0.5,0.5,0.5. 4. MoTa
Description: This is the B2 structure, the AB sequence
APPENDIX C: ATOMIC COORDINATES OF THE (superlatticg of (100) atomic planes. It has a cubic cell.
PREDICTED MO-TA GROUND-STATE STRUCTURES Space groupPm3m (No. 221 in the International Tables

- . _ for Crystallograph$p).
The present section lists fully relaxed atomic coordinates Pearson symbokP2

for each gro%ggastgte structure identified in Mo-Ta as calcu- it cq|| parametersprimitive celly
lated byvasp.**>?Since these are actual structures that could __ _ _
) . . SO a=3.177 Ab=3.177 A,c=3.177 A
be found in experiment, the full crystallographic notation is _ o n— o — o
d rather th h ion in C 4 di | «=90.00°,8=90.00°,v=90.00
used rather than the notation in Cartesian coordinates. In £, tional atomic coordinates:

addition, Pearson symbélsare listed for each structure. Mo,: (0.000,0.000,0.000 Ta: (0.500,0.500,0.500

1. MosTa

Description: This structure is best visualized as gB A 5. Mo.Tas
sequencésuperlatticg of (100) atomic planes. It has a body- Description: This structure is best visualized as an

centered tetragonal cell. A,BAB sequencesuperlatticg of (100) atomic planes. It
Space group:l4/mmm (No. 139 in the International has a body-centered tetragonal cell.
Tables for Crystallograpl§§). Space group:l4/mmm (No. 139 in the International
Pearson symboli 10 Tables for Crystallograpl§$).
Unit-cell parametergprimitive cell): Pearson symboti 10
a=3.140 A ,b=3.140 A,c=8.190 A Unit-cell parametergprimitive cell):
a=78.95°,8=78.95°,v=90.00° a=3.161 A b=3.161 A,c=8.1246 A
Fractional atomic coordinates: a=78.95°,3=78.95°,y=90.00°
Mo;: (0.397,0.397,0.206 Mo,:(0.800,0.800,0.399 Fractional atomic coordinates:
Mo;:(0.200,0.200,0.601 Mo,:(0.603,0.603,0.794 Mo, : (0.000,0.000,0.000 Mo,: (0.797,0.797,0.406
T&:(0.000,0.000,0.000 Mog: (0.203,0.203,0.594 Ta;: (0.401,0.401,0.199
Ta,: (0.599,0.599,0.801
2. Mo,Ta
Description: This is the Cllstructure, best visualized as 6. Mo,Tag

an A,B sequencégsuperlattice of (100) atomic planes. It has
a body-centered tetragonal cell.

Space group:l4/mmm (No. 139 in the International
Tables for Crystallograpl§$).

Description: This structure can be described as an
AgB,A3B, sequencésuperlatticg of (510) atomic planes. It
has a body-centered tetragonal cell. The unit cell is that of
Pearson symboti6 Ga,;Smy, but the occupation of sites is different.

. N ) Space groupt4/m (No. 87 in the International Tables for
Unit cell parametergprimitive cell):

a=3.152 A,b=3.152 A,c=5.250 A C”féi'r'gg;ag;r&”%
a:72.'53 "8:72.'53 '7:.90'00. Unit-cell parametergprimitive cell):
Fractional atomic coordinates:

Mo,: (0.330,0.330,0.339 Mo,: (0.670,0670,0.601  =opey OA’BE?SB%‘;EE A,:C;Sélo904 A
Tay: (0.000,0.000,0.000 97°,8=78.97°,y=81.

Fractional atomic coordinates:
Mo,: (0.780,0.157,0.531 Mo,: (0.856,0.772,0.686
3. MogTa, Mos: (0.394,0.082,0.762 Mo,: (0.470,0.696,0.927
Description: This structure is best visualized as anTa: (0.000,0.000,0.000 Ta: (0.551,0.302,0.073
A,BAB sequence(superlatticg of (100) atomic planes. It Tas: (0.077,0.622,0.150 Ta,: (0.625,0.927,0.224

has a body-centered tetragonal cell. Tas: (0.173,0.231,0.298 Tg: (0.698,0.551,0.3795
Space group:l4/mmm (No. 139 in the International Ta;: (0.249,0.854,0.449 Tag: (0.320,0.475,0.602
Tables for Crystallograpl§§). Tay: (0.929,0.379,0.846
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7. MosTay, 2. SQS-16 AsBoso

Description: This structure can not be described by a su- Description: There are no structures with less than 16 at-
perlattice notation. It has a simple tetragonal cell. oms per unit cell anat=0.5 which satisfylI,(o)=0.0 for the
Space group:P4,/mnm (No. 136 in the International first five pair correlation functions, but twelve different 16-
Tables for Crystallograpl§$). atom structures satisfy this criterion. The SQS selected here
Pearson symbotP24 is subject to the additional criterion that the least-squares
Unit-cell parametergprimitive cell): sum over some of the remaining, nonzero short-range corre-
a=3.178 A b=9.152 A c=9.152 A lation functions(first ten pair shells, and three- and four-
«=90.00°,8=90.00°,y=90.00° body figures up to third-nearest-neighbor maximum vertex
Fractional atomic coordinates: distance is minimal. It is a triclinic structure.
Mo,: (0.000,0.001,0.001 Moy: Space groupP1 (No. 1 in the International Tables for
Mos: (0.500,0.249,0.501 Mo,: Crystallograph§p).
Ta: (0.000,0.008,0.497 Ta: Primitive cell (Cartesian coordinatgs
Tas: (0.000,0.255,0.255 Ta,: a,=(1.5,0.5,0.5 @a,=(1.0,-1.0,-1.p, a3=(0.5,1.5,
Tas: (0.000,0.497,0.008 Ta: (0.000,0.742,0.253 —2.5
Ta;: (0.500,0.242,0.997 Tas: (0.500,0.508,0.753 Atomic coordinategCartesian coordinatgs
Tay: (0.500,0.753,0.508 Tayo: (0.500,0.755,0.995 A;: (0.5,0.5,-0.5 A,: (1.0,1.0,-1.0, Az (1.5,0.5,
Tay;: (0.500,0.995,0.755 Ta,: (0.500,0.997,0.242 -1.9, A, (1.5,05,-1.5 As: (1.5,0.0,-1.0,
Ag: (1.0,0.0,-2.0, A;: (1.5,0.5,-2.5, Ag: (1.5,-0.5,
-0.5, B;: (0.0,0.0,0.0, B,: (1.5,1.5,-1.5 B5: (1.0,1.0,
-2.0), B,: (1.0,0.0,0.0, B5: (0.5,0.5,-1.5, Bg: (2.0,1.0,
-2.0, B;: (0.5,-0.5,-0.5, Bg: (2.0,0.0,-1.0.

(0.000,0.749,0.749
(0.500,0.501,0.249
(0.000,0.253,0.742
(0.000,0.495,0.495

APPENDIX D: DEFINITION OF BCC SPECIAL
QUASIRANDOM STRUCTURES

The present section defines the body-centered qsbie-
cial) quasirandom structures used to verify the MBCE- 3. SQS-14 A s7Bo0.429
predicted random alloy enthalpy of mixing in Sec. VI(Elg. Description: It is not possible to find an actuspecial
10). To emphasize the connection between superstructurguasirandom structure for=3/7 with 14 atoms per unit cell,

and underlying bcc lattice, atomic coordinates are given irsince no such bcc-based structure satidfig@r) =1/49even
Cartesian coordinates, in units of tleubic) bcc lattice pa-

rameter, and without relaxation.

1. SQS-16 A 780.25

for the first pair shell. Instead, we choose to approximate the
random alloy limit on a local scale by minimizing the least-
squares sum ovefll{(o)-(1/7)'| for a number of short-
range correlation functiondirst ten pair shells, and three-
and four-body figures up to the third-nearest-neighbor maxi-

Description: This is the only bcc-based structure with 16mum vertex distange For x=3/7, the structure with 14

atoms per unit cell ang=25 which satisfie$l (o) =0.25 for

atoms/unit cell which satisfies this is a triclinic structure that

the first four pair correlation functions. It has a base-centeredan be described as anByA,BABAB , sequencésuperlat-

monoclinic unit cell.

Space groupCm (No. 8 in the International Tables for

Crystallograph§F).

Primitive cell (Cartesian coordinatgs

a;=(2.1,-2.0,0.9, a,=(1.0,1.0,0.0, a3=(1.0,0.0,2.0

Atomic coordinategCartesian coordinatgs

A;: (1.0,0.0,0.0, A,: (1.0,-1.0,0.0, Az (2.0,
-1.0,0.0, A, (25,-1.5,0.5 Ag: (2.5,-0.5,0.5,
Ag: (2.0,-1.0,1.0, A;: (2.0,0.0,1.0, Ag: (3.0,-1.0,1.0,
Ag: (1.5,-0.5,1.5, Ao (1.5,0.5,1.5, Aiq: (2.5,
-1.5,1.9, Ao (2.5,-0.5,1.5 B;: (0.0,0.0,0.0,
B,: (1.5,-0.5,0.5 B3: (1.5,0.5,0.5, B4: (1.0,0.0,1.0.

tice) of (831) atomic planes.

Space groupPl (No. 1 in the International Tables for
Crystallograph§p).

Primitive cell (Cartesian coordinatgs

a;=(1.5,1.5,0.5, a,=(-0.5,1.5,0.5,
-0.5,2.5

Atomic coordinategCartesian coordinatgs

a3:(—0.5,

A;: (0.0,0.0,2.0, A,: (0.0,1.0,2.0, As: (0.5,1.5,1.5,
A, (0.0,1.0,3.0, As: (0.5,1.5,2.5, Ag: (0.5,0.5,0.5,
A;: (0.5,0.5,2.5, Ag: (-0.5,0.5,1.5 B;: (0.0,0.0,0.0,
B,: (0.5,0.5,1.5, Bs: (1.0,1.0,1.0, B,: (-0.5,0.5,2.5,

Bs: (0.0,1.0,1.0, Bg: (0.0,0.0,1.0.

1W. Bragg and E. Williams, Proc. R. Soc. Londok145, 699
(1934).

2R. Kikuchi, Phys. Rev.81, 988(1951).

3C. Domb, inPhase Transitions and Critical Phenomeretited
by C. Domb and H. GreefAcademic, London, 19734 \Vol. 3,

p. 358.

4K. Binder, Phys. Rev. Lett45, 811(1980.

5D. Styer, M. Phani, and J. Lebowitz, Phys. Rev. &, 3361
(1986.

6F. Ducastelle,Order and Phase Stability in AlloygNorth-

155108-16



MIXED-BASIS CLUSTER EXPANSION FOR THE.

Holland, Amsterdam, 1991

7). Sanchez and D. de Fontaine Stiucture and Bonding in Crys-
tals, edited by M. O’Keefe and A. NavrotskiAcademic, New
York, 1981, Vol. 2, p. 117.

8J. Sanchez, F. Ducastelle, and D. Gratias, Physich28 334
(1984).

9A. Zunger, inStatics and Dynamics of Alloy Phase Transforma-
tions edited by P. Turchi and A. Goni@lenum, New York,
1994, pp. 361-419.

10A, Zunger, L. Wang, G. Hart, and M. Sanati, Modell. Simul.
Mater. Sci. Eng.10, 1 (2002.

L. Ferreira, S.-H. Wei, and A. Zunger, Phys. Rev.4®, 3197
(1989.

123, Connolly and A. Williams, Phys. Rev. B7, 5169(1983.

13, Ferreira, S.-H. Wei, and A. Zunger, Int. J. Supercomput. Appl.

5, 34 (1991).

PHYSICAL REVIEW B 70, 155108(2004)

34A. Carlsson and J. Sanchez, Solid State Comm@h, 527
(1988.

35A. Carlsson, Phys. Rev. B0, 912(1989.

36T. Mohri, K. Terakura, S. Tazikawa, and J. Sanchez, Acta Metall.
Mater. 39, 493(1991).

STA. Pasturel, C. Colinet, A. Paxton, and M. van Schilfgaarde, J.
Phys.: Condens. Mattet, 945(1992.

38G. Rubin and A. Finel, J. Phys.: Condens. Maife3139(1995.

39G. Das, A. Arya, and S. Banerjee, Intermetalli$s625 (1996).

40y, Chen, T. Atago, and T. Mohri, J. Phys.: Condens. Mattdy
1903(2002.

41C. Wolverton, V. Ozolis, and A. Zunger, J. Phys.: Condens.
Matter 12, 2749(2000.

42J. E. Bernard, L. G. Ferreira, S.-H. Wei, and A. Zunger, Phys.
Rev. B 38, 6338(1988.

147 Lu, S.-H. Wei, A. Zunger, S. Frota-Pessoa, and L. Ferreira*G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Re81B

Phys. Rev. B44, 512 (1991).

157 Lu, D. Laks, S.-H. Wei, and A. Zunger, Phys. Rev5B, 6642
(1994).

18V, Ozolins, C. Wolverton, and A. Zunger, Phys. Rev.58, 6427
(1998.

17C. Wolverton, V. Ozols, and A. Zunger, Phys. Rev. B7, 4332
(1998.

183, Miiller, L.-W. Wang, A. Zunger, and C. Wolverton, Phys. Rev.
B 60, 16 448(1999.

19M. Sanati, L. Wang, and A. Zunger, Phys. Rev. L&, 045502
(2003.

20D, Laks, L. Ferreira, S. Froyen, and A. Zunger, Phys. Revi@
12 587(1992.

2IM. Plutowski, Survey: Cross-validation in Theory and Practice
http://www.emotivate.com/CvSurvey.dgt996).

22A. van de Walle and G. Ceder, J. Phase EquiiB, 348(2002.

23y, Blum and A. Zunger, Phys. Rev. B9, 020103(2004).

24B. Predmore and R. Arsenault, Scr. Metadl. 213 (1970.

253, Singhal and W. Worrell, ifProceedings of the International
Symposium on Metallurgical Chemistry, Brunel University and
National Physical Laboratory, UK, 197ledited by O. Kub-
aschewskiHer Majesty’s Stationary Office, London, 1974p.
65-72.

263, Singhal and W. Worrell, Metall. Trangt, 1125(1973.

27s. Singhal and W. Worrell, Metall. Trangk, 895 (1973.

28C. Colinet, A. Bessoud, and A. Pasturel, J. Phys. F: Met. Phys.

18, 903(1988.

29C. Colinet and A. Pasturel, Physica B59, 275(1989.

30C. Sigli and J. Sanchez, Acta MetaBg, 367 (1988.

31phase Equilibria, Crystallographic and Thermodynamic Data of
Binary Alloys Vol. 5H of Landolt-Bdrnstein, New Series, Group
IV, edited by B. PredalSpringer, Berlin, 1997

32p, Turchi, A. Gonis, V. Drchal, and J. Kurdnovsky, Phys. Rev. B
64, 085112(2001).

33A. Carlsson, Phys. Rev. B5, 4858(1987).

2561(1985.

44A. Ruban, S. Simak, S. Shallcross, and H. Skriver, Phys. Rev. B
67, 214302(2003.

45Z. Lu, S.-H. Wei, and A. Zunger, Phys. Rev.45, 10 314(1992.

4635 -H. Wei, A. Mbaye, L. Ferreira, and A. Zunger, Phys. Rev. B
36, 4163(1987).

47J. Shao, J. Am. Stat. Asso88, 486 (1993.

48], Ihm, A. Zunger, and M. Cohen, J. Phys.12, 4409(1979.

49G. Kresse and J. Furthmiiller, Phys. Rev5B, 11 169(1996.

50G. Kresse and J. Furthmiiller, Comput. Mater. S&il15 (1996.

51p, Bléchl, Phys. Rev. B50, 17 953(1994).

52G. Kresse and A. Joubert, Phys. Rev.5B, 1758(1999.

53], Perdew and A. Zunger, Phys. Rev.2B, 5084 (1981).

54H. Monkhorst and J. Pack, Phys. Rev.1B, 5188(1976).

55S. Froyen, Phys. Rev. B9, 3168(1999.

56p. Blochl, O. Jepsen, and O. Andersen, Phys. Re¥9B16 223
(1994).

57p. Blaha, K. Schwarz, and J. LuitsyieN97 (TU Wien, Vienna,
1999.

58D, Gaunt, Proc. Phys. Soc. Lond@®, 150(1967).

59D. Landau, Phys. Rev. B6, 4164(1977).

60G. Geach and D. Summers-Smith, J. Inst. M@, 143(1952.

61F. Guillemot, M. Boliveau, M. Bohn, J. Debuigne, and D. Ansel,
Int. J. Refract. Met. Hard Materl9, 183(2001).

62A. Zunger, S.-H. Wei, L. Ferreira, and J. Bernhard, Phys. Rev. B

65, 353(1990).

63C. Sigli, M. Kosugi, and J. Sanchez, Phys. Rev. L&, 253
(1986.

647. Bangwei and O. Yifang, Phys. Rev. B8, 3022(1993.

65J. Perdew and Y. Wang, Phys. Rev.45, 13 244(1992.

66|nternational Tables for Crystallographyol. A, edited by T.
Hahn(D. Reidel, Dordrecht, 1983

87pearson’s Handbook of Crystallographic Data for Intermetallic
Phases, 2nd ededited by P. Villars and L. Calve(ASM Inter-
national, Materials Park, OH, 1991

155108-17



