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To predict the ground-state structures and finite-temperature properties of an alloy, the total energies of many
different atomic configurationss;hsi ; i =1, . . . ,Nj, with N sites i occupied by atom Assi =−1d, or B ssi

= +1d, must be calculated accurately and rapidly. Direct local-density approximation(LDA ) calculations pro-
vide the required accuracy, but are not practical because they are limited to small cells and only a few of the
2N possible configurations. The “mixed-basis cluster expansion”(MBCE) method allows to parametrize LDA
configurational energeticsELDAfsi ; i =1, . . . ,Ng by an analytic functionalEMBCEfsi ; i =1, . . . ,Ng. We extend
the method to bcc alloys, describing how to selectNs ordered structures(for which LDA total energies are
calculated explicitly) and NF pair and multibody interactions, which are fit to theNs energies to obtain a
deterministic MBCE mapping of LDA. We apply the method to bcc Mo-Ta. This system reveals an unexpect-
edly rich ground-state line, pitting Mo-rich(100) superlattices against Ta-rich complex structures. Predicted
finite-T properties such as order-disorder temperatures, solid-solution short-range order and the random alloy
enthalpy of mixing are consistent with experiment.
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I. INTRODUCTION

A. The cluster expansion method: Definition and scope

Alloy thermodynamics, including properties atT=0, re-
quire the knowledge of the excess energy

DHdirectssd = EtotsA1−xBx;sd − s1 − xdEtotsAd − xEtotsBd,

s1d

of the solid A1−xBx relative to the total energy of its constitu-
ents A and B. For a given underlying lattice, the degrees of
freedom form a configurational vectors, whose components
si =±1 record whether a lattice sitei is occupied by element
A ssi =−1d or B ssi = +1d. SinceDHdirectssd is difficult to
calculate quantum mechanically for an exhaustive set of
structuress, it is often described by way of a cluster expan-
sion (CE) Hamiltonian1–6

DHCEssd = J0 + o
i

siJi + o
i,j

Ji,jsis j + o
i,j ,k

Ji,j ,ksis jsk + . . . .

s2d

hJj are the interaction parameters for each pair or many-body
combination of lattice sitesi , j , k, etc. The cluster
expansion7–10 attempts to describe the energies of all differ-
ent configurations with the accuracy of present-day density-
functional methods. It is based on the fact that Eq.(2) allows
to map an arbitrarily complex Hamiltonian with electronic
degrees of freedomexactlyonto a simple sum over crystal-
lographic degrees of freedom.8 For practical purposes, Eq.
(2) is typically recast in terms of symmetry-inequivalent
figures.11 Also, without a loss of generality one may subtract9

a configuration-dependent reference energyEref from DH.

We may expandDH̃LDA =DHLDA −Eref asDH̃CE, so that

DH̃CEssd = J0 + s2x − 1dJ1 + o
pairs

JpairDpairP̄pairssd

+ o
MBs

JMBDMBP̄MBssd. s3d

The interaction parametershJfj now signify all possible in-
equivalent pairs and many-body(MB) figures f. They are
configuration independent,8 with Df as each figure’s symme-
try degeneracy per site—any configuration dependence is
contained in the lattice-averaged correlation functions

P̄ fssd. Although Eqs.(2) and(3) contain, in principle, many
interactions, the energetics of bonding is usually determined
by relatively short length scales. Therefore, already a finite
number of interaction parameters is expected to provide the
desired mapping of energetics with sufficient accuracy. The
relevantJf are usually fitted12 to a number of formation en-
thalpies calculated by the electronic-structure method to be
mapped[local-density approximation(LDA ) in our case].
Note that there is no requirement for atoms to remain spa-
tially fixed at the exact positions of a rigid lattice, since the
effect of relaxation can be accounted for simply by minimiz-
ing DHLDA with respect to the unit-cell volume, shape, and
internal coordinates for each inputs. Once numerical values
for the parameters of Eq.(3) are available, the payoff is fast
access to many quantities of interest. For metallic and semi-
conductor alloys, these are, e.g., ground-state structures,
order-disorder transition temperatures, or short-range order
at finite T (see Refs. 13–19 for typical examples), which are
directly measurable in experiment.

When constructing a CE for a specific system, the major
tasks are to decide(i) what type of figures(pairs, three-
body,…) and how many are needed for a given alloy system,
and (ii ) how to obtain the magnitude of the chosen interac-
tions hJj from a well-posed microscopic theory of alloy elec-
tronic structure. Over the recent years,hJj were often pro-
vided by the “mixed-basis cluster expansion”9,10,20 (MBCE)
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formalism for many fcc-based alloys. In this paper, we de-
scribe how to construct a deterministic, LDA-quality MBCE,
i.e., how(i) and(ii ) are addressed by a systematic assessment
of the predictive power of a given CE within a set of input
DHLDA (cross validation21,22), and the iterative enlargement
of the LDA input data base as a whole.10,22 We extend the
formalism to abcc-basedbinary alloy, Mo-Ta. In addition to
predicted ground states,23 we address the system’s finite-T
thermodynamics(order-disorder transitions, short-range or-
der, and random alloy limit) in relation to experimental
work.24,25

B. Why Mo-Ta

The most prominent group of fully bcc-based binary al-
loys (no known phases based on a different type of underly-
ing lattice, e.g., fcc) is formed from the refractory elements
Nb, Ta, Mo, and W, located in groups VA and VIA of the
periodic system of elements. Figure 1 summarizes some of
their pertinent properties.25–30 The atomic size mismatch of
all six possible binary alloys formed between them is below
5%. Their experimental phase diagrams show only continu-
ous bcc(A2) solid solutions,31 so it is not known if at lower
T these form any long-range ordered compounds, or phase
separate. Regardingshort-range order in the solid solution,
the only available experimental report pertains to Mo-Ta,24

where x-ray diffuse scattering showed clear(100)-centric in-
tensity for 21% and 37% Ta. For Mo-Nb,26 Mo-Ta,25 and
Ta-W,27 negative enthalpies of mixing were observed, with
Mo-Ta giving the most negative valuefDHexpsABd
=−114 meVg. No experimental results are available for the
remaining combinations, but a number of earlier semiempir-
ical tight-binding-based calculations exist.28–30These sources
agree upon a clearly less negativeDH for Nb-W, and even
slightly positive values for the in-group combinations Nb-Ta
and Mo-W.

Where available, Fig. 1 also contains theoretical predic-
tions regarding long-range order. Focusing on the two short-
est pair interactions, the theoretical model of Sigli and
Sanchez30 predicted stable B2 order for Mo-Nb, Mo-Ta, and

Ta-W. A more recent theoretical assessment of Ta-W,32 also
using two pair interactions for thermodynamics, corroborates
this finding and suggests an additional D03-type ground state
TaW3 at very low T. The comparison of predicted A2-B2
transition temperatures finds Mo-Ta in the lead again, with a
supposedTc just above 1000 K.

We select Mo-Ta for this study since it shows the largest
magnitude ofDHmix and the highest predictedTc of the
above refractories, and because short-range order of Mo-Ta
was already experimentally observed.

II. SHORT-RANGE REAL-SPACE CLUSTER-EXPANSION
FOR MO-TA

To use Eq.(3), one must extract the relevant interactions
and their numerical values for a particular alloy. To illustrate
this, we first examine a short-range cluster expansion in real
space: one whose input structures and figures are user-
selected based on intuition alone.12

Many CE-based works12,33–40 consider only a set of the
spatially smallestJf, which are then combined with a similar
number of “usual suspect” ordered input configurations.
Consider the Connolly-Williams method12 on the fcc lattice:
It employed the five shortest figures, obtained from five
structural energies—a fully determined fit. Here, we pursue a
bcc equivalent of this approach(Fig. 2). We use theNF=6
simplest figures, those with a maximum intracluster distance
up to second nearest neighbors: the empty and point interac-
tions, the two smallest pairs, and the smallest triangle and
tetrahedron. They are fit toNs=6 DHLDA values for elemen-
tal A and B, the D03 structures A3B and AB3, and the B2 and
B32 structure.

Figure 3(a) shows the resulting interactions of this ap-
proach for Mo-Ta: The dominant term is the nearest-
neighbor interaction, with higher interactions of considerably
smaller magnitude. In fact, the second nearest-neighbor pair
is so much weaker than the first that a casual observer might
already claim “convergence.” We now use these interactions
to predict from Eq.(3) DHCE for the 3 000 000 bcc-based
crystal structures with up to 20 atoms per unit cell, as given
by the exhaustive structure enumeration scheme of Ref. 13.
The results are plotted versus composition in Fig. 3(b),
where one can identify the predicted ground states as the
breaking points of the convex hull encompassing all struc-
tures. Convexity is needed because any identified ground
statesi of compositionxi must be lower in formation en-
thalpy than a phase-separated combination of the closest
neighboring ground statessi−1 andsi+1. We call the differ-
ence between these cases the “energetic depth of a ground
state,”Di,

Di = DHssid − F xi+1 − xi

xi+1 − xi−1
DHssi−1d +

xi − xi−1

xi+1 − xi−1
DHssi+1dG ,

s4d

and demandDi ,0. Indeed, this short-range CE exhibits only
two ground states: B2(MoTa), and D03 sMo3Tad. Both were
also LDA input structures, and one might again conclude
“convergence” of the CE from the consistency of the ground-
state line and the LDA input set.

FIG. 1. Properties of refractory binary alloys from earlier ex-
perimental and semiempirical theoretical work: Enthalpies of mix-
ing DHmix for the equiatomic composition, predicted long-range
order (LRO) and critical temperaturesTc. References:(a) experi-
mental(Refs. 25–27), (b) Colinet et al. (Refs. 28 and 29), and (c)
Sigli and Sanchez(Ref. 30).
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The pitfall of using a small number of intuitively selected
structures and figures is the resulting lack of predictive
power. This can be assessed by comparing its results with a
fully converged cluster expansion of Mo-Ta, described in
Sec. VI, which is based on 56 input structures. The important
failures of the short-range CE are:(1) Its prediction errors

DHLDA −DHCE are much larger than typical intrinsic LDA
errors. For instance, the short-range CE is off by 31 meV
(17% ofDHLDA), 31 meV(20%), and 44 meV(30%) for the
three structures C11bsMo2Tad, C11bsMoTa2d, and
B11sMoTad, respectively.(2) The ground-state line of the
short-range CE is quantitatively far from the converged CE
[see Fig. 3(b)], by up to 24 meV. Furthermore, the short-
range CE misses all but the B2 ground state(missed six). (3)
As pointed out by Lakset al.,20 the limiting DHCE of both
elements phase separated on the same coherent lattice is
wrong. In a short-range CE, the predictedDHCE of AmBn
superlattices must converge to zero with growing period.
However, simple elasticity theory shows thatDHf, in fact,
remains finite even for the fully phase-separated configura-
tion, since both constituent element crystals must fit the same
coherent underlying lattice. Even worse, the limitingDHf

may depend on superlattice orientationk̂— this is known as
the “k→0 singularity.”

In principle, there are several reasons for the qualitative
failures(1)–(3): (i) No information on coherency strain in the
infinite superlattice limit is included. The short-range CE is
strictly finite ranged and therefore cannot capture thek→0
singularity. (ii ) Unphysically few figures. Since the number
of figures is limited by the number of input structures, the
“cutoff” of relevant figures is mandated by fit technicalities
rather than their physical decay with distance.(iii ) Limited
information on atomic relaxation. The short-range CE is
based on high-symmetry ordered structures, which are pro-
hibited by symmetry to relax, both with respect to unit-cell
shape and internal coordinates.(iv) No measure of predictive
power. The short-range CE lacks a quantitative criterion to
assess the predictive power of its fitted interactions.(v) No
mechanism to extract relevant input structures and figures.
The short-range CE does not ensure either the suitability of
its figure set to describe the material in question, or of its
input structures to sample the configuration space optimally
for a given material. As a consequence of(i)–(v), a short-
range CE approach may yield deceptively “converged” re-
sults with respect to ground states and interactions, but as we
see, any coincidence with truly converged results is acciden-

FIG. 2. (Color online) Input
structures and figures for the
short-range real-space CE of
Mo-Ta.

FIG. 3. (a) Symmetry-weighted interactionsDfJf extracted from
the short-range cluster expansion.(b) Exhaustive ground state
search(three million structures) based on the short-range cluster
interactions. The ground-state line of the converged cluster expan-
sion of Sec. VI (broken line and triangles) is included for
comparison.
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tal. While an intuition-based approach which already in-
cludes other “usual suspect” structures such as C11b would
potentially come closer to the truth,(i)–(v) will nevertheless
remain as qualitative issues. We will next discuss the con-
ceived cure to problems(i)–(v).

III. THE MIXED-BASIS CLUSTER EXPANSION METHOD:
PREVIOUS IDEAS TO OVERCOME DIFFICULTIES

(I)–(V)

A. Correcting for coherency strain in the superlattice limit

We correct the “k→0” singularity of the long-period su-
perlattice limit as described in Refs. 10, 20, and 41. We set
Eref of Eq. (3) equal to the “constituent strain energy” for
finite-ranged configurations

Erefssd = o
k

DECS
eqsx,k̂d

4xs1 − xd
uSsk,sdu2Fskd. s5d

Here,S is the structure factor of configurations (the lattice
Fourier transform ofs), andF a uku-dependent damping fac-
tor (F=1 in the present work).41

DECS
eqsx, k̂d is defined as the energy limit of an infinite

phase-separated alloy(superlattice) on the same coherent un-

derlying lattice, with interface orientationk̂:

DECS
eqsx,k̂d = min

ain-plane,sc/adA,sc/adB
hs1 − xdDEAfain-plane,sc/adAg

+ xDEBfain-plane,sc/adBgj. s6d

B. Use of an unrestricted set of pair interaction figures

Reference 20 also outlines how to include an(in prin-
ciple) unlimited number of pair interactions by way of a
constrained fit approach. This procedure defines the types of
parameters to be extracted by the “deterministic MBCE” ap-
proach described later in this work. Consider a straightfor-
ward fit of NF pair and many-body figures toNs previously
calculated LDA input formation enthalpieshDHLDAssdj. The
CE must then be truncated toNFøNs interactions, since the
usual least-squares sum

slsq = o
s

wsuDH̃LDAssd − DH̃CEssdu2 s7d

(with possibly different fit weightsws for each configura-
tion) does not allow for more parameters. So, longer-ranged
figures are forced abruptly to zero, regardless of their actual
physical value. As a remedy for pairs, one formally includes
all pair terms, but amendsslsq with an additional constraint
per pair. We minimize

sMBCE = slsq +
t

a
o
pairs

Rpair
l DpairJpair

2 , a = So
pairs

ÎRpair
l

Dpair
D2

.

s8d

The pairs sum is now only mathematically limited to a maxi-
mum npairs. t is a Lagrangian multiplier anda is a normal-
ization factor. The proper spatial decay ofJpair with growing

pair separationRpair is enforced by weight factorsRpair
l .

Using this definition, the individual pair interactionsJpair
have been replaced as user-adjustable degrees of freedom by
t, l, and the cutoff pair numbernpairs. In contrast, the selected
multisite interactionshJMBj remain direct degrees of freedom
of the MBCE.

C. Description of alloy atomic relaxation

Atomic relaxation in alloys9,20,42,43includes(a) homoge-
neous volume deformationsdV, (b) relaxation of cell-
externalcoordinatesha1,a2,a3j [e.g., sc/ad ratio in tetrago-
nal compounds], and (c) relaxation ofcell-internal atomic
positionshRintj. Whereas(a) exists in all configurations, the
effects of (b) and (c) depend on the type of configuration
considered: High-symmetry structures such as the cubic B2,
B32, or D03 compounds are prohibited by symmetry from
having any cell-external or -internal relaxation. Tetragonal
structures[such as the AB superlattice of bcc(110) planes,
A1] can have important cell-externalsc/ad relaxation,
whereas structures that possess a large number of degrees of
freedom not fixed by space group symmetry have significant
cell-internal relaxation contributions(for instance, changes
in interlayer spacing of long-period coherent superlattices
AmBn, which lead to a net shift of the interface between A
and B within the cell).

The “relaxation energy” is the difference between relaxed
and unrelaxed total energies. In the MBCE with a finite set of
figures, relaxation energy includes a piece due to explicit
figureshJj and the constituent strain, Eq.(5). The first part
can be written by inverting Eq.(3),

Jf = o
s

P̄ f
−1ssdDH̃CEssd. s9d

[P̄ f
−1ssd here denotes the inverse of thematrix P̄ fssd.] This

can be reinserted into Eq.(3), yielding

DHCEss8d = o
s

Qs8,s DH̃CEssd + ECSss8d, s10d

whereQs8,s=o fP̄ fss8dP̄ f
−1ssd. For the random alloy limit at

compositionx, we take the configurational average over all
configurationss8 of compositionx, kDHCEss8dls8,x. Since

kP̄ fss8dls8,x=s2x−1dl f for a figure f with l f vertices, we see
that each input structures entersDHrandsxd with a well-
defined weight

DHrandsxd = o
s

QrandssdDH̃CEssd + kECSss8dls8,x s11d

with

Qrandssd = o
f

s2x − 1dl f P̄ f
−1ssd.

We may apply the same approach to formally expand the
relaxation contribution of an ordered configuration. The con-
ventional relaxation energy, without separating out constitu-
ent strain, is
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dEord
rel ss8d = o

s

Qs8,sfDHCE
rel ssd − DHCE

unrelssdg. s12d

So, the relaxation energy of the random alloy is a weighted
superposition of relaxation energies of ordered compounds

dErand
rel sxd = o

s

QrandssdfDHCE
rel ssd − DHCE

unrelssdg. s13d

Constituent strain is implicit in this equation as a piece due
to long-range relaxation, and would appear as an additional
term in the actual MBCE formalism.

Recently, Rubanet al.44 proposed a simplified theory of
relaxation for the random alloy alone, based on breaking
down each configuration into the smallest possible tetrahedra
that allow for a space-filling tiling of the alloy(“effective
tetrahedron model,” ETM). Their approximation fordErand

rel

consists of three steps: First,dErand
rel is written as a sum only

of volume energy changes of all inequivalent tetrahedra in a
given structure. Second, the volume deformation energy for a
particular tetrahedron A4−nBn sn=0, . . . ,4d is approximated
by the volume deformation energy of a crystal structure that
consists exclusively of this tetrahedron type. Third, the re-
laxed volume of each tetrahedron type A4−nBn in the random
alloy at compositionx is estimated from a harmonic spring
model. For fcc, we have five tetrahedra corresponding to fcc
sA4d, L12 sA3Bd, L10 sA2B2d, L12 sAB3d, and fccsB4d, re-
spectively. On the bcc lattice, there are two inequivalent
forms for A2B2, i.e., n=1, . . . ,6 inequivalent tetrahedron
decorations A4−nBn, which correspond to the six structures
pure bcc(A and B), D03 (A3B and AB3), B2 sA2B2d, and
B32 sA2B2d. The complete ETM expression thus resembles
Eq. (13), but with the sum limited to the six specific high-
symmetry configurations, andQrandssd replaced by the Ber-
noulli probability psndsxd to find a given tetrahedron decora-
tion n at compositionx

dErand
rel,ETMsxd = o

n=1

6

psndsxdhEsndfVrel
sndsxdg − EsndfVunrel

snd sxdgj.

s14d

Here,Vsndsxd denotes the volume of a tetrahedron of structure
n, but equilibrated in a random alloy of volumeVrandsxd.
Vsndsxd is approximated by calculating diatomic lengths A-A,
A-B, and B-B in the random medium(with bulk moduli
instead of atomic force constants), and combining these to
get the total volume of each tetrahedron type.EsndfVrel

sndsxdg is
the value of the equation of the state of structuren at the
volume Vrel

sndsxd. Efsi ;Vunrelsxdg is the same quantity for un-
relaxed random alloy. Comparing the general expression Eq.
(14) to Eq.(13) of the MBCE formalism helps to reveal their
important distinctions.

(a) The model of Eq.(14) includes random alloy relax-
ation only due to high-symmetry ordered structures bcc(A
and B), D03 (A3B and AB3), B2 (AB), and B32(AB), which
each have an isolated, single type of local environment. In
contrast, the model of Eq.(13) allows all types of ordered
configurationss to participate in determining relaxation en-
ergies.

(b) For ordered structures, the model of Eq.(14) does not
incorporate relaxation effects that distinguish differently ori-
ented superlattices.20 In the ETM, this relaxation energy is
zero in the long-period limit.

(c) As noted by Rubanet al., the model of Eq.(14) rep-
resents the random alloy of compositionx as having asingle
value of A-A relaxed interatomic distances(likewise for A-B,
B-B). The general model of Eq.(13) contains contributions
from a distribution of values for each of these bonds. This
distribution can be broad.45

(d) The model of Eq.(14) attempts to capture all relax-
ation forms by volume relaxation alone, similar to theK
relaxation proposed early on by Weiet al.46 The general
model of Eq.(13) includes all three forms of relaxation.

We may test the validity of the ETM approach by com-
paring with LDA: Determining relaxation energy differences
for lower-symmetry structures which consist of more than
one type of tetrahedron. For instance, for Mo2Ta C11b, the
LDA relaxation energy dErel,LDA=−7.1 meV while for
MoTa2 C11b, dErel,LDA=−23.4 meV. In the ETM, we note
that the C11b unit cell consists of 2A4+8A3B+8A2B2 tetra-
hedra. Using the LDA relaxed tetrahedal volumes together
with LDA-derived EsVd curves for A4, A3B, and A2B2 (de-
scribed by the bcc, D03 and B2 structures, respectively), we
arrive at dErel,ETM=−4.9 meV for Mo2Ta C11b and
−5.1 meV for MoTa2 C11b. The obvious asymmetry in re-
laxation energies between Mo2Ta and MoTa2 is missed en-
tirely by the model of Eq.(14). A failure of the ETM for
relaxation energies of early transition metal impurities(spe-
cifically Nb, Mo) in Cu was already pointed out in Ref. 44,
and it is possible that the failure we observed is related to
those results. For the present purposes, we conclude that we
require a converged expression like Eq.(13) to capturedErel
correctly, rather than a limited sum based on the volume
deformation of high-symmetry structures, Eq.(14).

D. Measures for the predictive power of a CE

In earlier MBCE papers,9,10,13,16,18problem (iv) was ad-
dressed by constructing the CE from a subset of the input
LDA hDHfssdj and using the ensuinghJj to predictDHCE for
the remainingDHLDAssd outside the subset. The average er-
ror DHCE−DHLDA of the predictions was then used to gauge
the quality of a chosen set of interactions. In mathematical
statistics, this procedure is known as “hold-out set cross-
validation” (HOS-CV),21 the hold-out set being the set of
predicted LDA structures. Van de Walle and Ceder22 have
recently used “leave-one-out”(LOO) CV: Given Ns input
structures and a set of pairs and many-body interactions,Ns

successive cluster expansions are performed with only(Ns

−1) structures in the fit, and subsequently the one left out is
predicted. The LOO-CV score is the average over the predic-
tion errors for each omitted structure. Both HOS-CV and
LOO-CV have their own disadvantages. Since the configu-
rations in the fit set are never predicted for HOS-CV, a CE
selected this way will overemphasize the configurations in
the prediction set at the expense of those in the input set.
LOO-CV solves this problem, but on the other hand was
shown by Shao47 to favor articifially complex interaction
sets.
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E. Selection of input structures and interactions

Regarding point(v), the choice of pair figures is facili-
tated by the constrained fit Eq.(8) above. However, in earlier
work9,10,13,16,18the choice of relevant many-body figures re-
quired tedious comparison of predicted and actual properties
of an alloy to ensure that the optimum fit had been chosen. In
this process, additional LDA input structures were intro-
duced as needed, e.g., as ground-state structures of some
previous prediction, but might also be excluded again if they
were too high in energy and could not be fit accurately.10

IV. OPTIMIZED APPROACH TO THE SELECTION OF
INPUT STRUCTURES AND FIGURES

A. Leave-many-out cross-validation

As mentioned above, the most promising technique to
judge the predictive power of a CE fromwithin a given set of
input DHLDAssd [problem(iv)] is cross-validation. However
the two previously used approaches may either be prone to
overoptimization(HOS-CV), or allow for artificial complex-
ity of the fit (LOO-CV).47

To address both issues, we follow Shao’s47 suggestion and
use a form of “leave-many-out”(LMO)-CV21 to distinguish
given t, l, npairs, and the chosenhJMBj. From a totalNs input
structures, selectNp prediction sets ofNv structures. For each
set, use only the remainingNs−Nv input structures to obtain
the numerical pair and many-body interaction values which
minimize sMBCE of Eq. (8). Then, determine the prediction
errors for theNv validation structures from the best-fit inter-
action values. Here, we useNpù2Ns /Nv prediction sets, se-
lected randomly with the constraint that each individual in-
put structure appears in at least two prediction sets. Finally,
the CV score is the average prediction error over the differ-
ent prediction sets

scv =
1

bNv
o

sb setsd
o

sNvs in setd
uHCEssd − HLDAssdu2. s15d

B. Iterative determination of input structures and figures

Our iterative algorithm to determine simultaneously both
the relevant input structures and the relevant MBCE param-
etershJj is schematically outlined in Fig. 4. Given an initial
LDA input set of configurationss, we comparescv for many
different MBCE parameter setshJj. Formally, we distinguish
between different combinations of many-body termshJMBj,
while ht ,l ,npairsj become dependent variables by minimizing
scv on a three-dimensional grid. We place an additional con-
straint on each candidate CE: As also pointed out by van de
Walle and Ceder,22 any cross-validation score can still be
subject to overoptimization by including too many free pa-
rameters for too few input structures. To address this risk, we
simply limit the maximum number of many-body figures al-
lowed in the cluster expansion. In practice, we used a maxi-
mum of five many-body figures in the final construction step
of the Mo-Ta MBCE.

An important issue is the identification of those MB fig-
ures which minimizescv for a given LDA input base from the

potentially infinite multitude of possible combinations. Our
approach is twofold: first, we restrict the allowed many-body
figures to a large but finite pool of possible candidates—in
the present work, 47 MB figures(see Sec. V B). Second, we
search for the optimum combination of figures for a given
total number one by one, i.e., we first identify the MB figures
which give bestscv when fit with otherwise only pairs,J0,
and J1 in the CE. Next, we identify a second many-body
figure which gives optimumscv when included together with
one of the optimum first figures, etc. This strategy has been
found to work quite reliably in practice. Yet, it is not exhaus-
tive in the sense that correlations in the search space could
still be missed(e.g., the optimum set of five MB figures
might not include one of the best single-MB candidates).

Normally, the result of the cross-validation analysis is not
a single, “definitive” sethJMBj, but rather a number of dif-
ferent combinations which yield similar CV scores(labeled
“CE 1”,…, “CE n” in Fig. 4). To further distinguish these,
we investigate theira posterioripredictive power, by calcu-
lating additional DHLDAssd and comparing to predicted
DHCEssd. These new configurations are handpicked to best
reflect the region of configuration space which we are most
interested in—e.g., a number of ground-state structures pre-
dicted by thescv-equivalent CEs. If the estimated true pre-
diction error becomes sufficiently low for the optimum CE,
and the predicted ground-state line agrees with what is
known from LDA within the projected error limits, we ac-
cept this combination of interaction parameters; otherwise,
we add the newly calculated LDA results to the initial input
set and reinitiate the construction cycle.

The resulting “optimum CE” is ready for use already at
this stage. In practice, however, it is advantageous to add the
newly calculated LDA results to the initial ones anyway, and
refit the exact same combination of parameters for the full set
of available input data, possibly using fit weights. This may
further improve the CE’s reproduction of particularly desir-
able features of configuration space.

FIG. 4. Schematic flowchart of MBCE construction
algorithm.

V. BLUM AND A. ZUNGER PHYSICAL REVIEW B 70, 155108(2004)

155108-6



V. DETERMINISTIC CLUSTER EXPANSION OF MO-TA

A. Constructing the MBCE input: LDA calculations

To obtain the MBCE parameters defined in Eq.(3) as
described in the preceding section, we require two distinct
types of input from total-energy calculation: The formation
enthalpieshDHLDAssdj for a set of selected input configura-
tions s including full structural relaxation, and the corre-
sponding constituent strain contributionErefssd.

Total energiesEtot for elemental Mo, Ta, and their com-
pounds were obtained in the LDA to density-functional
theory, using the momentum-space total-energy method48 as
implemented in theVASP program package.49,50 Mo and Ta
were represented by projector augmented wave(PAW)
potentials51,52 including 4p and 5p semicore states, respec-
tively, together with the exchange-correlation functional of
Perdew and Zunger.53 The momentum-space basis sets
(plane-wave cutoff energyEcut and grid of k points) were
chosen to give converged formation enthalpies of meV accu-
racy, as illustrated in Table I. All compound geometries were
fully relaxed according to their symmetry, including both
cell-external (lattice parameter and shape) and internal
(atomic coordinates) degrees of freedom.

Table I gives basis set andk-point convergence tests for
the simplest compound structure, B2 MoTa. These tests show
Ecut=250 eV to be sufficient. Likewise, Monkhorst-Pack54

k-point grids of 12312312 or denser(pertaining to the cu-

bic bcc unit cell) give sufficient accuracies wherever forma-
tion enthalpies can be calculated using equivalentk grids for
elements and compounds.55 In a few cases, the equivalent
k-point method proves impractical(e.g., for 13-atom unit
cells); here,k-grid convergence was achieved explicitly, us-
ing Blöchl’s tetrahedron method56 for Brillouin zone integra-
tion. The most significant approximation(except possibly
LDA itself) is the use of the PAW pseudopotential approxi-
mation. For the B2 structure, the error is roughly 10 meV, or
5% with respect to all-electron LAPW calculations:57

DHall-elec=−195 meV (LAPW) vs DHpseudo=−205 meV
(PAW).

To obtainECSsx, k̂d for the infinite superlattice limit ac-
cording to Eq.(6) [and, subsequently,Erefssd for each con-
figuration], we calculated the deformation energies of bcc
Mo and Ta explicitly as a function ofain-plane and c/a, for

k̂=s1,0,0d, (1,1,0), (1,1,1), (2,1,0), and(3,1,1); for other ori-
entations, these results were interpolated using Kubic har-
monic functions.10,16 Figure 5(a) shows the calculated con-
stituent strain energies(infinite superlattice limit) for the five
explicitly calculated orientations. For the particular case of
Mo-Ta, ECS is relatively smallsECS&17 meVd compared to
typical formation enthalpies(−205 meV for B2 MoTa). It is
also nearly isotropic, as reflected in the almost spherical,

interpolatedECSsk̂d landscape shown in Fig. 5(b) for x=0.5.

B. MBCE construction for Mo-Ta

1. Cluster expansion iterations

The mixed-basis cluster expansion of Mo-Ta was created
in five iterations of increasing LDA input size. The full al-
gorithm of Sec. IV(Fig. 4) was employed from iteration 3
forward, while minor differences prevailed in iterations 1
and 2. To better illustrate the capabilities of the full strategy,
we also include here MBCE’s constructed for the LDA data
bases of the first two iterations, obtaineda posteriori using
the exact strategy of Sec. IV. The final result(optimum CE of
step 5) is independent of this history.

As described in Fig. 4, our strategy is to iteratively in-
crease the pool of available LDA input structures. In each
iteration(fixed LDA input set), several “candidate CE’s” are
constructed that help predict structures of interest to be cal-
culated in LDA for the next iteration. In Appendix A, Table

TABLE I. Convergence of the B2 compound formation enthalpy
with respect to cutoff energyEcut and Monkhorst-Pack typek-space
grid. The error is defined with respect to the best converged case
considered,Ecut=300 eV and the 16316316 k-space grid. Con-
vergence is sufficient already atEcut=250 eV and a 12312312
grid.

Ecut (eV) k mesh DHfsB2d (meV) Error (meV)

250 83838 −203.0 +1.6

250 12312312 −204.8 −0.2

250 16316316 −204.5 +0.1

300 83838 −203.2 +1.4

300 12312312 −204.9 −0.3

300 16316316 −204.6 0.0

FIG. 5. (Color online) (a) Constituent strain

energyDECS
eqsx, k̂d as a function ofx for different

interface orientationsk̂. (b) Polar representation

of interpolatedECS
eqsx, k̂d as a function ofk̂ for

x=0.5.
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IV lists all LDA-calculated input structures for Mo-Ta, to-
gether with their formation enthalpies and the iteration in
which they were first introduced. The input for iteration 1
consisted of a set of 24 structures, marked “1” in the last
column of Table IV. In iterations 2–5, the input set was in-
creased to 34, 43, 49, and 56 structures, respectively, with
the additions in each iteration also marked in Table IV. In
each iteration, the pool of many-body figures from which
candidate CE’s were selected comprised 47 candidate clus-
ters: 13 inequivalent three-body terms up to fifth-nearest-
neighbor maximum intersite separation, 27 inequivalent
four-body figures up to fourth-nearest-neighbor maximum
intersite separation, 4 inequivalent five-body figures up to
third-nearest-neighbor intersite separation, and the smallest
six-body figure, the octahedron(third-nearest-neighbor inter-
site separation). As examples, Fig. 6 shows the optimum
many-body figures used for the final Mo-Ta MBCE: four
three-body figures and one four-body figure, extending up to
fifth-nearest-neighbor intersite separation at most. In a final
step, the optimum CE of iteration 5 was refined once more
using the same LDA data base, but by applying fit weights of
10 to the CE ground-state structures. This procedure im-
proved the representation of this particularly interesting re-
gion of our without severe impact to other areas of the fit.

Figure 7 illustrates the LMO-CV score for the optimum
MBCE of each iteration. LMO-CV scores for different itera-
tions are not directly comparable numerically since the input
structure set changes, and prediction sets are freshly chosen
each time. Nevertheless, an interesting trend is apparent: the
numerical values ofscv do not fluctuate very much as the
LDA structure base increases. Only the scatter of individual
prediction set errors around their average is somewhat re-
duced.

It is interesting to compare the development ofscv [Eq.
(15)] to that of the least-squares fit error,slsq [Eq. (7)], tabu-
lated in Table II for each successive iteration:slsq is always
clearly smaller thanscv, i.e., of little value to gauge a CE’s
predictive performance. To assess the latter, we can use our
a posterioriknowledge of the complete LDA input set(Table
IV in Appendix A). We may comparescv of each iteration to
the averaged prediction errors for those structures not yet in
the LDA data base. These values are termedsreal in Table II,
and can be directly compared withscv. While of the same
order of magnitude,sreal is quantitatively larger by factors

1.5–2. So,scv can be used as a qualitative criterion to judge
predictiveness within one iteration, but not as a quantitative
one across different CE steps. For the latter purpose, knowl-
edge ofsreal (i.e., monitoring additional inputDHLDA after
the MBCE construction in each step) is necessary.

It is apparent from Table II thatsreal ranges up to 6 meV
[i.e., 3% of the minimumDHLDAsB2d=−205 meV in the sys-
tem] for the first iteration of the MBCE construction process.
Hence, some average thermodynamics of Mo-Ta can be cap-
tured already with a MBCE based on the 24 initial LDA
input structures. However, what is not yet captured at this
stage is the alloy’s ground-state line. Its development across
different iterations is also summarized in Table II, for the
composition rangexTaù0.2. Of the seven ground states at-

FIG. 6. Optimum many-body figures of the final MBCE itera-
tion, extracted from a pool of 47 candidate clusters.

FIG. 7. Leave-many-out cross-validation for the best candidate
MBCE of each iteration of the construction process. We show the
prediction error for each individual set. Ten sets of five structures
each s10/5d were averaged in iteration one, 10/8 in iteration 2,
12/8 in iteration 3, 12/8 in iteration 4, and 12/12 in iteration 5.
Dashed lines show the average prediction error,scv, for each
iteration.

TABLE II. Performance of the cross-validation optimized CE in
each iteration of the MBCE construction.slsq [Eq. (7)] is the least-
squares fit error of the LDA results known in each step.sreal is the
prediction error of all structures unknown in a particular iteration
but known in the final one. Also listed is the number of ground
states of the final CE which were correctly identified(“correct”),
those which were not identified(“missing”), and those which were
wrongly predicted(“wrong”).

Iteration
scv

(meV)
slsq

(meV)
sreal

(meV)

Ground statesù20% Ta

Correct Wrong Missing

1 4.4 1.6 5.2 5 3 2

2 4.0 2.6 6.0 6 3 1

3 3.5 2.5 4.6 4 3 3

4 2.9 2.2 3.3 7 1 0

5 3.3 2.2 ... 7 1 0

Final 3.6 2.5 ... 7 0 0
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tested by the final CE, five are identified in the first iteration
and two are missed; however, the first iteration CE predicts
another three ground states which are “wrong,” i.e., they are
not ground states when calculated in LDA. This situation
improves significantly only in iteration 4, after which one
incorrect ground-state prediction remains. The latter is rem-
edied in the final step by the application of fit weights. A
sufficiently large LDA data base is necessary to capture the
correct ground-state line of Mo-Ta.

2. The converged cluster expansion for Mo-Ta

The final CE for Mo-Ta employs the five MB shown in
Fig. 6, andnpairs=8 pair interactions, constrained byt=9 and
l=4 [Eq. (8)]. Figure 8(a) shows the symmetry-weighted
interaction strengthsDfJf for the pairs and MB figures se-
lected by the MBCE construction scheme(Sec. V B and Fig.
6). The clearly dominant interaction is an attractive nearest-
neighbor termsDnnJnn=108 meVd, which is more than three
times stronger than any other in the system. However, the
many further interactions are by no means numerically neg-
ligible. Pair interactions are of considerable magnitude up
the eighth nearest neighborsD8nnJ8nn=21 meVd, and at least
two many-body figures(labeled M2 and M4) are of similar
strength.

By all available criteria, the predictive accuracy of this
CE is of the order of very few meV: The finalDHCE for all
56 input configurations compared withDHLDA (both listed in
Table IV, Appendix A) gives an average fit errorslsq
=2.5 meV and a maximum deviation of only 6.3 meV. With

scv=3.6 meV, its CV score(lowest panel of Fig. 7) is reas-
suringly small—less than 2% of DHfsB2 MoTad
=−204.8 meV. As an additional reliability estimate, the av-
erage prediction errorsreal between iterations 4 and 5 of the
CE construction(i.e., the error of the seven LDA input struc-
tures calculated after iteration 4, when predicted by the op-
timum MBCE of iteration 4) amounts to 3.3 meV. The fact
thatslsq, scv, andsreal are all of the same magnitude is a good
indicator for the absence of any overoptimization. The
present MBCE of Mo-Ta is a reliable parametrization of the
underlying LDA-PAW energetics.

The converged MBCE allows us to reexamine the short-
range CE approach of Sec. II and explore the reasons for its
quantitative failure. The short-range and the converged CE
both identify the main qualitative feature of Mo-Ta: a strong
nearest-neighbor pair interaction. However, the short-range
CE neglects all other parts of the full MBCE, and its predic-
tion errors(several tens of meV) are of the same order as the
missing interactions. BeyondJnn, the interactions of the
short-range CE have little to do with the converged results:
Its second-nearest-neighbor pair has the wrong sign, and its
smallest three-body interaction is not even part of the final
CE. Rather, its value is determined by the numerical neces-
sity to compensate for the point interactionJ1. There are two
obvious reasons for this wrong description of interactions.
First, the number of input structures in the short-range CE is
too low for the number of relevant interactions. Second, the
MB interactions of the final MBCE would be impossible to
guess from intuition alone. Overcoming both obstacles ne-
cessitates a systematic construction algorithm, such as de-
scribed above.

VI. RESULTS: GROUND STATES AND ALLOY
THERMODYNAMICS

A. Ground-state structures

Figure 8(b) shows theDHCEssd versus the concentration
map of all three million structures with bcc-based supercells
up to 20 atoms. As in Sec. II, ground states can be read from
this plot as the breaking points of the convex hull about all
structures. There are seven distinct deep breaking points in
Fig. 8(b). Full atomic coordinate sets as computed byVASP

can be found in Appendix C. The five distinct small-cell
ground states between 20% and 60% Ta are all superlattice
sequences of(100) atomic planes: A4B, A2B sC11bd, A3B2,
AB (B2), and A2B3. They are contrasted by two much more
complex Ta-rich nonsuperlattice structures, A4B9 and A4B12.
An in-depth discussion of these structures and their interme-
diate regions is given in Ref. 23. The unexpectedly feature-
rich ground-state line of Mo-Ta emphasizes the power of a
systematically constructed MBCE. Five of these structures
are truepredictionsof the MBCE construction process, and
only subsequently confirmed by direct LDA calculations.
Simply guessing this variety of atomic arrangements from an
intuition-based, short-range CE approach(Sec. II) is practi-
cally impossible.

B. Order-disorder transitions of Mo-Ta

In the approximation of nearest-neighbor interactions
only, the transition between the ordered B2 and disordered

FIG. 8. (a) Symmetry-weighted pair and many-body interactions
DfJf of the converged cluster expansion of Mo-Ta.(b) Exhaustive
ground-state search(three million structures) based on the con-
verged cluster interactions. Seven ground states are clearly identi-
fied between 20% and 80% Ta(large circles).
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A2 states is theoretically well understood as a model second-
order transition. For this case, both the analytic(series-
expansion) limit 58 and early Monte Carlo simulations59 agree
on a transition temperaturekBTc=6.35Jnn. Since the nearest
neighbor interactionJnn is the clearly dominant term of our
Mo-Ta MBCE [Fig. 8(a)], it would seem natural that a
simple nearest-neighbor-only formula should give a good
idea of the true A2-B2Tc. In this approximation,DnnJnn
=108 meV of Mo-Ta corresponds to aTc of almost 2000 K.
This conflicts with experiment, since the published phase
diagram reports only a continuous A2 solid solution, and
early x-ray diffraction measurements60 revealed no super-
structure for samples sintered either at 1773 Ks5 hd or
673 K s100 hd. Ordering might have been inhibited at 673 K
since diffusion in Mo-Ta is slow,61 but should have been
sufficiently fast at 1773 K.

This failure can be related to the neglected high-order pair
and many-body interactions of real Mo-Ta. To verify this, we
performed canonical Monte Carlo simulations using our con-
verged MBCE Hamiltonian. We used Mo0.5Ta0.5 supercells
sized up to 32332332 unit cells, cooling down stepwise
from the high-T solid solution into the B2-ordered regime,
with 2000 or 4000 spin flips per site and step for proper
equilibration. Figure 9 displays the resulting mixing enthalpy
DHCE and the configurational heat capacityCv for 16316
316 supercells. The Monte Carlo simulation agrees with

Ref. 59 when restricted to the nearest-neighbor-only approxi-
mation[Fig. 9(a)]: As expected for a second-order transition,
DHnn-only varies smoothly withT, and a clear peak in the
specific heat indicatesTc=1980±50 K. In striking contrast,
the maximum ofCv is located around 800 K for thefull
Mo-Ta CE [Fig. 9(b)], more than a factor of 2 below the
short-range approximation. The transition is still of second
order, but the presence of additional high-order pair and MB
figures leads to a dramatic slowdown. Once more, the use of
a short-range approximation proves severely dangerous, and
underlines the need for a full MBCE even for qualitative
purposes.

Table III lists critical temperatures, i.e., the upper limits of
thermodynamic stability, also for the remaining ground states
of Mo-Ta. In each case, supercell sizes above 20320320
were found sufficiently accurate, and clearly pinpointed first-
order transitions occur everywhere but for B2. Reassuringly,
all ordered ground states are thermodynamically stable only
well below 1000 K. Additionally, the canonical MC simula-
tions suggest an extension of B2 long-range order to the
Mo-rich side at finiteT. Both the C11b and A3B2 ground
states transition into a B2 arrangement with one disordered
Ta-rich sublattice rather than directly into A2. For fixed con-
centration and accessible cell sizes, possible interfacial ef-
fects preclude a definitive conclusion on whether the disor-
dered B2 area prevails also in the thermodynamic limit, or
whether a phase-separated A2-B2 regime could provide an
even lower free energy on a very large scale. In any case, the
full MBCE predicts all transitions well below the tempera-
ture range assessed in earlier experiments, and thus yields a
consistent picture of Mo-Ta.

C. Mixing enthalpies

The MBCE also allows us to investigate finite-T energet-
ics of the A2 solid solution. In the fully random limitsT
→`d, the mixing enthalpyDHmixsx,Td is given analytically
by inserting correlation function averages over all configura-
tions s at fixed compositionx into the MBCE Hamiltonian

Eq. (3). Sincekp̄ flsux=s2x−1dl for figures f with l vertices,
we obtain20

FIG. 9. (Color online) (a) Monte Carlo simulation of the classic
A2-B2 transition in the nearest-neighbor-only approximation, using
Jnn of the full Mo-Ta MBCE.(b) Same, but using all interactions of
the full MBCE for Mo-Ta.

TABLE III. Critical temperatures of ordered ground states from
Monte Carlo simulations(cell sizes 20320320 and above).

Ground state Transition to Tc (K) Transition to Tc (K)

A4B A2 195

A2B B2 400 A2 560

A3B2 B2 275 A2 550

AB A2 600–1000a

A2B3 A2 610

A4B9 A2 490

A4B12 A2 385

aSecond-order transition.
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DHmixsx,`d = J0 + s2x − 1dJ1 + o
pairs

s2x − 1d2DpairJpair

+ o
MBs

s2x − 1dlDMBJMB +E
V

DECS
eqsk̂,xdd2k̂.

s16d

This predicted functional dependence ofDHmixs`d on x is
shown in Fig. 10. It is almost symmetric, with minimum
DHmix=−127 meV atx=0.47.

To verify the magnitude and slight degree of asymmetry
of DHmix we performed additionaldirect LDA calculations,
modeling the random alloy limit by quasirandom structures,

which mimic p̄ f =s2x−1dl for short-ranged figures as closely
as possible. Figure 10 includes results for special quasiran-
dom structures62 Mo1−xTax with 16 atoms per unit cell(SQS-

16) and x=0.25, 0.5, and 0.75, which fullfillp̄p=s2x−1d2

exactly for at least the first four pairs. For other concentra-

tions, meeting even onlyp̄nn=s2x−1d2 exactly is not always
possible, i.e.,strict SQS cannot be constructed. To capture
the range closer tox=50% in direct LDA calculations any-
way, we define 14-atom structures Mo8Ta6 and Mo6Ta8

(dubbed “SQS-14”) which minimizeo fup̄ fssd−s2x−1dlu2 for
a certain number of local figures(here, the first ten pairs, and
three- and four-body figures up to a maximum vertex dis-
tance of third-nearest pairs). Appendix D gives the structure
of SQS-16 and SQS-14. As can be seen in Fig. 10, their
directly calculated formation enthalpies coincide quantita-
tively with both the magnitude and tentative asymmetry of
the MBCE-predictedDHmixsx,`d—the converged MBCE
provides a reliable mapping of LDA. The general magnitude
of DHmixsx,`d is also in line with the only available
experiment,25 as well as earlier semiempirical
calculations.28–30,63,64The experimental data is plotted to-

gether with our data in Fig. 10; at face value, the experimen-
tal error limits cover our prediction well.

To quantify the impact of short-range order in the solid
solution at finiteT, we performed another set of canonical
Monte Carlo simulations at fixedT=1200 K, and across the
entire concentration range in steps of 10%. The resulting
DHmixsx,1200 Kd, also shown in Fig. 10, lies below the ran-
dom limit by up to 50 meV. Short-range order is a strong
effect in Mo-Ta, even clearly above theT range of long-
range order formation. However,T=1200 K is also the very
temperature to which the above-cited experimental data cor-
respond. If so, ourT=1200 K prediction underestimates the
truth substantially. In principle, this could be a systematic
error of LDA; however, a quick test for the B2 structure
shows that DHsB2d=−199 meV in the Perdew-Wang
generalized-gradient approximation,65 only 6 meV away
from the LDA result(Table I). On the other hand, it is un-
clear how the sample was equilibrated in Ref. 25 and
whether trueconfigurational equilibrium (which requires
long diffusion times) was ever attained. In any event, the
MBCE Hamiltonian achieves our stated goal of representing
the energetics of full-scale LDA calculations with reassuring
accuracy.

D. Short-range order

Monte Carlo simulations also provide the actual atomic
distribution of the Mo-Ta solid solution at 1200 K. By con-
vention, short-range order is visualized through pair correla-
tions in reciprocal space, since these determine the chemical
contribution to experimental diffuse diffraction intensities

aSROsx,kd = o
n=1

nR

aSROsx,ndeikRn, s17d

where Rn is the real-space vector of pairn, nR is a suffi-
ciently high real-space cutoff, and

asx,nd =
P̄pair n− s2x − 1d2

1 − s2x − 1d2 . s18d

For x=0.2, 0.4, and 0.9, Fig. 11 plots the predicted
aSROsx,kd at T=1200 K in a(100) section through reciprocal
space. As anticipated fromDHmix, short-range order is a
strong effect in the Mo-Ta solid solution. Atx=0.2, the main
feature is a single peak centered about(100), consistent with
the(100) superlattice structural motif. This structure is domi-
nant also atx=0.4, but it is now topped by a very narrow,
ringlike structure around the(100) point itself—possibly in-
dicative of a tendency for antiphase domains of local order.
In sharp contrast,aSROsx,kd sx=0.9d is much weaker in the
Ta-rich limit. The intensity at(100) itself is zero, and re-
placed by a low, extended ring in the plane of interest. It is
interesting to compare this to the prediction of the short-
ranged real-space CE in Sec. II. Atx=0.2 and 0.9, this would
yield a simple sharp peak around(100). At x=0.4 andT
=1200 K, our calculations show that the material would al-
ready exhibit B2-like long-range order, sinceTc for the short-
ranged real-space CE is close to that obtained for stoichio-

FIG. 10. Enthalpy of mixing of the random alloy(“T=`” ) and
at 1200 K, predicted from the converged MBCE and compared to
experimental data points(Ref. 25). For comparison, direct LDA
calculations for special quasirandom structures are also shown.
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metric B2 MoTa and a nearest-neighbor-only model in Fig.
9(a).

Experimentally, diffuse intensity measurements along the
(000)-(400) line on Mo-Ta forx=21%, 37%, and 91% have
been reported by Predmore and Arsenault.24 These authors
presented uncorrected diffraction data(i.e., aSRO is overlaid
by fundamental Bragg peaks, thermal scattering, lattice dis-
tortion, etc.), and did not specify a temperature of equilibra-
tion, so that we may only attempt a qualitative comparison
with our predictions. Still, this comparison is quite favorable:
At x=21% and 37%, clear peaks at roughly(100) positions
in reciprocal space are found by Predmore and Arsenault,
very similar to those predicted by us atx=0.2 and 0.4. In
contrast, no strong(100)-centered peak is apparent for the
91% sample. Instead, there is a low, bulgelike structure
somewhat off the(100) position—again, very consistent with
our findings atx=0.9. The finite-T behavior of Mo-Ta is
convincingly represented by our MBCE Hamiltonian.

VII. CONCLUSIONS

We have presented a consistent, deterministic approach to
map a first-principles configurational Hamiltonian onto an

Ising-like model Hamiltonian in the framework of the
MBCE method. For the example of Mo-Ta, we show that a
short-range, “intuition-based” cluster expansion approach is
quantitatively insufficient—it misses essential features, both
with respect to ground states and finite-T thermodynamics
(transition temperatures). In contrast, our converged MBCE
Hamiltonian identifies ground states of a complexity not an-
ticipated in body-centered cubic alloys, finds low transition
temperatures that are compatible with the experimental ab-
sence of long-range ordered phases, describes short-range
order in the solid solution consistent with earlier experi-
ments, and finally allows to extract finite-T energetics up to
the fully random alloy limit with LDA quality.
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APPENDIX A: LISTING OF LDA INPUT DATA USED IN
THE MO-TA MBCE

Table IV lists formation enthalpies for the 56 fully re-
laxed input structures which were used as a basis for the

FIG. 11. (Color online) Predicted short-range
order of Mo-Ta alloys at T=1200 K for
(a) x=0.2,(b) x=0.4,(c) x=0.9 in the(001) plane
of reciprocal space. Monte Carlo cell size:
20320320, equilibration: 8000 flips/site total.
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TABLE IV. Formation enthalpies of the 56 LDA input structures used for Mo-Ta, and best-fitDHCE of the
converged CE.

Composition Structure DHLDA

(meV)
DHCE

(meV)
First present

(iter.)

Mo A2 0.0 0.9 1

Mo8Ta “A8B” (App. B) −66.3 −60.9 2

Mo7Ta (210) A7B SL −63.3 −65.7 2

“A 7B” (App. B) −65.4 −64.3 5

Mo6Ta (100) A6B SL −78.0 −79.1 3

(111) A6B SL −74.3 −74.6 5

Mo5Ta (433) A8BA2B SL −86.6 −88.7 3

Mo4Ta (111) A4B SL −103.1 −101.3 3

(100) A4B SL −111.1 −111.5 5

(310) A4B SL −107.0 −103.1 5

Mo3Ta D03 −128.9 −128.5 1

L60 −128.7 −124.7 1

(100) A3B SL −134.6 −131.8 1

(110) A3B SL −77.5 −79.7 1

(310) A3B SL −132.0 −129.3 1

“A 12B4-I” (App. B) −125.9 −129.2 2

“A 4B12” (App. C) −130.9 −134.5 4

“A 12B4-II” (App. B) −128.4 −130.9 4

Mo5Ta2 (100) A3BA2B SL −150.8 −151.7 3

(111) A4BAB SL −148.8 −146.9 3

Mo2Ta C11b −179.1 −178.4 1

(110) A2B SL −101.0 −101.9 1

(111) A2B SL −119.4 −119.2 1

Mo9Ta5 (710) A4B3A4BAB SL −175.6 −180.5 2

Mo5Ta3 (210) A3BsABd2 SL −180.5 −180.3 2

Mo3Ta2 (210) A3BsABd3 SL −181.8 −186.8 2

(111) A2BAB SL −177.4 −179.5 3

(100) A2BAB SL −195.6 −195.1 4

Mo4Ta3 (100) A2BsABd2 SL −196.0 −197.6 3

(111) A2BsABd2 SL −193.8 −195.2 3

MoTa A1 −117.6 −117.4 1

B2 −204.8 −204.4 1

B11 −147.5 −144.5 1

B32 −110.8 −109.1 1

(110) A2B2 SL −86.0 −86.9 1

(310) A2B2 SL −191.9 −193.8 1

“A 8B8” (App. B) −135.3 −135.7 4

Mo3Ta4 (100) A2BsABd2 SL −183.6 −189.2 3

(111) A2BsABd2 SL −186.0 −185.6 4

Mo2Ta3 (100) A2BAB SL −180.1 −183.4 2

MoTa2 C11b −157.6 −159.2 1

(110) AB2 SL −86.6 −84.1 1

(111) AB2 SL −105.6 −108.2 1

Mo4Ta9 “A 4B9” (App. C) −153.5 −150.7 5

MoTa3 D03 −79.4 −82.2 1

L60 −80.5 −81.4 1

(100) AB3 SL −105.6 −101.3 1
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cluster expansion of Mo-Ta. Both direct LDA calculations
and the fitted cluster expansion formation enthalpies are
listed. Structures are defined either by a common name, or in
a superlattice notation. For the cases where neither nomen-
clature exists, the actual lattice occupation is described in
Appendix B.

APPENDIX B: DEFINITION OF NONSUPERLATTICE LDA
INPUT STRUCTURES IN TABLE IV

The present section defines those LDA input structures
(Table IV) which have no common name, and cannot be
described by a superlattice notation. To emphasize the con-
nection between superstructure and underlying bcc lattice,
atomic coordinates are given in Cartesian coordinates, in
units of the(cubic) bcc lattice parameter, and without relax-
ation.

1. A8B

Description: This structure is a body-centered tetragonal
“3 3331” defect cell of minority atoms embedded in the
majority matrix.

Space group:I4/mmm (No. 139 in the International
Tables for Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s1.0,0.0,0.0d, a2=s0.5,1.5,1.5d, a3=s0.5,−1.5,1.5d
Atomic coordinates(Cartesian coordinates):
A1: s1.0,−1.0,1.0d, A2: s0.5,−0.5,0.5d, A3: s0.5,0.5,0.5d,

A4: s0.5,−0.5,1.5d, A5: s1.0,0.0,1.0d, A6: s1.0,1.0,1.0d,
A7: s1.0,0.0,2.0d, A8: s0.5,0.5,1.5d, B1: s0.0,0.0,0.0d.

2. A7B

Description: This structure is a primitive tetragonal defect
cell of minority atoms embedded in the majority matrix, in a
sequence of onecs232d (100) AB plane followed by three
pure A planes.

Space group:P4/mmm (No. 123 in the International
Tables for Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s1.0,−1.0,1.0d, a2=s1.0,1.0,0.0d, a3=s0.0,0.0,2.0d
Atomic coordinates(Cartesian coordinates):

A1: s1.0,0.0,0.0d, A2: s0.5,−0.5,0.5d, A3: s0.5,0.5,0.5d,
A4: s0.0,0.0,1.0d, A5: s1.0,0.0,1.0d, A6: s0.5,−0.5,1.5d,
A7: s0.5,0.5,1.5d, B1: s0.0,0.0,0.0d.

3. A12B4-I

Description: This is a body-centered tetragonal structure
of (100)-oriented, pure B, and alternating AB columns em-
bedded into an A matrix.

Space group:I41/amd (No. 141 in the International
Tables for Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s2.0,0.0,0.0d, a2=s0.0,2.0,0.0d, a3=s1.0,1.0,2.0d
Atomic coordinates(Cartesian coordinates):
A1: s0.0,1.0,0.0d, A2: s1.0,1.0,0.0d, A3: s0.5,0.5,0.5d,

A4: s0.5,1.5,0.5d, A5: s1.5,0.5,0.5d, A6: s1.5,1.5,0.5d,
A7: s2.0,1.0,1.0d, A8: s2.0,2.0,1.0d, A9: s1.5,1.5,1.5d,
A10: s2.5,2.5,1.5d, A11: s2.5,1.5,1.5d, A12: s1.5,2.5,1.5d,
B1: s0.0,0.0,0.0d, B2: s1.0,0.0,0.0d, B3: s1.0,1.0,1.0d,
B4: s1.0,2.0,1.0d.

4. A12B4-II

Description: This is a cubic structure withs23232d unit
cell.

Space group:Pm3̄m (No. 221 in the International Tables
for Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s2.0,0.0,0.0d, a2=s0.0,2.0,0.0d, a3=s0.0,0.0,2.0
Atomic coordinates(Cartesian coordinates):
A1: s1.0,1.0,0.0d, A2: s0.5,0.5,0.5d, A3: s1.5,0.5,0.5d,

A4: s0.5,1.5,0.5d, A5: s1.5,1.5,0.5d, A6: s1.0,0.0,1.0d,
A7: s0.0,1.0,1.0d, A8: s1.0,1.0,1.0d, A9: s0.5,0.5,1.5d,
A10: s1.5,0.5,1.5d, A11: s0.5,1.5,1.5d, A12: s1.5,1.5,1.5d,
B1: s0.0,0.0,0.0d, B2: s1.0,0.0,0.0d, B3: s0.0,1.0,0.0d,
B4: s0.0,0.0,1.0d.

5. A8B8

Description: This structure has as23232d primitive cu-
bic unit cell, but is of trigonal symmetry due to the unit cell’s
atomic content.

TABLE IV. (Continued.)

Composition Structure DHLDA

(meV)
DHCE

(meV)
First present

(iter.)

(110) AB3 SL −63.9 −65.7 1

(310) AB3 SL −113.3 −116.4 1

“A 4B12” (App. C) −125.7 −124.6 2

“A 12B4-II” (App. B) −97.8 −96.5 4

MoTa4 (100) A4B SL −84.6 −86.4 5

(310) A4B SL −92.8 −99.1 5

MoTa7 (210) A7B SL −51.3 −51.8 2

MoTa8 “A 8B” (App. B) −44.0 −48.6 2

Ta A2 0.0 1.1 1
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Space group:R3̄m (No. 166 in the International Tables for
Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s2.0,0.0,0.0d, a2=s0.0,2.0,0.0d, a3=s0.0,0.0,2.0d
Atomic coordinates(Cartesian coordinates):
A1: s1.0,1.0,1.0d, A2: s1.5,1.5,0.5d, A3: s1.5,0.5,1.5d,

A4: s0.0,1.0,0.0d, A5: s0.5,1.5,1.5d, A6: s1.0,0.0,1.0d,
A7: s1.0,1.0,0.0d, A8: s1.5,1.5,1.5d, B1: s0.0,0.0,0.0d,
B2: s0.5,0.5,1.5d, B3: s0.5,1.5,0.5d, B4: s1.0,0.0,0.0d,
B5: s1.5,0.5,0.5d, B6: s0.0,1.0,0.0d, B7: s0.0,0.0,1.0d,
B8: s0.5,0.5,0.5d.

APPENDIX C: ATOMIC COORDINATES OF THE
PREDICTED MO-TA GROUND-STATE STRUCTURES

The present section lists fully relaxed atomic coordinates
for each ground-state structure identified in Mo-Ta as calcu-
lated byVASP.49,50Since these are actual structures that could
be found in experiment, the full crystallographic notation is
used rather than the notation in Cartesian coordinates. In
addition, Pearson symbols67 are listed for each structure.

1. Mo4Ta

Description: This structure is best visualized as an A4B
sequence(superlattice) of (100) atomic planes. It has a body-
centered tetragonal cell.

Space group:I4/mmm (No. 139 in the International
Tables for Crystallography66).

Pearson symbol:tI10
Unit-cell parameters(primitive cell):
a=3.140 Å,b=3.140 Å,c=8.190 Å
a=78.95°,b=78.95°,g=90.00°
Fractional atomic coordinates:
Mo1: s0.397,0.397,0.206d, Mo2: s0.800,0.800,0.399d,

Mo3: s0.200,0.200,0.601d, Mo4: s0.603,0.603,0.794d,
Ta1: s0.000,0.000,0.000d.

2. Mo2Ta

Description: This is the C11b structure, best visualized as
an A2B sequence(superlattice) of (100) atomic planes. It has
a body-centered tetragonal cell.

Space group:I4/mmm (No. 139 in the International
Tables for Crystallography66).

Pearson symbol:tI6
Unit cell parameters(primitive cell):
a=3.152 Å,b=3.152 Å,c=5.250 Å
a=72.53°,b=72.53°,g=90.00°
Fractional atomic coordinates:
Mo1: s0.330,0.330,0.339d, Mo2: s0.670,0.670,0.661d,

Ta1: s0.000,0.000,0.000d.

3. Mo3Ta2

Description: This structure is best visualized as an
A2BAB sequence(superlattice) of (100) atomic planes. It
has a body-centered tetragonal cell.

Space group:I4/mmm (No. 139 in the International
Tables for Crystallography66).

Pearson symbol:tI10
Unit-cell parameters(primitive cell):
a=3.161 Å,b=3.161 Å,c=8.1246 Å
a=78.95°,b=78.95°,g=78.95°
Fractional atomic coordinates:
Mo1: s0.000,0.000,0.000d, Mo2: s0.797,0.797,0.406d,

Mo3: s0.203,0.203,0.594d, Ta1: s0.401,0.401,0.199d,
Ta2: s0.599,0.599,0.801d.

4. MoTa

Description: This is the B2 structure, the AB sequence
(superlattice) of (100) atomic planes. It has a cubic cell.

Space group:Pm3̄m (No. 221 in the International Tables
for Crystallography66).

Pearson symbol:cP2
Unit-cell parameters(primitive cell):
a=3.177 Å,b=3.177 Å,c=3.177 Å
a=90.00°,b=90.00°,g=90.00°
Fractional atomic coordinates:
Mo1: s0.000,0.000,0.000d, Ta1: s0.500,0.500,0.500d.

5. Mo2Ta3

Description: This structure is best visualized as an
A2BAB sequence(superlattice) of (100) atomic planes. It
has a body-centered tetragonal cell.

Space group:I4/mmm (No. 139 in the International
Tables for Crystallography66).

Pearson symbol:tI10
Unit-cell parameters(primitive cell):
a=3.161 Å,b=3.161 Å,c=8.1246 Å
a=78.95°,b=78.95°,g=90.00°
Fractional atomic coordinates:
Mo1: s0.000,0.000,0.000d, Mo2: s0.797,0.797,0.406d,

Mo3: s0.203,0.203,0.594d, Ta1: s0.401,0.401,0.199d,
Ta2: s0.599,0.599,0.801d.

6. Mo4Ta9

Description: This structure can be described as an
A6B2A3B2 sequence(superlattice) of (510) atomic planes. It
has a body-centered tetragonal cell. The unit cell is that of
Ga4Sm9, but the occupation of sites is different.

Space group:I4/m (No. 87 in the International Tables for
Crystallography66).

Pearson symbol:tI26
Unit-cell parameters(primitive cell):
a=8.345 Å,b=8.345 Å,c=3.194 Å
a=78.97°,b=78.97°,g=87.90°
Fractional atomic coordinates:
Mo1: s0.780,0.157,0.531d, Mo2: s0.856,0.772,0.686d,

Mo3: s0.394,0.082,0.762d, Mo4: s0.470,0.696,0.917d,
Ta1: s0.000,0.000,0.000d, Ta2: s0.551,0.302,0.073d,
Ta3: s0.077,0.622,0.150d, Ta4: s0.625,0.927,0.224d,
Ta5: s0.173,0.231,0.298d, Ta6: s0.698,0.551,0.375d,
Ta7: s0.249,0.854,0.449d, Ta8: s0.320,0.475,0.602d,
Ta9: s0.929,0.379,0.846d.
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7. Mo4Ta12

Description: This structure can not be described by a su-
perlattice notation. It has a simple tetragonal cell.

Space group:P42/mnm (No. 136 in the International
Tables for Crystallography66).

Pearson symbol:tP24
Unit-cell parameters(primitive cell):
a=3.178 Å,b=9.152 Å,c=9.152 Å
a=90.00°,b=90.00°,g=90.00°
Fractional atomic coordinates:
Mo1: s0.000,0.001,0.001d, Mo2: s0.000,0.749,0.749d,

Mo3: s0.500,0.249,0.501d, Mo4: s0.500,0.501,0.249d,
Ta1: s0.000,0.008,0.497d, Ta2: s0.000,0.253,0.742d,
Ta3: s0.000,0.255,0.255d, Ta4: s0.000,0.495,0.495d,
Ta5: s0.000,0.497,0.008d, Ta6: s0.000,0.742,0.253d,
Ta7: s0.500,0.242,0.997d, Ta8: s0.500,0.508,0.753d,
Ta9: s0.500,0.753,0.508d, Ta10: s0.500,0.755,0.995d,
Ta11: s0.500,0.995,0.755d, Ta12: s0.500,0.997,0.242d.

APPENDIX D: DEFINITION OF BCC SPECIAL
QUASIRANDOM STRUCTURES

The present section defines the body-centered cubic(spe-
cial) quasirandom structures used to verify the MBCE-
predicted random alloy enthalpy of mixing in Sec. VI C(Fig.
10). To emphasize the connection between superstructure
and underlying bcc lattice, atomic coordinates are given in
Cartesian coordinates, in units of the(cubic) bcc lattice pa-
rameter, and without relaxation.

1. SQS-16 A0.75B0.25

Description: This is the only bcc-based structure with 16
atoms per unit cell andx=25 which satisfiesPpssd=0.25 for
the first four pair correlation functions. It has a base-centered
monoclinic unit cell.

Space group:Cm (No. 8 in the International Tables for
Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s2.1,−2.0,0.0d, a2=s1.0,1.0,0.0d, a3=s1.0,0.0,2.0d
Atomic coordinates(Cartesian coordinates):
A1: s1.0,0.0,0.0d, A2: s1.0,−1.0,0.0d, A3: s2.0,

−1.0,0.0d, A4: s2.5,−1.5,0.5d, A5: s2.5,−0.5,0.5d,
A6: s2.0,−1.0,1.0d, A7: s2.0,0.0,1.0d, A8: s3.0,−1.0,1.0d,
A9: s1.5,−0.5,1.5d, A10: s1.5,0.5,1.5d, A11: s2.5,
−1.5,1.5d, A12: s2.5,−0.5,1.5d, B1: s0.0,0.0,0.0d,
B2: s1.5,−0.5,0.5d, B3: s1.5,0.5,0.5d, B4: s1.0,0.0,1.0d.

2. SQS-16 A0.50B0.50

Description: There are no structures with less than 16 at-
oms per unit cell andx=0.5 which satisfyPpssd=0.0 for the
first five pair correlation functions, but twelve different 16-
atom structures satisfy this criterion. The SQS selected here
is subject to the additional criterion that the least-squares
sum over some of the remaining, nonzero short-range corre-
lation functions(first ten pair shells, and three- and four-
body figures up to third-nearest-neighbor maximum vertex
distance) is minimal. It is a triclinic structure.

Space group:P1 (No. 1 in the International Tables for
Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s1.5,0.5,0.5d, a2=s1.0,−1.0,−1.0d, a3=s0.5,1.5,

−2.5d
Atomic coordinates(Cartesian coordinates):
A1: s0.5,0.5,−0.5d, A2: s1.0,1.0,−1.0d, A3: s1.5,0.5,

−1.5d, A4: s1.5,0.5,−1.5d, A5: s1.5,0.0,−1.0d,
A6: s1.0,0.0,−2.0d, A7: s1.5,0.5,−2.5d, A8: s1.5,−0.5,
−0.5d, B1: s0.0,0.0,0.0d, B2: s1.5,1.5,−1.5d, B3: s1.0,1.0,
−2.0d, B4: s1.0,0.0,0.0d, B5: s0.5,0.5,−1.5d, B6: s2.0,1.0,
−2.0d, B7: s0.5,−0.5,−0.5d, B8: s2.0,0.0,−1.0d.

3. SQS-14 A0.571B0.429

Description: It is not possible to find an actualspecial
quasirandom structure forx=3/7 with 14 atoms per unit cell,
since no such bcc-based structure satisfiesPpssd=1/49even
for the first pair shell. Instead, we choose to approximate the
random alloy limit on a local scale by minimizing the least-
squares sum overuP fssd−s1/7dlu for a number of short-
range correlation functions(first ten pair shells, and three-
and four-body figures up to the third-nearest-neighbor maxi-
mum vertex distance). For x=3/7, the structure with 14
atoms/unit cell which satisfies this is a triclinic structure that
can be described as an A4B2A2BABAB 2 sequence(superlat-
tice) of (831) atomic planes.

Space group:P1 (No. 1 in the International Tables for
Crystallography66).

Primitive cell (Cartesian coordinates):
a1=s1.5,1.5,0.5d, a2=s−0.5,1.5,0.5d, a3=s−0.5,

−0.5,2.5d
Atomic coordinates(Cartesian coordinates):
A1: s0.0,0.0,2.0d, A2: s0.0,1.0,2.0d, A3: s0.5,1.5,1.5d,

A4: s0.0,1.0,3.0d, A5: s0.5,1.5,2.5d, A6: s0.5,0.5,0.5d,
A7: s0.5,0.5,2.5d, A8: s−0.5,0.5,1.5d, B1: s0.0,0.0,0.0d,
B2: s0.5,0.5,1.5d, B3: s1.0,1.0,1.0d, B4: s−0.5,0.5,2.5d,
B5: s0.0,1.0,1.0d, B6: s0.0,0.0,1.0d.
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