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Contemporary pseudopotentials—Simple reliability criteria
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Simple tests are presented that gauge the accuracy of some of the pseudopotentials currently
used in the literature to calculate within the density—functional approach the electronic
properties of molecules, solids and surfaces. These include the local “soft-core” and
*“hard-core” potentials as well as the nonlocal first principles (“hard-core”) potentials. A
discussion of common misconceptions regarding pseudopotentials is included.

PACS numbers: 71.10. 4+ x, 73.20. —r, 31.70. —f

I. INTRODUCTION

Recently, a number of questions have been raised pertaining
to the reliability of the contemporary pseudopotential ap-
proaches in describing the electronic structure of molecules,
solids and surfaces.!~® In this paper we present a discussion
of the underlying problems and suggest a number of ele-
mentary tests for gauging in a simple manner the quality of
various pseudopotentials. We find that these tests tend to add
strong support to the recently developed first principles
nonlocal density functional pseudopotentials.? In the second
part of the paper we comment on a number of common
misconceptions regarding pseudopotentials.

Il. CONTEMPORARY PSEUDOPOTENTIALS

Here we briefly define the approaches underlying a
number of contemporary pseudopotentials used extensively
in variational electronic structure calculations (i.e., non-
perturbative approaches). We first establish the necessary
terminology.

A. Terminology

The pseudopotential approach attempts to replace an all-
electron (i.e., core and valence wavefunctions treated on the
same footing) eigenvalue problem:

l——v + Ve olp(rr) }W" ) = ¥5°(x), (1

with its associated core (c) and valence (v) total potential
Veolp(rr)] and wavefunctions ¥$°(rx), by a simpler equa-
tlon

{— % V2 + Wp(r) + Vu["(r,r')]} Xi(r) = Ajx;(r), (2)
which applies to the valence subspace alone. The total po-
tential V,, includes electron-nuclear, interelectronic Cou-
lomb, as well as exchange (and possibly correlation) terms.
These interactions can be modeled by a number of possible
electronic structure approaches such as Hartree—Fock, density
functional, etc. Here V,[n(r,r)] has the same functional form
as V| p(r,x)] but is a function of the valence pseudocharge
density alone:
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n(es) = 3 x; (), 3)
7

whereas p(r,r’) is the all-electron charge density:

c+v

p(r,r') = Z Kb ¢]
7

The all-electron density has a core part (p.) and a valence
part (p,). V,, is referred to as “screening” or “valence field”
and can be constructed like V., according to a number of
microscopic approaches (e.g., Hartree-Fock, density func-
tional, X ¢, free-electron dielectric screening, etc.). It includes
an interelectronic Coulomb part V ,y[n] and an exchange
(and possibly correlation) part V,.[n]. W,(r) is the total
pseudopotential. It is of ten presented as a sum over all atoms
in the system (with position vectors R,) and all angular mo-
menta (/), of the “atomic pseudopotential V;,ls) (r) (sometimes
referred to as “ionic potential” or “core potential”):

Wps(r) = Z ZI: Vgs) (l‘ -

= po(rr’) + po(rr’). (4)

Ra)ijl,a’ (5)

where P}, is the [th angular momentum projector with respect
to the ath center.

An atomic pseudopotential that can be expressed as angular
momentum dependent (and hence acts differently on dif-
ferent angular momentum components of the wavefunction)
is said to be “nonlocal.” It is sometimes approximated by an
average [-independent form, referred to as a “local atomic
pseudopotential” Vi, (r).

The total potential seen by an electron in the pseudo-
system,

Vegs(x)

is referred to as the “effective potential.” In the special case
of a single pseudo atom (or ion) one has an “atomic (ionic)
effective potential” (or the “screened atomic [ionic] poten-
tial”):

= Wps(r> + Vv[n(r,r’)], (6)

Villa(r) = Vilr) + Ven(er)), (7)

where V, represents here atomic screening.

To the extent that the construction of the appropriate
pseudopotentials V{)(r) can be made simple, the solution of
the pseudopotential single-particle Eq. (2) for arbitrary sys-
tems is easier than the solution of the all-electron problem, Eq.
(1), as a smaller number of “reactive” electrons are being
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considered and the pseudo wavefunctions x;(r) can be made
to be spatially smooth and hence computationally simpler.
Once V;,’S) (r) is calculated for some simple model system (e.g.,
atom, ion), it is assumed to be transferable to other systems
containing the same cores (“pseudopotential frozen core ap-
proximation”) and used for a self-consistent solution of Eqgs.
(2), (8), and (5).

As the pseudopotential Hamiltonian —1/2V2 + V ¢ permits
(but does not require) nonorthogonal solutions x;(r), it has
been a common practice to design x;(r) as nodeless and
smooth in the core region. In doing so, one gives up from the
outset the possibility of inferring core properties (e.g., Fermi
contact interactions, core photoemission spectra, nuclear-
quadrupole coupling constants, etc.) from x;(r), unless a
special construction of the latter is undertaken. This is a dis-
tinct disadvantage of the pseudopotential approach over the
all-electron one. In judging the quality of pseudopotentials,
we hence limit the discussion to the degree V ¢t can produce
accurate “valence”-related constructs. In this paper I consider
a given pseudopotential approach as successful if it simplifies
the electronic structure problem, yields an accurate descrip-
tion of valence properties over a desired range of energies and
chemical variations (where the properties and the relevant
accuracy are problem-dependent and are to be defined
below), and carries over from the all-electron representation
the chemical regularities underlying the response of the outer
valence electrons.

There is an entire class of pseudopotential approaches that
do not attempt the calculation of the pseudopotential for
reference systems but rather that pertaining directly to the
polyatomic system of interest, (e.g., Ref. 7). We do not discuss
these approaches here as they are not normally applied to the
electronic structure of complex solids or surfaces.

B. Self-consistent versus empirical potentials

In the “empirical pseudopotential 89 (EPM) approach to
the electron structure of solids one avoids completely the
microscopic specification of both the pseudopotential V;,’s)(r)
and the screening V,(r). Instead, the atomic effective po-
tential V.41, is represented by a set of values V o ,(G;) taken
at the first few reciprocal vectors G; of a given lattice (i typ-
ically ranging from 3 to 5). These are used as disposable pa-
rameters adjusted to reproduce a chosen set of experimental
observables relating to the energy eigenvalues A; (e.g., the
lowest interband transitions in semiconductors, the Fermi
surface of metals, etc.). The quantity treated as system-in-
variant (or “transferable”) is, hence, the screened ionic po-
tential {(Eq. (7)]. As no constraints are placed on the corre-
sponding crystal wavefunctions, and since the relative dis-
persion of the energy bands in the valence region of a solid is
insensitive to the large momentum-transfer scattering events
Veit(g > 2kp) (which sample the core region), it has been
possible,3? to obtain good fits to the interband transition
energies using small momentum cutoff values in V . ,(G) (ie.,
implying “weak” or “‘soft” potentials).

Self-consistency (or the response of the electronic system
to the changed chemical environment relative to the zero-
order potential) is outside the scope of this approach as this
form of the effective potential is unrelated to the variational
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wavefunctions. In more recent calculations,'®11 an empirical
“nonlocal” component has been added to Ve 4(r) (in the form
of a parametrized square well or Gaussian). Reparametriza-
tion in this form has led to an overall improvement of the
agreement with the observed optical and photoemission data
as well as with the experimentally synthesized charge density.
Many applications of this approach to covalently bonded
semiconductors$? indicate an excellent reproduction of the
observed optical transitions and at the same time a chemically
reasonable charge density is obtained. Because of an inherent
lack of a self-consistency mechanism, this approach has not
been applied to systems that differ substantially in their
chemical environment (e.g., molecules, surfaces and atoms)
from the reference fitted system (e.g., bulk solid). Hence, in
what follows we will not discuss this approach.

Self-consistent pseudopotential approaches are based on
the partitioning of the electronic interactions represented in
Eq. (6). The screening is calculated self-consistently from the
density n(r) of the system of interest, while the pseudopo-
tential is fixed from the outset for a reference system. Only
Vgg(r) is considered as the system-invariant quantity. We
pr(lo)ceed in defining the various approaches used to calculate
Volr).

ps

C. Semiempirical pseudopotentials

In the semiempirical pseudopotential (SEMP) method one
usually assumes an ansatz functional form for V,,,(r) or Vp,5(q)
with a number of free parameters that are adjusted to re-
produce either the observed free-ion term values!'? or the bulk
band structure.!3 No direct constraints,!2 or at best very weak
constraints, are placed on the resulting wavefunctions (e.g.,
matching the point of maximum of the pseudo and all-elec-
tron atomic orbitals). As this process of fitting the low-energy
eigenvalue spectra of a pseudopotential single-particle
equation can be carried out with arbitrary forms of V,,(r) in
the core region, a soft-core form (finite and smooth in the core)
has usually been chosen.'4 This choice is guided by the need
to have a momentum-space converged potential when a plane
wave basis is used for expending the crystal wavefunctions.!?
As empirical fitting is involved, the role of correlation effects
on the electronic structure cannot be assessed.

The majority of the self-consistent surface calculations to
date have been performed with such potentials (e.g., Ref. 15
and references therein). The two most frequently used forms
for silicon are the Berkeley potential'? and the Appelbaum-
Hamann!? potential. Both use a local approximation and yield
very similar results. The predictions of those potentials for the
electronic structure of a Sip diatomic molecule!3 and bulk Si4
were recently contrasted with the corresponding all-electron
results. Differences in the molecular cohesive energy, orbital
charge densities and band structure were identified. The
reader is referred to these papers for judging the significance
of these discrepancies.

D. Model pseudopotentials

In the model pseudopotential approach one assumes a
parametrized form for V;,’s) (r) and adjusts these parameters
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to fit some theoretical constructs of an all-electron calculation
on a reference system. A recent example of a model potential
is that of Harris and Jones? (for Si) in which the orbital ener-
gies as well as the wavefunctions of a density-functional Si
atom were fitted within a postulated local form V(r). A good
fit has been achieved within a “hard-core” (strongly repulsive
at small-r) form. A similar approach has been successfully
applied by Louie to a Pd surface.'8 As this approach is com-
pletely nonempirical, the role of correlation effects can be
assessed. Recent tests on the Sig molecule? and bulk Si4 indicate
good agreement with the all-electron results.

E. First principles pseudopotentials

The first principles pseudopotential approach calculates
V;,ls)(r) from a given microscopic electronic structure theory.
The form of Vgﬁ (r) is not assumed as an ansatz210-13 45 there
is no simple physical rule that dictates its shape at small r. No
empirical data (atomic or solid state) are used. The form of
the corresponding wavefunctions is not allowed to be im-
plicitly determined by an arbitrary choice of the functional
form of V;,’s)(r). Instead, the pseudopotential is constructed to
explicitly satisfy certain constraints on the wavefunctions.
First-principles pseudopotentials in the Hartree-Fock (HF)
and correlated HF approaches were constructed by Goddard
et al.,'" and Kahn et al.,'6 and applied to a large number of
molecular’®20 and cluster?! calculations. First-principles
density-functional pseudopotentials have been developed by
Zunger et al.,22 and applied to molecules,323 bulk semicon-
ductors, electronic and cohesive properties of bulk transition
metals,?? the relaxed GaAs(110) surface2’ and to the predic-
tion of the crystal structure of binary AB compounds.26

Two basic approaches are possible here: the first attempts
to construct the “best” pseudopotential possible within the
orbital space characteristic of either the Hartree-Fock
(Hartree-Fock pseudopotentials!®) or the density-functional
(density functional pseudopotential 22 or DF). This means that
the corresponding pseudo orbitals be represented as a simple
unitary rotation of the corresponding core and valence all-
electron orbitals (see below). The second approach?” (trans-
Hartree-Fock or trans-density-functional, TDF) is a modi-
fication of the first and allows for certain specified wave-
function components to lie outside the corresponding orbital
spaces. This approach still attempts to describe the underlying
all-electron results (and not anything better) using a more
general representation for the basis. The detailed description
of these methods is presented elsewhere.2” Here we describe
in simple terms the DF and the TDF approaches (as applied
below to Si).

1. The density-functional (DF) pseudopotential

We first set a variationally derived single-particle equation
for a pseudo-atom having only valence electrons that interact
via Coulomb (V [n(r}]) and the density-functional ex-
change-correlation {V,.[n(r)]} potentials and with a yet un-
specified external potential V,([,ls)(r):

=3V V) + Ve @] + Vieln (o)l

= anan(r) (8)
J. Vac. Sci. Technol., Vol. 16, No. 5, Sept./Oct. 1979
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We require that the normalized pseudo-orbitals ¥, span the
same space characteristics of the all-electron density function
problem:

an(r) = civ Cﬁzl,)n"pn’l(r)
n(r) = Zl: X (1) Xni(r) 9)

where the sum extends on all (known) core and valence or-
bitals of symmetry /. The total valence energy of the system
is unchanged by such a unitary mixing. In addition, one can
recover at the end of the calculation the true valence orbitals
simply by core orthogonalization.

One then imposes certain constraints on the energy ei-
genvalues A,y and the orbitals x,,;(r) (see below) at a given
electronic configuration (g) of the atom and solves Egs. (8)
and (9) for the potential V;,’s)(r) that satisfies these Lagrange-
multiplier constraints. One then assumes that this static po-
tential Vﬁs)(r) that replaces the dynamic effects of the core
electrons for the reference configuration g, will continue to
be a valid approximation for configurations other than g and
for the same core in different chemical environments (i.e., the
pseudopotential frozen core approximation).

The constraints imposed are:22 (i) the valence orbital energy
spectrum A, of Eq. (8) be equal to that of the all-electron
system, (€, of Eq. 1) in the same configuration, (ii) X;(r) be
normalized, (iii) x,1(r) be nodeless for each of the low-sym-
metry states (as required of any ground state central-field
problem), (iv) the coefficients {C{),.} be determined such that
the pseudo orbitals have the maximum similarity (possible
under the previous constraints) to the corresponding “true”
orbitals ¥,,;(r) in the chemically relevant tail region. This is
accomplished by minimizing the core projection of x(r) for
all the valence orbitals. The most effective minimization of
a smooth X ,(r) [of the form of Eq. (9)] in the core requires
that the orbital vanishes at the origin. This produces pseudo
orbitals with a very low amplitude in the core region [re-
flecting their closeness to the true orbitals in the valence re-
gions, cf. Eq. (9)] and hence the necessity for core orthogo-
nalization is drastically reduced.

Such a pseudopotential can be written in a simple closed
form. Making use of the fact that the ,,;(r) in Eq. (9) satisfy
the all-electron Eq. (1), one obtains:

v%m=km&—é}

r
Z
+ {——;— + Vioulpe(r)] + ch[pc(r)]J

Veelpe(r)] — ch[pv(r)]}
Vcoul[n(r)]} + {va[pv(r)]

= Vie[n(nl.  (10)

+ {Veelpe(r) + pu(r)] —

+ {Vcoul[pv(r)] -

Here Z. and Z, denote the valence and core charges, p,(r)
and p,(r) are the corresponding charge densities from the
all-electron calculation [Eq. (4)], and the repulsive “Pauli
potential” U(r) is:
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> CY € — €aWnn(r)
=

2 Cg?n")bn’l(r)

Ui(r) = (11)

The pseudopotential in Eq. (10) has a very transparent
physical interpretation. The Pauli potential U;(r) contains all
the nonlocality, while all other terms are local. For valence
states with matching symmetries in the core (e.g., Si 3s,3p),
Uy(r) is strongly repulsive (with a small-r behavior of C;/r2)
and replaces the loss of the orbital kinetic energy through the
elimination of the nodal character in x,;. For valence states
with no matching symmetries in the core (e.g., carbon 2p,
silicon 3d, etc.), the valence orbital ¥,,)(r) is already nodeless
in the all-electron representation (hence C,, - = 6, /) and
U(r) is identically zero by Eq. (11) and no pseudopotential
kinetic energy cancellation [i.e., partial cancellation of Uj(r)
by the core-attraction —Z,/ r] is taking place.

The second term in brackets in Eq. (10) is simply the po-
tential set by the core electrons in the atom. The third term
represents the nonlinearity of the exchange-correlation po-
tential with respect to the interfering core and valence charge
densities. The fourth and fifth terms are, respectively, the
Coulomb and exchange-correlation orthogonality hole po-
tentials and emerge from the elimination of the structure
characteristics of p,(r) in the pseudo density n(r) due to the
cancellation of the nodes in x,;(r).

The first principles DF pseudopotentials are nonlocal and
can be characterized as hard-core for those I-components
present in the core. This hard-core behavior is not arbitrarily
imposed in the construction of Vﬁs) (r) but is rather a conse-
quence of the maximum similarity constraint imposed on the
wavefunctions with a minimum amplitude of x(r) in the core.
As the potential has a microscopically transparent form, both
its successes and failures in describing the electronic structure
of various systems can be analyzed in terms of the constructs
of the underlying DF theory.

Note that the repulsiveness of the DF pseudopotentials in
the core region can be artificially reduced by including in the
pseudo wavefunctions X ;(r) [Eq. (9)] more core components

¢,(r) than are needed just to eliminate the nodes in the
pseudo wavefunctions. This results in a higher amplitude of
Xni(r) in the core region at the expense of a lesser similarity
to the true orbitals Y2,(r) in the valence region. The increase
of Xi(r) in the core offsets the repulsiveness of the Pauli po-
tential U;(r) [Equation (11)] resulting in a “weaker” pseu-
dopotential and, ultimately, in a “‘soft-core” potential 22 Hence,
there exists a continuous tradeoff between the reduced re-
pulsiveness of Vgs) (r) in the core region and the variational
quality of the wavefunctions in the chemically relevant tail
region.

2. The Trans-density functional (TDF) pseudopotentials

Although the DF pseudopotential is constructed to yield
orbitals with a maximum degree of similarity to the all-elec-
tron orbitals (possibly within this orbital space), there is an
internal limit to the degree of similarity attainable. This is a
consequence of the fact that {{,,;(r)} forms an orthogonal
space. Hence, for the Si 3s orbital Eq. (9) reads:
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F1G. 1. Si pseudopo-
tentials. TDF: nonlocal
trans density func-
tional;2?” DF: nonlocal
density functional;22
MODEL: the local
Harris and Jones® model
potential; SEMP: the
local  semiempirical
Berkeley!? potential.

o

PSEUDOPOTENTIAL [a.ul
¥

-2.01-

-4.0—

XSs(r) = CSZ?Ss’l/ls(r) + Cg?&skb%(r) + Cg‘;?SsK&&s(r) (12)
and due to the orthogonality of {{/n(r)}:

C%s,Ss + C%s,Ss + C%s,Ss =] (13)
Hence; Cssss < 1, which implies a finite and constant dif-
ference between Ys(r) and xa,(r) in the tail region. This dif-
ference is explicitly minimized in the DF approach, but
cannot be zeroed. As a result, typical orbital moments
(x|r?|x) for p = 1,2 can differ from the all-electron mo-
ments {(Y|r?|Y) by 2% to 5%. Such a difference, although
seemingly small, can introduce some distortions in the large-r
behavior of the charge density.28 If one desires to eliminate
these differences and impose the maximum similarity con-
straint in a more stringent manner (e.g., reduce the differences
to below 1%), an element of nonorthogonality has to be in-
troduced into Eq. (9). This means that we have to go outside
the space spanned by y,,(r), in some controlled fashion. As
the tail deviation of x(r) from ¥,,(r) is known, however, one
can simply achieve this goal by adding to x,(r) in Eq. (9) a
simple function f;(r) designed to correct the tail behavior
(without affecting the small-r behavior). A full discussion of
this approach is given elsewhere.2” Here we simply note that
using the choice:

f[(r) = Alr’+2e“"l" (14)

and adjusting A; and & to produce the correct tail matching
yields the desired improvement. The corresponding TDF
pseudopotential is very similar in shape to the DF potential
(Fig. 1) except that it is shifted somewhat away from the core.
It produces a close approximation to the valence part of the
all-electron density matrix.
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3. Difficulties with the DF and TDF pseudopotentials

The first principles DF and TDF pseudopotential suffer
from the following problems:

(a) As fitting to the observed excitation energies is avoided,
these pseudopotentials are unable to reproduce the physical
tactors which are not included in the chosen underlying all-
electron problem. These may include relativistic, spin-orbit
and certain classes of long-range correlation effects. The
generalization of these potentials to include the first two ef-
fects is straightforward. Introduction of correlation effects is
substantially more difficult.5?

(b) The hard-core nature of these potentials makes them
unsuitable for a simple plane-wave basis band structure
model. Instead, they require a basis set which contains local-
ized functions such as Gaussians, more akin to the conven-
tional quantum chemical description of molecules and
solids.

(c) As their construction involves the knowledge of the
all-electron atomic energies and orbitals, the effort required
increases with atomic number Z. In contrast, the construction
of the empirical and semiempirical pseudopotentials involves
an effort which is Z-independent once the relevant spectro-
scopic data are available.

ill. SIMPLE CRITERIA FOR ATOMIC
PSEUDOPOTENTIALS

In this section we consider simple tests for the reliability of
the pseudopotential discussed in Sec. II. We would like to
advocate the use of the electronic structure of the atom (and
its neutral and ionized excited states) as a useful probe for the
reliability of the potential. This is a well defined limit that can
be solved numerically with almost arbitrary internal accuracy
(typically 1076 Hartrees) as no essential computational ap-
proximations are done to the potential or the orbitals. The
simplicity of the system, and the widespread availability of
efficient computer programs which accurately solve an atomic
eigenvalue problem, can make these and similar tests easily
reproducible by many nonspecialized practitioners. By means
of exciting the atom we are able to probe fairly wide regions
of wavefunction localizations and orbital energies, testing
thereby the transferability of the pseudopotentials.

As various pseudopotential applications tend to emphasize
different aspects of the electronic structure (e.g., small-r versus
large-r behavior of the wavefunctions, band energies versus
total energies, volume integrated quantities versus explicit
coordinate or momentum locally dependent quantities, etc.).
we discuss here a multitude of properties. The reader is then
to focus on aspects relevant to his interest. The detailed con-
sideration of the accuracy of orbital energies, total energies,
orbital moments, electrostatic potentials and energies and
charge accumulation functions, allows considerable insight
into the performance of these potentials in polyatomic sys-
tems. As a matter of fact, many of the shortcomings of these
potentials in describing condensed systems can be identified
and estimated in the atomic (or ionic) limit (see below). This
is related to the fact that relative atomic energies are fre-
quently characteristic of band energy differences in the solid,
that a superposition of overlapping atomic charge densities
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forms a good first order approximation to the crystalline
density, and that nearly localized states in molecules and
surfaces carry many of the characteristics of the atoms. To the
extent that the atomic and ionic pseudo-wavefunctions mimic
closely the “true” valence orbitals outside the core region, for
a wide range of ground and excited states (i.e., configurations
which can effectively mix in forming the solid), it is likely that
bonding characteristics in polyatoniic systems would be well
reproduced. At the same time, atomic tests are unable to assess
the reliability of the description of direct bonding effects in
polyatomic systems (formation of bonding-antibonding pairs
or directed bonds). This study hence complements similar
comparisons for the Sig molecule!-3 and bulk Si.4+-5

We consider here the pseudopotentials that were recently
applied to Si-based systems: the local semiempirical Berkeley
potential (soft-core), SEMP'2 (which is nearly identical to the
Appelbaum-Hamann potential'3); the local model potential
of Harris and Jones, MODEL;? the density functional po-
tential, DF;?2 and the trans-density functional potential,
TDF.27 They are displayed graphically in Fig. 1. All calcu-
lations are performed in the local density formalism with the
standard Kohn and Sham exchange « = 2/3. (Note that dif-
ferent choices of the exchange-correlation potential can
produce significant changes in the results. However, the error
of a given potential relative to the all-electron results is much
smaller.)

A. Orbital energies and total energy differences

One would expect that a useful pseudopotential will re-
produce the atomic orbital energies over a certain range of
electronic configurations; at least those configurations that
interact effectively in forming a solid. If one denotes by AE,
the difference in total energy of a certain configuration rel-
ative to the ground state, it is conceivable that the solid would
be formed by mixing configurations that span a AE, range
characteristic of the scattering power of electrons in the solid.
The latter is of the order of the band width W (or more).

Table I shows the Si orbital energies €, and the total energy
differences (relative to the 3s23p2 configuration) obtained
with the four different pseudopotentials, as well as the result
obtained with the full all-electron (AE) approach. The errors
in eV, relative to AE, are given in brackets. We include the
3s13p233d°5 configuration that has been used as a reference
state to obtain the DF and TDF potentials (as bound 3d or-
bitals are needed to obtain the 1 = 2 potential). Figure 2 dis-
plays the errors in s and p energies as a function of the dif-
ference in total energy of a particular configuration from the
ground atomic state, in units of the bulk Si band width W. We
have included in the figure a number of intermediate excited
states formed by changing the fractional occupancy of the
orbitals, to obtain a more continuous description of the energy
dependence.

It is seen that the SEMP potential places the 3s orbital about
0.6 eV too low relative to the 3p orbital at small AE,/W; at
higher excitation states the description of the 8s becomes
somewhat better whereas the 3p is too high. The relative er-
rors remain of the order of 0.8 eV for intermediate and high
excitations. Using an exchange coefficient of o = 1 (for which
the SEMP potential has been initially designed), the relative
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TABLE I. Comparison of the Si orbital energies €3, €3, and €34 and the total energy differences AE, (in eV), as obtained by the full all-electron (AE)
approach and by various pseudopotentials. Numbers in brackets indicate the difference (in eV) relative to the AE results. TDF-—nonlocal trans density
functional; DF—nonlocal density functional; MODEL—the model local potential of Harris and Jones;2 SEMP—the local semiempirical Berkeley
potential.!2 1 a.u. = 27.21 eV. All results are obtained with an o = 2/3 coefficient.

€35 €3p €34 AE,
3523p?
AE -9.772 —3.206 0.0
TDF —9.782 {0.01] —3.209 [0.003] 0.0
DF —9.702 [~0.07] —3.161 [-0.04] 0.0
MODEL —9.585 [—-0.19] —3.238 [0.03] 0.0
SEMP —10.400 [0.63] —3.289 [0.08] 0.0
3513p3
AE —10.522 —3.764 6.664
TDF —10.525 [0.003] —3.766 [0.002] 6.669 [—0.005]
DF —10.480 [—0.04] —3.730 [—0.03] 6.645 [0.02]
MODEL ~10.305 [—0.22] ~3.782[0.02) 6.437 [0.23]
SEMP ~11.307 [0.79] ~3.912[0.15] 7.257 [-0.59]
3sl3p2,53d0.5
AE —13.279 —6.255 -0.199 9.184
TDF —13.279 [0.00] —6.255 [0.00] —0.199 [0.00] 9.188 [—0.004]
DF ~13.279 [0.00] —6.255 [0.00] ~0.199 [0.00] 9.158 [0.03]
MODEL —12.977 [-0.30] —6.195 [—0.06] —0.199 [{0.00] 8.945 [0.24]
SEMP —14.032 [0.75] —6.333 [0.08] —0.199 [0.00] 9.835 [—0.65]
Si+13513p2
AE —18.571 —11.249 —3.249 14.038
TDF ~18.562 [<0.01] ~11.241 [0.008] ~3.250 [0.001] 14.041 [—0.003]
DF —18.645 [0.07] —11.311 [—0.06] —3.251 [0.002] 14.027 [0.01]
MODEL —18.111 [—0.46] ~11.044 [-0.21] ~3.034 [-0.22] 13.733 [0.305)
SEMP —19.254 {0.68] —11.206 [0.14] —3.152 [—0.10] 14.027 [0.01]
Sit23513p!
AE -~27.997 —20.086 -10.336 29.610
TDF —27.932 [-0.06] —20.032 [—0.05] —10.320 [0.02] 29.589 [0.02]
DF —28.307 [0.31] —20.355[0.27] —10.389 [0.05] 29.757 [-0.15]
MODEL —27.077 [-0.92] —19.446 [—0.64] —9.390 {—0.95] 28.904 [0.71]
SEMP —28.307 [0.31] —-19.525 [—0.56] -9.607 [—0.73] —30.008 [—1.40]

errors are of the order of 1 eV or more.520 This relative error
is essentially carried over to the solid and the Siz molecule. The
error in the s—p spacing with SEMP is 0.8 eV in the solid* and
about 0.7 eV in the molecule.3

The model potential has smaller errors: of the order of
—(0.2-0.5) eV for s and —(0.02-0.2) eV for p. These errors
have, however, the same sign over a wide energy range and
are expected and found* to partially cancel in the band
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FIC. 2. The errors in the pseudopotential orbital energies, €5, and €3, relative
to the all-electron values, displayed as a function of the excitation energy of
each configuration, AE,/W (in units of the bulk Si valence band width
w).
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structure of the solid. Note, however, that this cancellation
comes to effect only because the absolute energies with re-
spect to vacuum are usually of no interest in describing the
band structure. In the calculation of the work function or the
total crystal energy, however, no such cancellation is expected
to occur. The errors associated with the DF and the TDF
potentials are below 0.1 eV for AE,/W < 1.5.

B. Orbital moments

A direct graphical display of the wavefunctions is not ef-
fective for gauging the relevant errors, as volume elements
are not easily perceived. Instead, we use a number of inte-
grated quantities. The first of them is the pth orbital moment
{Xnt| t?| Xa1). These form a quantitative measure to the or-
bital localization and determine the electrostatic potential set
in the system by the density x2,(r).

Table II shows the orbital moments for p = 1 and 2. Percent
errors relative to the AE results are given in brackets.

The SEMP orbitals are seen to be too spread out: the first
moment is too large by about 4% to 9%, while the second
moment (emphasizing the tail behavior) has even larger er-
rors. This is also borne out by the calculated bulk charge
density5 that indicates a concentration of charge in the bond
center at the expense of the intermediate-r regions. The model
potential has larger errors in the same direction. The errors
in the DF moments are smaller than both the SEMP and the



1343 A. Zunger: Contemporary pseudopotentials

1343

TABLE [I. Comparison of the s and p pseudo-orbital moments with the all-electron moments. Numbers in brackets indicate percent error relative to

the all-electron results. Notation as in Table I.

{r)3s (au) (r)3p (au) (r?) 3, (au?) (r3) 3, (au?)
3523p2
AE 2.178 2.877 5.555 10.083
TDF 2.180 [—0.1%] 2.887 [—0.35%) 5.553 [0.04%] 10.081 [0.02%]
DF 2.110 {3.1%] 2.840 [1.3%] 5.337 [3.9%] 9.839 [2.4%)
MODEL 2.300 [—5.6%] 2.993 [-4.0%] 6.031 [—8.6%] 10.665 {~5.7%]
SEMP 2.311 [—6.1%] 3.009 [—4.6%] 6.738 [—3.3%]} 10.712 [—6.2%]
3s13p3
AE 2.144 2.768 5.369 9.268
TDF 2.157 [0.6%] 2.780 [—0.4%] 5.373 [0.07%] 9.278 [—0.1%)]
DF 2.073 [3.3%] 2.717 [1.8%] 5.137 [4.3%] 8.968 [3.2%)]
MODEL 2.270 [—5.9%] 2.894 [—4.6%] 5.858 [~9.1%] 9.887 [—6.7%]
SEMP 2.230 [—4.0%)] 2.897 [—4.7%) 5.614 [—4.6%) 9.839 [—6.2%]
3s13p2
AE 2.052 2.450 4.866 7.054
TDF 2.067 [—0.7%] 2.467 [—0.7%) 4.875 [—0.2%)] 7.077 [—0.3%)]
DF 1.976 [3.7%] 2.387 [2.6%] 4.624 [5.0%) 6.701 [5.0%]
MODEL 2.185 [—6.5%] 2.598 [—6.0%] 5.359 [—10.1%)] 7.722 [—9.5%)
SEMP 2.203 [-7.3%] 2.620 [—7.0%] 5213 [~7.1%]} 7.817 [—10.8%)]
3s13p!
AE 1.954 2.232 4.380 5.782
TDF 1.973 [—1.0%] 2.246 [—0.6%) 4.400 [—0.4%)] 5.825 [-0.7%]
DF 1.874 [4.1%) 2.163 [3.1%) 4.127 [5.8%)] 5.412 [6.4%)
MODEL 2.099 [—7.4%] 2.405 [=7.7%)] 4,902 [-12%] 6.503 [—12.5%]
SEMP 2.134 [—9.6%) 2.437 [—9.2%)] 4.532 [—3.5%] 6.667 [—15.3%]

MODEL errors, but are in the opposite direction: the orbitals
are too localized. This reflects the fact that the unitary rotation
in the space of the AE orbitals [e.g., Eq. (9)] introduces core
components (i.e., C ﬁ),, < 1) with their characteristically
smaller orbital moments. This deficiency is directly addressed
in the TDF potential, which leads to errors below 1%.

Note that as sometimes small errors in the orbital energies
are associated with fairly large errors in the wavefunctions,
both aspects need to be examined. The negative moment (p
= —1) obtained with all pseudopotentials contains very large
errors (10%-20%) indicating the inadequacy of the pseudo-
potential approach for describing the core region.

C. X-ray scattering factors

Another quantity that measures the quality of the pseudo
charge density is its Fourier transform. Figure 3 displays the
error,

AF(q) = fe'7py(r)dr — feid™n(r)dr (15)

associated with the pseudo x-ray scattering factor, relative to
the valence contribution of the corresponding all-electron
quantity. The 3s3p3 configuration is used. The momentum
q is a continuous variable for the atom. The vertical bars in
Fig. 4 indicate the experimental errors in determining the
bulk Si scattering factors at the few lowest reciprocal lattice
vectors. Both the SEMP and the MODEL potential have errors
that are larger than the experimental uncertainty in the
physically important low-momentum region. The sign of the
error indicates again that the charge is too spread out in the
bond region. The DF potential has lower errors, but never-
theless nonnegligible. (Note that upon core-orthogonalization,
these errors vanish identically for the DF case.>22) In the TDF
approach, the errors are reduced substantially and are pushed
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to the high-momentum regions that are less important in
describing the valence properties of condensed systems.

D. Charge accumulation functions

As the various pseudopotentials discussed above have
widely different forms in the core region, they lead to dif-
ferent values for the amount of charge enclosed in the core
and consequently to different valence charges. These effects
are conveniently monitored by considering the orbital charge
accumulation function:

OulR)= ] ) xa)d (16)

QOni(=) = 1.0.

Note that Q,,;(R)/ R determines the electrostatic potential.
Figure 4 displays Q3,(R) and Qs,(R) for Si, calculated with
the various pseudopotentials for the ground state configuration
3s23p2. Figure 5 displays the percent errors for another
configuration (3s'3p3). The positions of the bond center in the
solid and the outer atomic nodes are indicated by arrows.

It is seen that the model potential accumulates charge much
more slowly than the all-electron case and that errors of 10%
to 20% persist between the outer nodes and the bond center.
On the other hand, the DF potential accumulates charge too
tast and shows errors of —(5-10)% in the same region. The
TDF potential yields very small errors of —(2-1073)%: its
charge accumulation functions join the all-electron results at
1.2ay.

E. Coulomb integrals and the total energy problem

We have so far considered quantities that reflect the ac-
curacy of the orbital energies, electrostatic potentials, and
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FIG. 3. The errors in the pseudopotential x-ray scattering factor, relative to
the all-electron results. The vertical bars indicate the magnitude of the ex-
perimental uncertainty in determining the respective quantities in the bulk,
at the first few reciprocal lattice vectors.

charge densities. If one is interested directly in the total
energies, the convolution of the latter two quantities becomes
important. This is the Coulomb integral:

_ (Pu(r)pn(r’) ,
]nl,nl f Il‘ _ l"l drdr (17)

where p,(r) is the orbital charge. Table II presents these in-

ORBITAL CHARGE
ACCUMULATION FUNCTIONS
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F1G. 4. Orbital charge accumulation functions for Si. O (R) = f & xni(r)dr.
The vertical arrows indicate the position of the last radical node in the atom
and the bond center in the bulk solid. The 3s!3p253d%5 configuration is
used.
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FIG. 5. Percent error in the orbital charge accumulation functions of Si,
relative to the all-electron results, for the 3s'3p® configuration. The vertical
arrow indicates the position of the bond center in the bulk solid.

tegrals as calculated from the four pseudopotentials and the
all-electron case.

It is seen that the SEMP and MODEL pseudopotentials
produce values for J,/ s that are considerably too large (in
particular, a large error occurs in [ 34, for which nonlocal
corrections are important). The DF and TDF potentials
produce errors smaller than 1%.

Note that in general it is not sufficient to ensure the correct
value of the pseudopotential Coulomb (and exchange) inte-
grals in order to get an accurate total energy, as in the pseu-
dopotential approach, the core-attraction is also modified
relative to the all-electron case. This leads to the possibility
that the errors in the core attraction terms of “‘soft” pseudo-
potentials, introduced by the penetration of excess valence
charge into the core (and reflected by overly attractive orbital
energies, cf. Table T and similar errors in the band structure)
will be partially offset by the errors in the Coulomb repulsion
introduced by the accumulation of excess charge in the bond
region (as reflected by the over-repulsive Coulomb energies,
cf. Table III). Hence, as the stationary character of the total
variational energy permits partial cancellation of errors which
originate from different spatial regions in the density matrix,
the final soft-core pseudopotential total energy may well be
more accurate than the errors in its individual components.
The DF and TDF pseudopotentials attempt, on the other
hand, to reproduce accurately the individual constructs of
the total energy expression as they constitute by themselves
physically interesting observables (e.g., orbital energies,
charge density).

F. Summary of results

We conclude from these tests the following:

(i) The SEMP “soft-core” potential'213 produces overly
diffused orbitals [e.g., the positive orbital moments are
overestimated by 4% to 9%, while the low-momentum x-ray
structure factors are significantly underestimated, (Fig. 3)],
yielding differences as large as 15% in the charge accumula-
tion functions at the bond region. This leads to a somewhat
distorted bulk* and molecular! charge density. The errors in
the relative s and p orbital energies are of the order of 0.8 eV,
also characteristic of the differences found in molecular and
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TaBLE 1II. Calculated Coulomb integrals (in Hartrees). Notation as
in Table . Percent errors relative to the AE results are given in brackets.

J 35,35 J3pap J3d,3d
AE 0.4299 0.3490 0.0560
TDF 0.4291 [<0.2%]  0.3480 [~0.3%] 0.0560 [0.0%]
DF 0.4342 [=1.0%]  0.3482 [=0.2%] 0.0560 [0.0%]
MODEL  0.4325 [-0.6%] 0.3567 [-2.2%] 0.0613 [—9.5%)]
SEMP 0.4401 [—2.4%)] 0.3665 [-5.0%] 0.0622 [—11.%]

solid state calculations with the same potential. The energy
dependence of these errors remain large over a wide excitation
range. The over-attractiveness of the electron-core potential
is partially offset by the over-repulsiveness of the Coulomb
energy, suggesting that the error in the total energy might be
considerably smaller than these individual errors.
individual errors.

(ii) The local model potential? produces smaller errors in
the orbital energies (<0.5 eV) over an excitation range of
about 1 Ryd. These errors have the same sign for s and p and
tend to cancel in the conventional band structure represen-
tation. The associated orbitals are too diffused (e.g., they
overestimate the positive orbital moments by 5% to 12% and
underestimate the charge accumulation functions by 15% to
20% in the bond region). This potential is accurate near the
ground state configuration, while for excited states with d-
character (e.g., I'12 in bulk Si) errors of 1 eV are apparent.*

(iii) The nonlocal DF pseudopotential?? yields yet smaller
errors (<0.1 eV) in the orbital energies for an excitation range
of more than 1 Ryd. The errors are usually of the same sign
and have small energy dependences. The associated orbitals
are too localized (e.g., they underestimate the positive orbital
moments by 2% to 5% and overestimate the charge accumu-
lation functions by 10%).

(iv) The trans-density-functional nonlocal potentials have
errors smaller than 0.01 eV in the atomic orbital energies over
a 1-Ryd-wide excitation energy range and reproduce the
orbital moments, charge accumulation functions, and Cou-
lomb energies to within 1% over the entire range. They should
prove superior to the DF potential when very high accuracy
is needed (e.g., the calculation of molecular binding curves).
For other purposes, the DF pseudopotential is sufficiently
accurate. Recent tests on bulk Si>* indicate that the TDF po-
tential reproduces very well the AE valence charge density
and yields a band structure with an average error of only 0.06
eV/state, over a 20 eV range, relative to the full calcula-
tion.

IV. SOME COMMON MISCONCEPTIONS
REGARDING PSEUDOPOTENTIALS

We close this paper by commenting on a number of ques-
tions, some more trivial than others, that have apparently
introduced some difficulties in discussing the validity of the
pseudopotential description of semiconductors and surfaces.
This section is not intended to provide a thorough theoretical
discussion of the problem but rather attempts to elucidate in
a simple manner some of these problems for readers who are
not entirely familiar with the theoretical mumbo-jumbo in

the field.
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(1) Pseudopotentials are “weak”: Pseudopotentials are
“weak” only in one sense: the orbital energies of their lowest
states (i.e., valence) are higher than that of the corresponding
all-electron problem (having core states). They are not nec-
essarily “weak” in their spatial behavior; as a matter of fact
some successful pseudopotentials are even singular! There are
certain clear regularities in the degree of repulsiveness of
atomic potentials as one moves along rows and columns in the
periodic table. These changes reflect genuine chemical effects
and are useful in describing many properties of condensed
phases, such as the prediction of the stable crystal structure
of (about 460) AB Compounds.28 Pseudopotentials can be
made weak (or soft) if one desires but in general there exists
a continuous tradeoff between their weakness and the accu-
racy of the associated wavefunctions.

(2) A good atomic pseudopotential should attempt to
closely describe the “valence” region while its form in the
core region is irrelevant: This notion is rooted in the concept
that since in the pseudopotential representation the core re-
gion is being “pseudized away”’ and the true nodal character
of the wavefunction in this region is eliminated, one can use
any convenient form for both the wavefunction and the
pseudopotential in the core. As indeed there is no physically
compelling simple rule dictating the shape of the pseudopo-
tential in this region (nor is there a sum rule to be satisfied at
the high-momentum short-wavelength limit), one is faced
with a tremendous abundance of pseudopotentials in the lit-
erature, differing predominantly in their shape in the core
region (square wells, Gaussian-shaped, soft-core, hard-core,
empty-core, etc.) These potentials are frequently judged only
by their closeness to the “true” potential in the valence re-
gion.

The form of the pseudopotential in the core region has,
however, an enormous bearing on its transferability from the
model system used for its construction (e.g., an atom or bare
ion) to the systems of interest (molecules, solids and surfaces).
A pseudopotential is, of course, useful only to the extent that
it can continue to approximate well the full all-electron results
for atomic sites having symmetries and chemical environ-
ments that are sometimes very different from that of the
systems used to “fit” or derive it. The shape of the pseudo-
potential in the core region largely determines this energy
dependence. Hence, for example, soft pseudopotentials are
associated with wavefunctions having fairly large amplitudes
in the core regions and are loosely tied at the origin. Although
one can trivially construct such a potential to yield an ac-
ceptable description of the reference system, when the latter
is placed in a different environment, there is no mechanism
in an unconstrained self-consistent solution of the pseudo-
Schrédinger equation that will prevent the valence charge
from overpenetrating the soft-core region, destroying thereby
the agreement with the correct valence implied by the fitting
procedure. A suitably constructed hard-core pseudopotential,
on the other hand, first imposes an accurate description of the
valence region and then “ties down” the pseudo-wavefunc-
tions at the origin to ensure a minimal core penetration under
chemical perturbations. Scattering events at lower energies,
which reflect the changed chemical environment (hybrid-
ization, screening, formation of directed and localized bonds,
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etc.) are then described by the valence regions of the wave-
functions.

Figure 2 shows a simple demonstration of these effects in
an atomic case: as the valence structure of the atom is changed
from its reference ground state (AE, = 0) through excitations,
soft potentials continue to reflect sizable errors in the orbital
energies, while hard potentials deteriorate much more slowly.
A recent calculation on Sig with soft and hard potentials!-3
demonstrate a similar effect: when a soft potential, adjusted
to fit some quantities in a (spherical) Si ion, is used to calculate
the electronic structure of a (cylindrical) Siz molecule, a
considerable amount of charge penetrates the molecular core,
thereby partially offsetting the agreement with the all-elec-
tron results in the bond region. An ad hoc core orthogonali-
zation® (that acts as an added repulsive potential) is then
needed to restore the correct topology of the charge in the
bond region (effects that are sometimes as high as 15% to
20%).

(3) “Soft” pseudopotentials are more convenient to use
than “hard” pseudopotentials: This notion is rooted in the
practice of expanding the system’s wavefunction in plane
waves: a “soft” potential converges, then, faster in momentum
space and, hence, fewer matrix elements and smaller secqular
equations need to be considered.

Although the plane-wave-based band structure technology
has been a long-time favorite, it is by no means advantageous
over (nonperturbational) methods using direct-space basis
functions (analytic Gaussians or Slaters, numerical basis
functions, radial partial waves, etc.). Using the latter, hard-
core potentials are treated as easily as soft-core potentials (e.g.,
Ref. 16-21). Moreover, systems for which a plane wave ex-
pansion converges unacceptably slowly (e.g., systems con-
taining first row atoms or 3d transition metals) can be treated
conveniently by direct-space-based basis functions. There is
therefore no compelling computational reason at present to
construct soft-core potentials for self-consistent electronic
structure calculations.

Soft-core pseudopotentials have enjoyed an enormous
success in conjunction with low order perturbation theory
approaches to transport and structural properties of solids.”
As the conventional choice of the unperturbed reference
system is a homogeneous electron gas, an adequate conver-
gence of the perturbation series as well as that of the relevant
reciprocal lattice sums rests heavily on the suitability of a
soft-core pseudopotential representation to the description
of the electron-core scattering events. Whereas this situation
is approximately realized in simple metals (notable exceptions
include calculated quantities which involve nonzero order
wavefunctions, e.g., optical conductivity, etc.), many of the
chemically interesting covalent as well as transition metal
systems are not amenable to such a simplified description. It
would seem reasonable to expect that hard-core potentials
could be used successfully in such situations provided the
nonperturbed reference system is chosen as suitably nonho-
mogeneous (e.g., noninteracting pseudo-atoms, square wells,
etc.), and hence incorporate most of the potential fluctuations
at the zero-order level.

(4) The misrepresentation of the Si bulk charge density
by a local (semiempirical) pseudopotential results from lack
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of nonlocality effects: Early® self-consistent calculations with
the soft semiempirical local Si pseudopotentials (see also Ref.
5) have indicated that the bulk charge density has certain
anomalies relative to the experimentally synthesized density?:
the calculated charge, instead of being prolated along the Si-Si
bond, is oblate and looks as if it points perpendicular to the
bond. A subsequent calculation by Chelikowsky and Cohen,'®
this time using nonself-consistent empirical pseudopotentials,
have shown that the addition of a nonlocal term represented
as a two parameter Gaussian restores the expected shape of
the density and yields at the same time a band structure in
excellent agreement with experiment. Although never stated
by these authors, it has often been suggested in the literature
that some kind of nonlocality is necessary for a correct de-
scription of the Si covalent charge density. This, however, is
not necessarily the case.

All atomic pseudopotentials that can adequately replace
an all-electron problem are inherently nonlocal. This nonlo-
cality can (but does not have to) be conveniently represented
as an angular momentum dependence: V;’s)(r); [=0,12 The
validity of the replacement of V{)(r) by a local form acting
equally on all the electrons depends on the shell structure of
the atom (that is partially reflected by its position in the pe-
riodic table). First-principles calculations of the full nonlocal
pseudopotentials of all atoms belonging to the first five rows
in the periodic table? have offered quantitative measures to
the importance of the nonlocality in various parts of the pe-
riodic table. They also show that nonlocal effects for atoms
such as i, Ga, As, Ge, etc. are not nearly as enormous as they
are for first row atoms or the 3d transition metal series, and
hence suitable local forms may be adequate.

It has been demonstrated3# that one can obtain the ap-
proximately correct (molecular or bulk) Si bond charge an-
istropy even with local potentials, provided these are con-
structed by requiring a good reproduction of both the all-
electron orbital energies and the wavefunctions in the valence
region. This more general approach results, however, in
“harder” and more localized pseudopotentials than previously
used (e.g., the average of the first principles s and p potentials
in Fig. 1). Hence, although one can obtain the expected bond
charge anistropy by additional fitting of an otherwise local
potential, !0 the physical origin of this anistropy seems to be
related to the small-r localization of the potential that in turn
is a consequence of constraining it to closely reproduce the
all-electron charge density. We note that while suitable local
potentials can be adequate for such systems, an accurate de-
scription of the electronic structure (in particular s-p hy-
bridization effects, role of d-states, anistropy of dangling
bonds, etc.) requires the full non-local potential.

(5) Core-orthogonalized pseudo wavefunctions give a
better description of the electronic structure than pseudo-
wavefunctions: This is true only if the pseudo wavefunction
can be represented (at least approximately) as a linear com-
bination of the all-electron core plus valence wavefunctions
[e.g., Eq. (9)]. Core projections then act to annihilate the core
part, yielding the true (nodal) valence wavefunctions that can
be used to obtain the internally consistent theoretical pre-
dictions of various physical observables. As the use of pset-
dopotentials with their associated smooth wavefunctions
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constitutes an enormous simplification over the direct solution
of the all-electron problem, such a core orthogonalization
(performed after the completion of the solution of the pseu-
dopotential problem) offers great simplicity and very rea-
sonable accuracy.

Note, however, that in the empirical and semiempirical
pseudopotential approaches one does not have a direct handle
on the description of the pseudo-orbitals in terms of the all-
electron orbitals (as one parametrizes the pseudopotential to
yield desired energy eigenvalues without specifying the space
spanned by the corresponding orbitals) and, hence, a core
orthogonalization is at best an ad hoc procedure. As a matter
of fact, in some cases (e.g., form factors of the Si atom>22) the
core orthogonalized orbitals derived from a semiempirical
potential yield poorer results than the unorthogonalized or-
bitals. First principles pseudopotentials having orbitals that
are directly constrained to span the core and valence space
underlying the all-electron system can be used in conjunction
with the orthogonalization procedure. These yield consistently
better results upon core orthogonalization.22

If one desires to avoid altogether the need for core ortho-
gonalization and still obtain approximately valid results at this
level, one needs to construct a pseudopotential that yields
orbitals with a minimum amplitude in the core region. This
is precisely what is achieved with “hard-core” pseudopo-
tentials?>22 which explicitly minimize the core projections (i.e.,
the core orthogonality terms).

(6) Nonlocal pseudopotentials can represent the electronic
structure of a system better than an all-electron Kohn and
Sham approach as the latter is a local approximation: This
notion argues that as the all-electron local density functional
formalism employs a single potential for all the states in the
system, a nonlocal pseudopotential is “better.” We note,
however, that even a local all-electron potential is equivalent
to an infinite series of /-dependent (nonlocal) pseudopoten-
tials. Hence, two different types of nonlocalities are being
confused: that inherent to the description of the interelectronic
exchange and correlation effects and manifested already at
the all-electron level by terms such as the nonlocal Hartree—
Fock exchange, gradient contributions in the density func-
tional approach, etc. (“essential nonlocality””); and the pseu-
dopotential nonlocality that is a simple mathematical conse-
quence of eliminating a certain orthogonal subspace from the
eigenvector spectrum. An internally consistent nonlocal
pseudopotential can hence be at best as good as the under-
lying all-electron approach.

There is a large number of pseudopotential band structure
results in the literature that were shown to disagree with all-
electron results, even though both approaches use the same
microscopic description of screening effects (e.g., Xct). These
differences often form the basis for the discussion on the su-
periority of one approach over the other. Indeed, empirical
or semiempirical pseudopotentials are derived from sources
that are often inconsistent with the approach used to construct
their corresponding screening (viz., empirically adjusted ionic
potentials screened by X & potentials) and, hence, should not
be contrasted with all-electron results that employ consistently
the same screening for the core as well as the valence electrons.
First-principles pseudopotentials, on the other hand, are di-
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TABLE IV. First principals density-functional results for the band gaps
of some cubic materials compared with experimental data.

Calculated Experimental Percentage

Material gap (eV) gap (eV) difference
Si 0.55ab 1.1 50
LiF 10.5¢, 10.44 14.2 26
CuCl 2.0¢ 32 37
Cds 2.0 2.55 22
GaAs 1.08 1.4 28

2 All-electron, linear augmented planc wave method, Ref. 4.
b First principles pseudopotential, Ref. 5a.

¢ Gaussian basis LCAO, Ref. 32.

d Numerical LCAQ, Ref. 33.

¢ Numerical LCAO, Ref. 34.

"'Numerical LCAO, Ref. 35.

e First principles pseudopotentials, Ref. 25.

rectly derived from a chosen screening theory (Hartree-Fock,
density functional, etc.) and have to be judged by the degree
they reproduce the corresponding all-electron results.

(7) There is no direct way of abstracting the total energy
of a system using semiempirically adjusted pseudopoten-
tials: The prediction of crystal structure, relaxation and sur-
face reconstruction effects involves the minimization of the
total systems energy with respect to structural coordinates.
This can be effectively done in cluster-type Hartree—Fock or
correlated Hartree-Fock pseudopotential approaches.2! The
same can be achieved using semiempirical pseudopotentials.3°
A suitable and convenient formalism to do that for extended
systems in a momentum space representation has been re-
cently developed®! and applied successfully to bulk and sur-
face Si.30 Note, however, that this leads to some theoretical
inconsistencies in describing correlation effects: the fitting of
the potential to yield the experimentally observed ionic term
values introduces some unspecified form of correlation that
is absent from the screening energy introduced via a certain
(imperfect) correlation model (e.g., Kohn and Sham). The use
of a pseudopotential that is internally consistent with a cor-
responding microscopic screening model (density functional, 22
Hartree-Fock,'8-19 etc.) is free from this inconsistency and
yields reasonable results.17:18.24

(8) State-of-the-art first-principles band structures
(pseudopotential or all-electron) yield excellent agreement
with experimental optical data: Table IV compares the
predicted band gaps®2-35 of a number of solids, obtained with
state-of -the-art non-empirical band structure techniques, and
with the observed data. The calculations represented in the
table are fully self-consistent, avoid any shape approximation
to the potential, and use highly converged representations for
the wavefunction and potential. Their internal accuracy is said
to be of the order of 0.1-0.2 eV or better. On this scale, the
discrepancies with experiment are enormous. There is no
reason to believe that these errors will be reduced for surface
calculations. This signals the breakdown of the one-electron
Koopmans-type band structure approach for a wide class of
materials.

The physical origin of some of these discrepancies and the
evaluation of the relevant many-body correction to them are
discussed elsewhere (e.g., Ref. 33). These corrections are by
no means easy to evaluate and require an approach that fre-
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quently abandons the simplicity of the band structure model.
It would seem that one of the more important challenges of
the contemporary many-body theory is to construct (seem-
ingly) one-body potentials that would yield consistently better
predictions for the elementary excitations, already at the
simple eigenvalue equation level, without sacrificing the
accuracy of the predicted ground state properties. Empirical
and semiempirical pseudopotential approaches avoid this
complexity by a phenomenological adjustment of parameters.
The insight offered by them into the nature of the microscopic
interactions in the system remains limited.
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