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Failure of nitrogen cluster states to emerge into the bandgap of GaAsN
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The electronic structure of GaAsN alloys was previously described in terms of nitrogen “cluster
states”(C9) that exist in the dilute alloy in the bandgap, and “perturbed host stdfd5 inside

the conduction band. As the nitrogen concentration increases, the PHS plunge down in energy
overtaking the CS. We show theoretically that the CS respond to the application of pressure in two
different ways: the highly localized deep CS emefgeremair) in the gap, because their pressure
coefficient is lower than that of the conduction band minimum. In contrast, the shalloffir§tSo

be overtakenhybridize so strongly with the conduction band that their pressure coefficient becomes
comparable to that of the conduction states. These states fail to emerge into the gap upon application
of pressure because they move, with application of pressure, at a similar rate with conduction states.
© 2003 American Institute of Physic§DOI: 10.1063/1.1539543

The evolution of the electronic structure of IlI-V com- bridized with PHS. This state exhibits characteristic
pounds upon addition of nitrogen has been recently clarifiedemperatur and pressure dependenctést®
through theoretical modeling3 However, several important The properties of the amalgamated state are the subject
questions remain. We know that nitrogen introduces a strongf several recent inquiri€s:** An interesting question is to
perturbation into the IlI-V lattice, because of the signifi- what extent localized and delocalized states are mixed. Klar
cantly different atomic valence energy levels of N comparecet al** found that upon application of pressure the conduc-
to P, As, and Sb, and also because the much smaller atomii®n band edge is displaced to higher energies at a rapid pace,
size of N leads to strong atomic displaceménthe com-  So the CS re-emerge into the gap. This reflects the low pres-
bined chemical and structural perturbation induces two typegure coefficient of the CS, due to their weak hybridization
of electronic states in the nitride alléy? First, the perturbed With the PHS. Similarly, Buyanovat al.*® found that quan-
host statesPHS represent mixing of thé-X-L and other tum confinement of the GaPN alloy using a GaP barrier can
conduction states by the nitrogen-induced perturbation. Seélisplace the alloy conduction band edge to higher energies,
ond, cluster state&CS) are formed by single nitrogen atoms, again exposing the CS which are less prone to quantum con-
nitrogen pairs or trimers® that are created randomly in the finement on account of their greater localization. One would
bulk, or because the alloy surface already has clustees  €XPect that for sufficiently high N composition or sufficiently
are frozen-in during growth. At very low N concentrations, Nigh-energy CS, the CS will strongly hybridize with the de-
the CS occur inside the forbidden gap, whereas the PHS exitqc@lized host states and become host-like. At this point they
above the conduction band edge. At this very dilute Iimit,W'” acquire a_S|m|Iar degree of delocahzatlon_ as the host.
emission occurs from the CS, whereas absorption takes plat&0n application of pressure or quantum confinement, these
to the PHS. The latter exhibit a low pressure coeffiGént States wilinotemerge into the band gap, but move with the
and heavy electron effective ma<8 due to inter-valley ~conduction band edge. 1E7ncouraged_ by preliminary experi-
I'-X-L mixing. Theory showbthat as the N concentration is ments by Weinsteiret al,”" we have investigated theoretl-.
increased, the CS remain narrow and pinned in energﬁa"y the nature of the amalgamated states, so as to provide

whereas the PHS rapidly move down in enerdptical clear predictions for future experiments. In particular, we are

bowing” created by the repulsion of the PHS by higher en_interested in determining which CS are sufficiently hybrid-

ergy states This situation is unlike the impurity band for- ized so as not to emerge into the gap upon application of

mation modét that predicts significanbroadeningof the pressure, and which CS retain sufficient localization to
CS and adecreaseof the effective mass with concentration emerge into the gap, on account of their lower pressure co-
both being contrary to observation&’ Upon increasing the efficient.

. . We have calculated the energy levels versus pressure of
N concentration, the downwards moving PHS overtake one . . )
. supercell containing-64 000 atoms with selected nitrogen
by one the CS, that become localized resonances above t

. . fusters placed in it, using the plane-wave empirical pseudo-
conduction band edge. At this stage one observestthe P 9 P P P

duction band ed d delocalBedstate ab potential method® We consider two limiting nitrogen com-
conauction band edge an 26.1 more delocalzgdsiate above positions: a highly dilute alloy where the CS are still in the
it, with an L-like E, staté? in between. Once the last CS

gap, below the conduction band eddggs. 1a) and Xb)],

state has been overtaken by the PHS, we encounter g} 5 \ye|| developed, postamalgamated alloy, where the CS
“amalgamated” conduction band, made of resonant CS hypaye aiready been overtaken by the PHS and reside above
the conduction band eddéigs. 1c) and 1d)]. We apply
¥Electronic mail: alexzunger@nrel.gov pressure to both cases. We denote with “D” and “L”
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higher pressures, outside the range of our present investiga-
tion. Figure 2a) shows the wave function squared of the

[ . . .
20} (@) 201 ) lowest conduction state of isolated N in GaAs. We see that
L oy P

18 0D | g D this state becomes more localized with pressure, signifying
i /’/ﬂ-/"—’ﬁ,_ sl D o the emergence af;(N) into the gap.
D EI a0

(b) Nitrogen triplet in the dilute limitAs an example of

| Pressure Dependence of Cluster States in GaAs and GaAsN Alloys |

14 Localized_state 14 L . ) . . ;
= emerges into gap L T a highly localized CS, we consider &+N—N triplet in the
$ bl ) | Cy geometry(a triplet of atoms aligned along tHe10]
12 e _ axis). At low pressure this CS appears in the dilute alloy as
4 (o (d)[ Developed Alloy + NNN Triplet |

16 16 an ultralocalized level, 250 meV below the conduction band
S edge[Fig. 1(b)]. As pressure is applied, the localized state
remains in the gap: the delocalized conduction band edge

NN st doss not moves rapidly to higher energies, whereas the triplet state
oD emerge nie 20 moves with a very low pressure coefficient, owing to its
s % Ty T s highly localized character. Figurdt® shows the wave func-
Pressure (GPa) tion squared of the isolated nitrogen triplet. We see that pres-
FIG. 1. Calculated pressure dependence of cluster states in GaAsN. D aneﬁ_ure does no.t.cha_nge the degree of Iocahzatlgn.
denote delocalized and localized states, respecti@lysolated nitrogen in (© |_mpur|t|es in well _deve|0ped aIIo;A_ 1-5 %o ra_ndom
GaAs, (b)) N-N-N triplet in GaAs, (c) the well-developed 1.5% GaAsN alloy [Fig. 1(c)] has various N clusters in it, which are
alloy, (d) the 1.5% alloy containing thii—N-N triplet. formed by chance. In our example, the conduction band edge

has now descended by 360 meV from the dilute liri6 eV,

whether the state is “delocalized” or “localized,” respec- Fig. 1(a), to 1.14 eV in the 1.5% alloy, Fig.(d)]. All CS are
tively. The results are as follows: by now resonances above the conduction band edge, as evi-

(a) Isolated nitrogen in the dilute limitin the highly —denced by the fact that upon application of presqiig.
dilute alloy, anisolatednitrogen impurity[Fig. 1(a)] appears 1(c)] no states emerge into the band gap. To test this point
at low pressure as a localized(N) level above the delocal- specifically, we have deliberately placed in the well-
ized conduction band edgg(I';.), as observed by Wolford developed alloy the sami—N—N triplet that produced a
et al’® and by Liuet al® As pressure is applied, thg(I';.)  deep localized gap state in the ultradilute lirffig. 1(b)].
anda;(N) levels anti-cross, leading to the emergence of thelNe find [Fig. 1(d)] that this state now lies in the conduction
localizeda;(N) level into the gap, with its characteristically band. To probe if the NNN CS is localized or not, we apply
small pressure coefficient af=12 meV/GPa at P pressure to this cellFig. 1(d)]. Inspection of the lowest 200
~4 GPa). Thel'y.— X, crossover, which occurs in pure meV above the conduction band edge shows no ultralocal-
GaAs at 4.3 GP& is displaced by the presence of N to ized state. We see that whereas in the dilute I[ifigs. 1a)

(a) Isolated Impurity] | (b} Isolated N-N-N (c) Developed alloy
Triplet with Triplet
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FIG. 2. (Color The [001] cross sections of the wave function squatddnsity of the lowest conduction state at zero and higt6 GPa pressure of
(@) isolated N in GaAs(h) an isolated 110l-orierted nitrogen triplet in GaAse) a well-developed 1 5% GaAsN allov containindild.0]-oriented nitrogen
triplet.
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(a) Dilute Alloy | [ (b) Dilute Alloy | [ (0 Conc.Alloy | | (d) Conc. Alloy cluster states are lost because of mutual cluster—cluster inter-
High P LowP LowP High P action, which broadens these previously localized states.
Hore PLiines than atow? e itebial Consequently, in this model, application of presstwaich
CBE—MM moves the CBM upwardswill either expose a broadband, or
. ; none at all. Both predictions contradict experiment. Our ato-
cs ) S mistic model predicts instead that the conduction band over-
H - e CBE takes thediscreteCS, so application of pressure can expose

A selectively localized CS, but fail to expose the conduction
band hybridized CS.
Likewise the band anti-crossing motfetioes not predict
veM —t ' e ——— V8" the behavior illustrated, since the CS do not feature in this
model altogether.

Deep C5 Emission
Shallow CS Emission

FIG. 3. Schematic description of the displacement of cluster st@®sand
conduction band edge in nitride alloys with pressure and composition. Note  The authors wish to thank Professor B. Weinstein for

that upon application of pressure the shallow CS em@gestay in the gap  gharing with us his preliminary ddfaon the pressure depen-

in the dilute alloy[(a),(b)], while in the concentrated alloy only the deepest L . .

CS emerge into the gato).(d)]. dence of GaAsN states, motivating this theoretical study.
This work is supported by the U.S. Department of Energy,
SC-BES-OER Grant No. DE-AC36-98-G0O10337.
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