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Adaptive Crystal Structures: CuAu and NiPt
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We discover that Au-rich Cu1�xAux and Pt-rich Ni1�xPtx contain a composition range in which there
is a quasicontinuum of stable, ordered ‘‘adaptive structures’’ made of (001) repeat units of simple
structural motifs. This is found by searching �3 � 106 different fcc configurations whose energies are
parametrized via a ‘‘cluster expansion’’ of first-principles-calculated total energies of just a few
structures. This structural adaptivity is explained in terms of an anisotropic, long-range strain energy.
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on a lattice. The expansion is given in terms of chemical
(pair and multiatom) interactions, as well as long-range,

second sum includes only nonpair figures. Here Jf is the
real-space effective many-body interactions of figure f,
One of the usual canons of solid state chemistry and
metallurgy is that at low temperatures the equilibrium
phase diagram of ordering alloys shows only a limited
number of stable ordered phases (‘‘line compounds’’) [1–
3]. These line compounds appear at simple, Daltonian
stoichiometric ratios and have fairly small unit cells. This
fundamental paradigm led to the traditional description
of ordered ‘‘ground state structures’’ in terms of Ising
Hamiltonian [4–8] with fairly short-range interatomic
interactions. For example, if binary fcc A1�xBx com-
pounds are described via an Ising Hamiltonian with
nearest neighbor interatomic interactions of arbitrary
magnitude [6–8], a complete search of all possible ground
states reveals a total of five possible zero-temperature
structures, appearing at compositions x � 0, 0.25, 0.5,
0.75, and 1. However, in 1973, Anderson [9] noted ex-
perimentally the existence of a group of crystalline ma-
terials where, ‘‘within certain composition limits, every
possible composition can attain a unique, fully ordered
structure without defects.’’ Furthermore, such ‘‘infinitely
adaptive structures’’ had a multiplicity of discrete higher
energy, fully ordered structures which were separated
energetically by only a small amount, for any one com-
position. An example of the then recognized [9] infinitely
adaptive structures included phases related to low-
temperature Ta2O5, crystallographic ‘‘shear phases’’ of
TiO2, ReO3-type, MoO3 and �-PbO2 structures, and the
‘‘microphases’’ of CeCd. In 1978, Kittel suggested [10]
that long-range repulsive interactions can account for such
infinite adaptivity [11]. However, even modern paramet-
rizations of alloy Ising Hamiltonians from experimental
data [12] or first-principles calculations [13,14] have been
generally restricted to rather short-range interactions and
thus could not reveal if a given alloy system has adaptive
structures or not. We have previously developed a gener-
alized Ising Hamiltonian (‘‘mixed basis cluster expan-
sion’’) [15] in which the range of interactions and their
types (pairs, triangle, tetrahedra, . . .) are decided via first-
principles total-energy calculations on a set of configu-
rations of various arrangements ApBq of A and B atoms
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repulsive strain-driven elastic pair interactions, resulting
from the forced coherence of the size-mismatched A
and B planes along arbitrary crystallographic directions.
The interaction energies are determined by the require-
ment that this cluster expansion reproduce the accurate
configurational energies obtained by first-principles total-
energy calculations. This condition produces for many
transition metal alloys fairly long-range chemical inter-
actions (�20–40 different pairs; 5–10 multibody terms),
in addition to the formally infinite-range elastic inter-
actions. We show here that a T � 0 ground state search
of such a first-principles configurational Hamiltonian
reveals for NiPt and CuAu a composition range, exclu-
sively on the heavy-metal-rich side, exhibiting a dense,
quasicontinuum of stable ground states, each having
low-energy excited configurations. We identify the struc-
tural motifs in such ‘‘adaptive structures,’’ explain its sta-
bility. Although various long-period structures based on
CuAu were previously identified [1] as entropy-stabilized
finite temperature structures (e.g., CuAu-II), the T � 0
infinitely adaptive ground state structures are unsus-
pected [16,17].

Within the cluster expansion method [15] one selects
an underlying parent lattice (e.g., fcc) and defines a con-
figuration � by specifying the occupations of each of
the N lattice sites per cell by an A (spin index Si � �1)
or a B atom (spin index Si � 1). The excess energy (with
respect to equivalent amounts of solid A and B) of any
spin configuration �, at its locally atomically relaxed
minimum energy state, is then expanded as

�HCE��� �
X

k

Jpair�k�jS�k; ��j2 �
XMB

f

DfJf�f���

�
X

k

�Eeq
cs �x; k̂k�

4x�1 � x�
jS�k;��j2F�k�: (1)

The first summation includes all pair figures correspond-
ing to pair interactions with arbitrary separation. Jpair�k�
is the Fourier transform of the pair interaction energies
and S�k; �� is the structure factor of configuration �. The
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FIG. 1. Results of a ground state search for unit cells con-
taining up to 20 sites for (a) Cu-Au and (b) Ni-Pt systems.
Arrows denote the ground states identified out of 3 039 674 con-
figurations searched.
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Df stands for the number of equivalent clusters per lattice
site, and �f��� are spin products. The third summa-
tion represents atomic size-mismatch effects and involves
the ‘‘constituent strain energy’’ �Eeq

cs �x; k̂k� necessary to
maintain coherency between A and B along an interface
with orientation k̂k, and F�k� is the attenuation function
for short wavelengths. This third term gives rise to a long-
range interaction in real space and includes a nonanalytic,
k ! 0 behavior.

All quantities of Eq. (1) are determined from first-
principles total-energy calculations [15]. �Eeq

cs �x; k̂k� is
obtained from a set of LDA (local density approxima-
tion) calculations on biaxially strained A and B solids. We
determined fJpair�k�g and fJfg by fitting �HCE��ord�
to a set f�ordg of LDA-calculated formation ener-
gies �HLDA��ord� of ordered (not necessarily ground
states) ApBq compounds. The formation enthalpies,
�HLDA��ord�, were calculated using density functional
theory, as implemented in the ultrasoft pseudopoten-
tial (for NiPt) and projector augmented wave (for
CuAu) representations, using the VASP code [18]. For
each structure, we relax both the cell-external lattice
vectors and the atomic cell-internal degrees of freedom
to obtain minimum energies. To assume the best cancel-
lation of systematic errors in �HLDA�ApBq��E�ApBq��
p

p�qE�A��
q

p�qE�B�, we use the same high numerical
precision in the total energies of all three terms on the
right-hand side, including the use of geometrically
equivalent k points, identical integration meshes, and
basis sets. �HLDA is stable to within 2 meV=atom, and
the precision of �HCE relative to the directly calculated
�HLDA is 1 meV=atom. We verified [19] that using differ-
ent exchange-correlation functionals [the generalized
gradient approximation (GGA)] and spin polarization
does not alter our conclusions. The interactions in Eq. (1)
were obtained by first eliminating from the fit several of
the ordered structures f�ordg and choosing the interactions
that result in an accurate fit to the structures retained as
well as accurate predictions for the eliminated structure.
The process is repeated using different sets of eliminated
structures to ensure a set of interactions that work well
generally. In the case of NiPt, a very robust fit was
obtained with 35 input structures, requiring 20 pairs
and 10 three-body and four-body interactions. For the
CuAu system we used 33 input structures and needed
26 pairs and 5 three-body and four-body interactions.

We subject our cluster-expanded Hamiltonian to a
‘‘direct enumeration ground state search’’ [20] in which
every fcc configuration that can be constructed from a
unit cell with N sites is examined. We use N � 20, deliv-
ering up to 3 � 106 possible structures. The ground states
of Cu1�xAux and Ni1�xPtx are shown in Fig. 1 as solid
circles connected by a convex-hull line. Theses circles
correspond to structures that are the absolute stable forms
with respect to other structures at the same composition,
and with respect to phase separation into structures of
neighboring compositions. In some cases we validate the
045502-2
results of a direct enumeration search by performing
Monte Carlo simulated annealing, with larger cells con-
taining 20 � 20 � 20 primitive cells (N � 8000 sites),
finding the same ground states.

Discrete structures.—Examination of the ground state
diagram (Fig. 1) reveals that in the composition range
rich in the light element (Ni in NiPt and Cu in CuAu)
there are but a few, discrete ground states, separated by a
considerable ‘‘energy gap’’ from the higher energy ex-
cited configurations. In this range we confirm the known
[3] Cu3Au (L12) and Ni3Pt (L12) ground state structures.
We further predict [19] a new, discrete orthorhombic
structure Cu4Au2 with lattice constants a�3:727 (A,
b�3:702 (A, and c�11:238 (A as well as tetragonal struc-
tures for Cu2Au3, CuAu2, and NiPt7 with lattice constants
a� (A�;c� (A��� �3:968;18:761�, (3.948, 11.422), (3.863,
15.464), respectively. The crystal structures of these
new ground states are shown in Fig. 2. We calculate the
order-disorder transition temperatures for the new
ground states using the Monte Carlo simulation technique
[16,17] and find that all transitions are first order, involv-
ing discontinuities in the energy and specific heat [16].
The latter is used to determine the order-disorder tran-
sition temperatures for Cu3Au�L12�, Cu4Au2, CuAu�L10�,
045502-2
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FIG. 3. (a) Separation of the cluster expansion energy ECE of
Cu-Au alloys into chemical Echem and strain energy Ecs parts.
(b) The calculated constituent strain energies for Cu-Au along
several principle directions.

FIG. 2. The crystal structures of the ground states predicted
for Cu-Au and Ni-Pt. These structures are constructed by (001)
stacking of two different types (I and II) of planes.
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Cu2Au3, CuAu2, NiPt7 as 412, 516, 575, 587, 597, and
371 K, respectively.

Adaptive structures.—Figure 1 shows that in the heavy
metal rich compositions there is a (quasi)continuum [21]
of ordered structures, separated at each composition by
only a vanishingly small energy difference from the next
excited configurations. Examining the crystal structures
at those compositions, we find that they are all made from
(001) stacking of two simple fcc lattice planes, denoted in
Fig. 2 as type-I and type-II planes. For Cu1�xAux, the
adaptive ground states are superstructures made of alter-
nating pure-Cu and pure-Au planes of type I, where each
Cu monolayer is always separated from the next by a
minimum of one Au monolayer �ICu�1=�IAu�n=�ICu�1. No
(001) plane includes both Cu and Au atoms. These adap-
tive structures can be viewed, alternatively, as made of
equiatomic CuAu L10 structure [alternate monolayer
supperlattice of Cu and Au planes along (001) direc-
tion], layered by a few monolayers of Au. Figure 2 illus-
trates a few examples,e.g., �L10�1=�Au�1=�L10�2=�Au�1 for
Cu2Au3. (These structures may also be viewed as L10

with antiphase boundaries.) For Ni1�xPtx, the adaptive
structures are superstructures of the basic type-II plane
with pure Pt, i.e., �II�1=�Pt�m=�II�1=�Pt�n. Figure 2 illus-
trates the new NiPt7 ground state structure with m �
n � 3. These one-dimensional-like superstructures are
reminiscent of ‘‘Devil staircase’’ polytypes [22].

To understand quantitatively our finding we break the
excess total energy into a ‘‘chemical’’ piece Echem [first
two terms in Eq. (1)] and a strain energy piece Estrain [last
term in Eq. (1)]. Figure 3(a) shows the decomposition of
the Cu1�xAux excess total energies of structures at and
near the ground state line into Echem and Ecs. We see that
the chemical energy is roughly symmetric about x � 0:5;
however, the strain energy Ecs is significantly lower at the
Au-rich than at the Cu-rich side. This reflects that under
expansion, Cu and Ni become rather soft in the (001) di-
rection, since these elemental solids have a low-lying bcc
‘‘excited state’’ connected to the fcc phase via (001)
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(Bain-like) expansion [23]. Thus, the constituent-strain
energy in Fig. 3(b) is soft for (001) expansion (i.e., Au-
rich alloys). No such softening exists for compression of
Au or Pt (i.e., Cu- or Ni-rich alloys). This analysis shows
the following:

(i) For the Cu-rich alloys, the choice of ground state
structures is based primarily on the optimization of the
chemical energy part. In this composition range the
strain energy is big (corresponding to the insertion of
large Au atoms/planes into the smaller size Cu lattice),
but strain does not offer any particular structural selec-
tivity, as different orientations of Cu=Au planes result in
similar constituent-strain energies [see Fig. 3(b) for x �
0:1]. Yet, the chemical energy prefers Cu-Au bonds over
the average of Cu-Cu and Au-Au (thus, Echem < 0).
Consequently, the ground state structures Cu3Au (L12)
and Cu4Au2 are built from type-II lattice planes (Fig. 2)
containing both Cu and Au atoms. Only these two struc-
tures emerge in this composition range as having excep-
tionally stable chemical energy, while all others are well
above the tie-line connecting pure Cu with Cu3Au (L12).
This is because the strain energy is large in Cu-rich
alloys, pushing the energies of all the structures above
the tie-line.

(ii) For the Au-rich composition range, we find that the
choice of ground state structures is based primarily on
the optimization of the strain energy part. Here [Fig. 3(a)]
the strain energy is smaller (corresponding to the inser-
tion of small Cu atom/planes into the bigger size Au lat-
tice), so the energies are not pushed up as far as in the
Cu-rich case, and many structures remain on (or near)
the tie-line. However, as noted above, the strain along
045502-3
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the (001) direction is particularly soft [Fig. 3(b)], thus
offering a clear structural selectivity. On the other hand,
the chemical energy is less selective here: The calculated
Cu-Au bond strength of 179 kJ=mol (cohesive energy per
bond obtained by adding the theoretical compound heat
of formation to the experimental heat of atomization of
the elemental solids [24]) is rather similar to the Cu-Cu or
Au-Au bond strength (168 kJ=mol and 184 kJ=mol for
Cu-Cu and Au-Au, respectively). Therefore, there is no
large chemical penalty for forming planes of pure Cu-Cu
or pure Au-Au bonds without cross Cu-Au bonds, yet
there is a substantial gain in strain energy [particularly
for (001) stacking] in doing so. Thus, the ground state
structures are based on (001) stacking of type-I planes
(Fig. 2), consisting of pure Cu and pure Au. The reason
that the stable repeat unit consists of a subunit of
�ICu�1�IAu�1 � L10 layered with n monolayers of Au is
that this particular structural motif offers exceptionally
low (001) strain: the L10 structure of CuAu has tetragonal
symmetry, permitting its (001) tetragonal c=a ratio to
deviate from 1. Our calculations show that c=a � 0:915.
This (001) shrinkage is accompanied (via the volume
conservation principle) by a significant expansion of the
in-plane lattice constant, beyond the 50%-50% (Vegard)
value. This in-plane expansion gives ain-plane that is nearly
(within 3.2%) lattice matched with pure fcc Au. Thus,
(001) stacking of Au on L10 CuAu costs only little strain
energy. This suggests that the Au-rich alloy will have
particularly low interfacial energies, with potential im-
plications on microstructural morphology.

In the NiPt system one can draw a similar conclu-
sion about the stacking of the planes along the (001)
direction, since the strain energy of NiPt is very similar
to that in CuAu; i.e., strain energy along the (001) direc-
tion at the Pt-rich region is much softer with respect to
the other high symmetric directions. Therefore, as in the
CuAu system one expects to see adaptive structures with
(001) orientation at the Pt-rich region. However, contrary
to the CuAu system, the Ni-Pt bond strength (calcu-
lated at 252 kJ=mol) is stronger than the Ni-Ni bond
(214 kJ=mol [24]), which means the pure Ni atomic
planes are unfavorable. But the pure Pt atomic planes
are energetically favorable because of the strong Pt-Pt
bonds (282 kJ=mol [24]). Consequently, adaptive struc-
tures at the Pt-rich side prefer to have mixed Ni-Pt (001)
planes layered with pure Pt planes, but without pure
Ni planes.

We conclude that fcc adaptive structures of the sort
discovered here must contain an fcc element whose bcc
energy is not too high above fcc (Cu, Ni), and a larger
element (Pt, Au) that acts to expand the smaller element
into the regime of its transition to bcc, thus creating
asymmetric (001) strain softness. We call for experimen-
tal testing of this novel concept of phase ordering.
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