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The use of a small number of bands in conventional k � p treatment of nanostructures leads to
“farsightedness” (hyperopia), whereby the correct, detailed atomistic symmetry is not seen by the
model, but only the global landscape symmetry is noted. Consequently, the real symmetry is con-
fused with a higher symmetry. As a result, a number of important symmetry-mandated physical
couplings are unwittingly set to zero in the k � p approach. These are often introduced, after-the-
fact, “by hand”, via an ansatz. Sometimes physical effects (e.g., piezoelectricity) are invoked to fix
the otherwise incorrect symmetry. Thus, whereas in atomistic theories of nanostructures (tight-
binding, pseudopotentials) the physically correct symmetry is naturally forced upon us by the struc-
ture itself, in the standard k � p model it is accommodated ex post facto once it is known from
sources outside the model itself.

1. Introduction: How Does a Theoretical Model Recognize the Proper Symmetry of
the Object Being Modeled? The k � p model [1, 2] was eminently successful [3–6] in
modeling the electronic structure of three-dimensional (3D) bulk solids and two-dimen-
sional (2D) quantum wells by expanding their wave functions in just a few, zone center
(G-point) Bloch functions Un;G(r) of the host crystal:

YðrÞ ¼
PNb

n
FnðrÞUn;GðrÞ : ð1Þ

Using a single band (Nb ¼ 1) gives the “particle-in-a-box” description, whereas use of
the valence band maximum alone (six states, Nb ¼ 6, including spatial and spin degen-
eracies) leads to the “6 � 6 k � p,” and addition of the conduction band minimum gives
the “8 � 8 k � p.” In principle, if one were to use in Eq. (1) a complete basis, this meth-
od would be exact (assuming that the interfacial terms are treated correctly [7–9]).
However, this is not practical, since in this empirical approach the number of adjustable
parameters of the theory increases rapidly with the number of basis functions. More-
over, many of these parameters are not direct physical observables, so they cannot be
measured, even in principle. Thus, whereas conventional basis-set expansion methods
(e.g., Hartree–Fock for molecules, first-principles plane-wave pseudopotentials for so-
lids) routinely increase their basis sets until convergence is demonstrated, the standard
[3–6] k � p model relies instead on a fixed and rather small number of basis orbitals,
using adjustable parameters to mitigate variational limitations. This works very well for
physical problems where band mixing in Eq. (1) is small, e.g., when studying near-G
states in bulk solids, wide quantum wells of direct-gap materials, etc. But as the dimen-
sionality is further reduced, and the system becomes more and more different from the
reference 3D bulk from which the basis set of Eq. (1) is drawn, additional basis func-
tions may be needed for a reasonable description of the nanostructure wave functions.
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This was demonstrated by projecting realistically calculated (i.e., not k � p) wave func-
tions of quantum nanostructures on 3D bulk Bloch function basis [10–15], showing
that �100 G bands are often needed for a realistic expansion. One may still hope,
however, that even though such a large number of basis functions is needed in princi-
ple, in practice one may be able to re-adjust the free parameters of the small basis set
theory to match experiment. But one thing is difficult to fix (i.e., is not elegant) by re-
parameterization of the existing parameters: the correct symmetry of the object being
modeled. If one has just a small number of Bloch functions in Eq. (1), the broad and
featureless envelope functions Fn(r) cannot properly resolve the atomistic detail of the
object being modeled. Thus, the theory is “hyperopic,” noting the global shape but not the
detailed symmetry. Table 1 provides a few examples of failing to recognize the correct
symmetries. This article explains briefly these cases, and offers a natural alternative.

2. The Oscillating Eigenvalues of a Thin Film A film made of N monolayers can be
even or odd with respect to the reflection plane at its center. A continuum approach can
only tell if the film is, say, 50 �A or 52 �A thick, but not if it has an even or odd number of
monolayers. Thus, the odd–even oscillations of the film’s eigenvalues, apparent in an ato-
mistic calculation [16] (pseudopotential) of Si(001) (Fig. 1), are missed by the “far-
sighted” effective-mass approach which gives a monotonic energy vs. film thickness curve.

3. The Oscillating G–X Coupling in (AlAs)n/(GaAs)n Although small in magnitude
(VGX � 10 meV), the G–X coupling has profound consequences on the properties of the
system, leading, for example, to the appearance of indirect transitions without phonon
intervention [17, 18], to characteristic pressure-induced changes of the photolumines-
cence intensity [19, 20], to resonant tunneling in electronic transmission between GaAs
quantum wells separated by an AlAs barrier [21], and to level splitting (“avoided cross-
ing”) in the pressure-, electric field-, and magnetic field-induced G–X transition [22,
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Tab l e 1
Summary of the atomistic symmetries of a number of nanostructure systems, along with
the higher symmetry “seen” by the k � p approach. In the k � p method the lh–hh cou-
pling potentials are zero at the zone center (whereas they are generally non-zero away
from the zone center)

System Correct
symmetry

Consequence
of symmetry

What does the standard
model see?

Film of N
monolayers

odd or even E vs. thickness oscillates no reflection symmetry,
monotonic E

GaAs/AlAs
QW or SL

D2d Vlhl,hh2 6¼ 0, Vel,hhl 6¼ 0
� lhl–hh2 anti-cross
� lhl–e2 allowed
� hh2–el allowed

Vlhl,hh2 � 0, Vel,hhl ¼ 0
(Td symmetry)

InAs/GaSb
QW or SL

C2v Vlhl,hh1 6¼ 0
� el–hhl anti-cross
� in-plane polariz. anisotropy

Vlhl,hh1 � 0
� no in-plane polarization
(Td symmetry)

Square based
pyramid

C2v � strain (110) 6¼ ð�1110Þ
� p-level splits

C4v symmetry
no in-plane polarization;
no p-level splitting



23]. Atomistic calculations [24] properly re-
cognize the D2d point group symmetry of
superlattices having a common atom, such as
(AlAs)n/(GaAs)n. This leads, by symmetry, to
a vanishing V(n)(G–X) ¼ 0 matrix element
for n ¼ odd superlattices, whereas for n ¼
even, a finite coupling is possible, as shown
in Fig. 2. In contrast, the conventional k � p

model does not “see” the D2d symmetry, confusing it with a higher symmetry. Conse-
quently, the oscillating odd vs. even behavior of the coupling is absent, unless intro-
duced [25] “by hand”. This can be done, for example, by adding an artificial external
potential at the interface. In contrast, atomistic theories produce naturally the correct
oscillations [24] without the need for intervention.

4. The lh1–hh2 Coupling at Kk == 0 for Common-Atom Superlattices The D2d sym-
metry of common-atom superlattices such as InAs/GaAs or AlAs/GaAs permits a
non-zero coupling of lh1 and hh2 even at Kk ¼ 0 [26–28]. As a result, the lh1 and
hh2 bands anti-cross as a function of superlattice period n (Fig. 3) [29]. An addi-

tional consequence is that the lh1-to-e2
transition becomes allowed, as is the hh2-to-
e1 transition. Conventional k � p does not
see the D2d symmetry, confusing it instead
with the Td symmetry of the zinc blende
constituents. Consequently, the lh1 crosses
the hh2 level, and the above-noted transi-
tions are forbidden, unless a correction is
introduced by hand [26, 27]. Such correc-
tions involve adding, for example, a ficti-
tious external potential. In contrast, ato-
mistic theories produce naturally the
correct behavior [29].
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Fig. 1. The size dependence of the highest valence
band and lowest conduction band for Si films with
N monolayers. The dashed line indicates the effec-
tive-mass approximation (EMA) [16]

Fig. 2. The G–X coupling in AlAs/GaAs super-
lattices [24]: a) abrupt; b) segregated
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Fig. 3. lh1 and hh2 energy levels in the re-
gion of anti-crossing in (GaAs)n/(AlAs)n
(001) superlattices [29]

Fig. 4. Anti-crossing in (InAs)n/
(GaSb)n superlattices [31]:
a) l1–hh1; b) lh1–hh2



5. The lh1–hh1 Coupling at Kk == 0 for No-Common-Atom Superlattices In no-common-
atom superlattices such as InAs/GaSb or GaAs/InP the symmetry is reduced to C2v, so
even lh1 can couple to hh1 [27, 30, 31] at Kk ¼ 0. Consequently, lh1 can anti-cross hh1
(Fig. 4) and an in-plane polarization anisotropy I110 6¼ I�1110 is evident in the lowest transi-
tion. Conventional k � p has a vanishing lh1–hh1 coupling at Kk ¼ 0, hence no polariza-
tion anisotropy. This, however, can be introduced ex post facto by hand [26, 27].

6. Quantum Dots and Piezoelectric Charges Another interesting case of failure to
recognize symmetry in standard k � p treatment concerns pyramidal quantum dots. If
one uses as a model a square-based pyramid, then the macroscopic symmetry is C4v. In
this case, continuum-like theories indicate that p-levels are not split and there is no
polarization anisotropy for the lowest e–h transition. However, if the square-based pyr-
amid is made of a zinc blende solid such as InAs, the ð110Þdirection is not equivalent to
the (�1110) direction. This reduces the symmetry to C2v [32]. In this symmetry: (a) an in-
plane polarization anisotropy emerges [32–34], i.e., the dipole element for the lowest
transition along (110) differs from that along (�1110), the polarization ratio thus being
l 6¼ 1; (b) the otherwise doubly degenerate p levels split; and (c) the s-like electron
wave function is rotated (in “anti-phase”) with the s-like hole wave function. The real,
C2v symmetry of an atomistic square-based pyramid exists already even if the dot is
unstrained, i.e., an “uncapped” freestanding InAs dot will already have this symmetry.
If a capping barrier material strains the dot (e.g., GaAs on InAs dots) the atomic re-
laxation follows the atomic symmetry. Thus, the strain will also have C2v symmetry.
(However, describing strain via continuum elasticity incorrectly gives C4v symmetry
[33].) Thus, the polarization anisotropy, the p-level splitting, and wave function anti-
phase all emerge from (a) the atomically imposed C2v symmetry of the unstrained zinc-
blende system, and (b) the atomistic strain. Effect (a) is much larger than effect (b), as
the latter produces only weak polarization anisotropy.
Conventional k � p treatment misses the C2v symmetry of a square-based zinc blende

pyramid, and along with it the in-plane anisotropy, the p-level splitting, and the wave
function anti-phase [35]. One can, however, cause p-level splitting by introducing the
piezoelectric effect [36]. In zinc blende dots such piezoelectric charges exist only near
the sharp edges of the faceted quantum dot, e.g., an ideal pyramidal dot, but rounded
objects have nearly vanishing piezoelectric charges. Indeed, many of the k � p calcula-
tions have insisted on an ideal, faceted pyramidal shape, since only for such shapes is
there a significant piezoelectric effect. In the k � p approximation the piezoelectric effect
is required in order to create p-level splitting, polarization anisotropy, and wave func-
tion anti-phases, all of which are observed effects. These effects all disappear in k � p
treatment in the absence of a piezoelectric field. In an atomistic description, such as
pseudopotential, all of these effects emerge naturally without assuming piezoelectric
fields, simply because the atomic description yields naturally the C2v symmetry. Thus,
introduction of the piezoelectric field is a device, used in k � p models, to mimic the
correct, but otherwise neglected atomistic symmetry of the dot. One can always add the
piezoelectric effect to the pseudopotential calculations. (Note that in order to compare
“apples with apples,” one must compare k � p without piezoelectric field to pseudopo-
tential results also without piezoelectric field. This was done in Ref. [35]. It is incorrect
to compare k � p with this effect to pseudopotential without this effect, as was done in
Ref. [36].)
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The question then is how big are piezoelectric fields in commonly grown dots? This
question is equivalent to asking whether currently grown dots have sharp and well-de-
fined edges and facets, once they are capped. The author’s impression is that most
capped dots are rather round without sharp edges, exhibiting instead segregation and
intermixing [37, 38]. Such objects (e.g., lens-shaped dots) have negligible piezoelectric
charges. Nevertheless, in an atomistic description such dots have C2v symmetry.
Although calculations for faceted ideal pyramidal dots are convenient for comparing
computational schemes, they do not have much physical reality for InAs/GaAs, whereas
rounded, interdiffused lens-shaped dots are more realistic. Such dots have virtually no
piezoelectric fields. But then k � p will predict no p-level splitting, no polarization aniso-
tropy, and no wave function anti-phase, in conflict with experiment. Pseudopotential
calculations exhibit these effects even for lens-shaped dots.

7. Keep Fitting until Agreeing with Atomistic Theory or Experiment on Dots? Another
approach taken by k � p models is to change material constants (e.g., effective masses)
until agreement with a desired set of data is achieved while fitting parameters to repro-
duce the properties of the underlying bulk solid seems reasonable, re-adjusting these
parameters to fit the measured properties of the nanostructure itself appears question-
able. For example, consider k � p calculations on CdSe dots. Norris and Bawendi [39]
say: “We use standard nonlinear least-squares method to globally fit the experimental
data . . . our fitting routine adjusts three parameters: the Luttinger band parameters g1
and g2 . . . and the potential barrier for electrons.” According to Efros et al. [40], “The
position of the quantum size levels are very sensitive to the valence band energy para-
meter; those used for calculation give the best description of the CdSe microcrystal
absorption spectra.” Wind et al. [41] say: “Fig. 1 shows the experimental values the
lines in Fig. 1 have been calculated following a model including the valence mixing The
best correspondence could be obtained [by] choosing a Luttinger parameter g ¼
0.38 . . .” Since in these cases the k � p theory is explicitly fit to experiment on dots, it
cannot examine the legitimacy of either its successes or its failures.
Another version of fitting is provided by the work of Stier et al. [42] responding to

earlier pseudopotential work of Wang et al. [35]. To assess the validity of the 8-band
k � p model, Wang et al. performed a simple test, contrasting k � p with a full atomistic
pseudopotential calculation, using a common microscopic input. Specifically, they used
the atomic pseudopotentials of InAs and GaAs, obtaining the standard bulk band struc-
tures. From these bulk band structures they calculated the bulk electron and hole effec-
tive mass tensors at the zone center. Using these effective masses (that were in excel-
lent agreement with bulk measurements) they computed the k � p Luttinger parameters
from standard equations. These Luttinger parameters were then used in an 8-band k � p
program to compute the energy levels of the pyramidal InAs/GaAs dot, neglecting
piezoelectric effects. Analogous results (which we call “standard k � p”) are shown in
Fig. 2e of Stier et al. [42]. Independently, the same atomic pseudopotentials were used
by Wang et al. [35] to compute directly (without k � p) the energy levels of the same
pyramidal dot, also neglecting piezoelectric effects. Analogous results (“pseudopoten-
tial”) are shown in Fig. 2b of Stier et al. [42]. By comparing the two sets of results (k � p
and pseudopotential) one could assess the validity of using 8 bands vs. using a con-
verged number of bands, all other things being the same. The results of Wang et al.
clearly demonstrated some shortcomings of k � p, the most significant being (i) a re-
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duced splitting of the electron p states (3 vs. 24 meV), (ii) an incorrect in-plane polari-
zation ratio for electron–hole dipole transitions (0.97 vs. 1.24), and (iii) an over confine-
ment of both electron (by 48 meV) and hole (by 52 meV) states, resulting in a band
gap error of 100 meV.
Similar tests for the k � p treatment were done for freestanding dots of InP passivated

with hydrogen [14]. The diameter of these dots, 30 �A–50 �A, is actually not small; it is
typical of the confining dimension (i.e., height) of most self-assembled dots. Again,
doing side-by-side k � p and pseudopotential calculations based on the same input bulk
band structure reveals important differences [14] including: (i) incorrect k � p symmetry
for the first hole state (p envelope instead of s envelope, leading to the prediction that
the ground state Ph–Se exciton is forbidden); (ii) about 60% of the hole energy levels
in the first 500 meV below the VBM are missing in k � p, on account of an exaggerated
confinement; (iii) the second to fifth electron states that in a pseudopotential calcula-
tion are made of bulk L1c bands are missing altogether in k � p; and (iv) the “intrinsic
gap states” found [43] in k � p for pure, defect-free InP dots were shown [44] to origi-
nate from a mathematical instability in the equations, thus, not being a physical effect.
Such gap states are absent in a direct pseudopotential calculation. Clearly, because of
(i)–(iv) above, the interpretation of the spectra of InP dots via k � p was rather unusual,
involving spatially forbidden ground state excitons, sparsely spaced hole states, and
transitions to/from intrinsic gap states. None of these conclusions is supported by ex-
periment.
Stier et al. [42] proposed another fix to the k � p shortcomings: they altered the bulk

effective masses (thus, the Luttinger parameters) to better fit the pseudopotential re-
sults. This is illustrated in their Fig. 2d (which we call “k � p with modified masses”).
The new bulk effective masses are not reported. Although this modification brings the
k � p closer to the pseudopotential results (compare their Fig. 2d with 2b), the agree-
ment is not satisfactory, since the polarization ratio is still close to unity, the p levels
(C1, C2) are virtually unsplit, and the wave functions (not shown in Ref. [42]) are still
oriented incorrectly. Furthermore, the hole states are �50 meV too deep, as are the
electron states. As a further fix, Stier et al. added the piezoelectric correction to the
modified k � p results (Fig. 2c). They then compared these results containing the piezo-
electric correction (Fig. 2c) with the direct pseudopotential result that lacked the piezo-
electric correction (Fig. 2b), finding now good agreement for energies as well as wave
functions. Unfortunately, they neglected to add the piezoelectric correction to the pseu-
dopotential result, a correction that for a pyramidal dot must significantly enhance the
polarization ratio, p-level splitting, and wave function orientation. In my view, this com-
parison is not meaningful, as is the use of the effective masses as adjustable parameters.

8. The Main Point We see that the k � p approach with a small basis cannot resolve
atomistic detail, thus missing in its farsightedness the correct symmetry, “seeing the
nanostructure through a frosty glass”. This means that symmetry-related physical effects
such as level anti-crossing, degeneracy removal, polarization anisotropy, and some state
mixing are ignored. All of these effects exist naturally in a theory that uses a basis set
with sufficient resolution, i.e., using an atomistic approach. The current culture of k � p
practitioners appears to be different: rather than improve the resolution of their “mi-
croscope,” they prefer to keep a low-resolution (small basis set) approach and impose
the correct symmetry by adding external parameters (new potential terms in the Hamil-
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tonian). Such potentials take the form of piezoelectric charges in dots or interfacial
charges in superlattices. The degree to which such external potentials are really physical
remains questionable. Furthermore, the values of such potential matrix elements are
not provided by the k � p model itself, but must be provided externally (unless one uses
a complete theory; see Refs. [7–9]). Thus, whereas in atomistic theories of nanostruc-
tures [10–16, 24, 30, 35] the correct physical symmetry is forced upon us by the structure
itself, the standard k � p model can only accommodate it once it is known from other
sources. It seems that 45 years after the invention of the k � p approach [1], the time has
come to treat nanostructures by more refined approaches, where the Hamiltonian con-
tains atomistic physics and the basis set has sufficient resolution to see it. It turns out that
such approaches (e.g., see the short reviews in Ref. [45]) are both accurate and easy to
use. They have also been recently programmed independently by others [46, 47].
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