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Quantum architecture of novel solids

A. Zunger

National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
USA
alex zunger@nrel.gov

Received 25 Sep. 2000, accepted 22 Dec. 2000 by C. Thomsen

Abstract. The current status of our understanding of Quantum Mechanics is that if
one specifies the chemical formula of a compound (e.g., CuAu, or GaAs, or NiPt) it is still
impossible to predict if this material is a superconductor or not, but it is now possible to
predict its crystal structure. This is a nontrivial accomplishment for there are as many as
2N possible structures for a binary compound. This article reviews this classic question of
structural chemistry and condensed matter physics: How can one figure out which of the
astronomic number of possible crystal structures is selected by Nature?
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1 Introduction

Nature exhibits a remarkable selectivity in the crystal structure it adopts for solids.
This is evident by considering even the simplest case of binary A-B inorganic phases:
If one considers a hypothetical crystallographic unit cell with N sites, each occupied
either by an A or a B atom, there can be an astronomically large number (2N) of
possible crystal configurations, e.g., ∼ 1010 for a 34-atom unit cell. Yet, since the
discovery around the turn of the century of x-ray diffraction, only ∼ 4000 inorganic
crystal structures have been observed in the enormous effort, encompassing checking
of over 200,000 crystal phases [1]. The combination of the diversity of possible crystal
forms (2N options) with the remarkable specificity by which nature selects but a few
stable structures defines one of the outstanding enduring challenges in the quantum
theory of solids. Today, at the 100th birthday of quantum-mechanics, one has to
admit that despite great advances in quantum theory or solids and the advent of large
computers, we have still failed to predict which crystal structure is adopted by a given
A-B compound, even if it is a binary system. This article will review the current status
of this challenge.

Most crystalline materials adopt structures that represent the lowest thermody-
namic energy (either locally or globally) of any of the 2N possible configurations.
This simple statement has formed the basis for historic efforts in metallurgy, inor-
ganic chemistry, and solid state physics aimed at understanding, systematizing and
predicting the structure of crystals in terms of the innate propensities of the specific



90 Ann. Phys. (Leipzig) 10 (2001) 1–2

atom pair A and B to select a structure. While our solid state chemistry and physics
text books pretend that they know the answer (ionic binary crystals are said to select
the NaCl structure, covalent crystals “select” the diamond or zincblende structure,
simple metals are close-packed, etc.), the simple truth is that such descriptions do not
confront the many (2N ) possible structural alternatives.

What makes this challenge not only scientifically intriguing but also technologi-
cally existential is the fact that the function of crystals (e.g., useful properties) re-
flects their form, i.e., structure. In semiconductor superstructures, the particular se-
quence of atomic layers defines “quantum confinement” of electrons, hence the optical
properties of the solid. For example, a certain sequence of GaP/InP layers enables
high-efficiency solar cells, while another sequence of GaN/InN enables blue lasers. In
insulating crystals, certain atomic arrangements of the binary system C-N are said to
lead to super-hardness, while other C-N forms are predicted to be remarkably soft. In
metallic crystals, some crystal forms are brittle, others are ductile (examples of allu-
minides); some structures form material-hardening precipitates (“super alloys”) and
others do not. This dualism of structure vs. property sets the stage for the vision of
designing materials with desired properties. We share this vision with the alchemists
of the 15th century who were exploring ways of enticing materials to transform into
forms that create value (and luster) through new functionality. But while alchemists
had a total disregard for the number of protons and the electronic structure, these fea-
tures are the centerpiece of our current dreams of quantum-architecture. This article
will thus emphasize the recent development of “first-principles” quantum mechanical
approaches to the problem, using the Local Density Approximation (LDA). We will
see that the efforts in theoretical “first-principles” structure predictions has recently
shown significant successes, to be reviewed here, but that at the same time, these
successes have exposed a central weakness in the fundamental strategy used. Thus,
the field is at a juncture, offering exciting new challenges and opportunities.

2 Outline of the solution:
Linear Expansion in Geometric Objects (LEGO)

The reason we cannot explore quantum-mechanically the 2N possible ordered phases
of AxB1−x is that a calculation of the quantum-mechanical total energy

E = 〈Ψ|H |Ψ〉/〈Ψ|Ψ〉

scales unfavorably with the system’s size N . (Even linear-scaling algorithms currently
have an unfavorable large pre-factor). One approach to this problem is to map the
quantum-mechanical total energy ELDA(σ) of configuration σ into a readily-calculable
linear expansion ELEGO(σ). Figure 1 illustrates an expansion in terms of “Geometric
Objects” (GO) such as atom-pairs (1st to m-th nearest-neighbors), atomic triangles,
squares, etc. Each GO has a (yet unknown) characteristic energy JGO and a frequency
of occurrence BGO(σ) in configuration σ. In principle there are 2N configurational en-
ergies E(σ), σ = 1 . . .2N and 2N geometric figures JGO, GO = 1 . . .2N . However,
if in some sense the interactions between widely-separated atoms is less important
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Fig. 1 Schematic illustration of how the LEGO idea works. See Refs. [4, 5]

than the interaction between nearer atoms, then the expansion of E(σ) could re-
quire fewer than 2N interaction energies JGO. Thus, an LDA calculation of the total
energies ELDA(σ) of Nσ ordered configurations could be used to determine Nσ inter-
action energies [2], thus affording examination of the rate of convergence of the series
ELEGO(σ). If the series converges after ≈ 10 − 20 terms (as it does in many cases,
see below) then one can calculate E(σ) for any configuration σ by just summing over
that many terms. Furthermore, one could combine such an expansion ELEGO(σ) with
statistical-mechanics “ground state search” algorithim (e.g., simulated-annealing) and
readily locate out of 2N possibilities the configuration of lowest energy. By viewing
the expansion as a generalized Ising-type Hamiltonian one can apply to it any of the
statistical mechanics lattice-gas techniques (cluster-variation-method; finite tempera-
ture expansion, Monte-Carlo) and calculate finite-temperature free-energies of various
phases and microstructures. Figure 1 illustrates the idea graphically.

Our past research revealed [3] that the simple-minded expansion [2] has a few
problems, such as (i) slow convergence for highly size-mismatched alloys (Cu-Au, GaP-
InP), (ii) difficulty to include all forms (“cell-internal” as well as “cell external”) of
atomic relaxation, (iii) the “k=0 singularity problem” (dependence of the energy on
the direction of approach to the Brillouin zone center), and (iv) the limitation of the
number of interactions to the number of trial structures. All of these problems could
fortunately be overcome by developing a “mixed basis” expansion , [4, 5] in which
(i) the analytic strain energy is subtracted from the LDA energy before the expan-
sion is attempted; (ii) pair-figures to arbitrary order are calculated in reciprocal-space
whereas man-body figures are calculated in real space, etc. The final LEGO expression
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allows us to calculate the excess energy ∆E(σ) of any arbitrary atomic configuration,
(even consisting of more than 100,000 atoms) and it includes automatically the energy
lowering due to atomic relaxations. Formulation of the method requires as input the
T = 0 K excess energies ∆ELDA of 20-30 ordered compounds ApBq consisting of only
2-16 atoms per unit cell. The excess energy ∆E(ApBq , (σ) of such ordered ApBq bulk
compounds is defined as the energy gain or loss with respect to the bulk constituents
at their equilibrium lattice constants:

∆ELDA(ApBq ; σ) = Etot(ApBq , σ) − xEtot
A (aA) − (1 − x)Etot

B (aB). (1)

Here, σ denotes the type of ordered structure, x = p/(p + q), and aA and aB are the
equilibrium lattice constants of the bulk elements A and B. Etot(aA) and Etot(aB)
are the total energies of A and B, respectively. The formation energies of such small
unit cell structures can be easily calculated within the local-density approximation
(LDA) using either pseudopotential plane-waves or the all-electron LAPW approach.
These 20-30 LDA calculated energies are used to fit the coefficient of LEGO, in which
any configuration σ is defined by specifying the occupations of each of the N lattice
sites by a B-atom (Si = −1) or an A-atom (Si = +1). The excess energy of any
configuration σ is then given by

∆ELEGO(σ) =
∑

k

Jpair(k)|S(k, σ)|2 +
MB∑

f

DfJf Πf(σ) +
1

4x − 1

∑

k

∆Eeq
cs (k̂, x)|S(k̂, σ)|2 (2)

The first term includes all pair figures, where Jpair(k) and S(k, σ) are, respectively
lattice Fourier transforms of real space interactions and spin-occupation variables. The
second sum represents many-body (MB) interactions and runs over symmetry in equiv-
alent clusters consisting of three or more lattice sites. Df is the number of equivalent
clusters per lattice site, and Πf (σ) are structure-dependent geometrical coefficients.
The last summation involves the “constituent strain energy,” ∆Ecs which is defined as
the strain energy of bulk A and B required to maintain coherency along an interface
with orientation k. ∆Ecs can be calculated by deforming the bulk elements from their
equilibrium lattice constants aA and aB to a common lattice constant a perpendicular
to k. Once we determined Jpair(k), Jf and Ecs from 20-30 LDA calculations on sim-
ple ordered structures, we can calculate Elego(σ) for any σ (even containing 100,000
atoms) essentially effortlessly. Then Eq. (2) is subjected to (i) “ground state search”
identifying the lowest-energy T = 0 K structures out of ∼ 2N possibilities, and to a
Monte-Carlo calculation of (ii) phase-diagrams, (iii) precipitate shapes, and (iv) vari-
ous forms of short range order. We can thus obtain “LDA accuracy” for as many as
100,000 atom alloys and extend LDA to finite temperatures.

3 Applications

This method was used to predict the stablest T = 0 structures of a number of “classic”
binary systems such as those listed in Table 1.
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Table 1 These calculations provide comprehensive state-of-the-art first-principles descrip-
tion of ground state structures, phase stability, and short-range order in these systems.

Pd-Pt [6] Ni-V [7, 8] Cu-Pt [12, 13]
Rh-Pt [6] Ag-Au [9, 10]
Cu-Au [11] Ni-Au [11]

The new Cu7Pt “D7-type” ground state structure was predicted [12,13], and subse-
quently found experimentally by S. Takizawa (1996). This is illustrated in Fig. 2 and
demonstrates the power of first-principles theory to predict previously unsuspected
structures!

Fig. 2 Illustration for prediction (Ref. [12,13]) and subsequent verification of a new structure
for Cu-Pt.

We are now at the beginning of the process of solving one of the classic problems of
Quantum Theory of Solids: We are transforming our qualitative and semi-quantitative
understanding of sohesion into a predictive theory of new materials!
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