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Supplementary Note 1: Identification of the two inversion-partner sectors in ferroelectric SnTe 

and illustration of how the R-1 spin-splitting originates from the local symmetries of the sectors 

rather than being a consequence of the global inversion symmetry breaking. 

    At room temperature, α-SnTe has the centrosymmetric rocksalt (space group Fm-3m) structure1 

(Supplementary Figure 1a) and, as temperature is lowered,2 it undergoes a (ferroelectric) phase 

transition to the non-centrosymmetric rhombohedral (space group R3m) R-1 structure,3, 4 where the Te 

atom is spontaneously displaced along the [111] direction relative to Sn atom. We focus on the bands 

near Fermi energy around the Z point which exhibits the most pronounced Rashba spin splitting 

(Supplementary Figure 1b). 

    In the centrosymmetric rocksalt phase (illustrated by dashed lines in Supplementary Figure 1b, c, 

d), we separate the unit cell into two inversion-partner sectors 𝑆" and 𝑆# (as indicated by pink and 

cyan in Supplementary Figure 1a) connected by the Te atom, and the local dipole fields are odd around 

the Te inversion center (Supplementary Figure 1d). However, the wavefunction is evenly distributed 

(guaranteed by inversion symmetry) among two inversion-partner sectors; together with the odd 

symmetry at the Te site. This leads according to Eq. (3) to a perfect compensation of the local dipole 

fields and thus vanishing Rashba effect in the centrosymmetric rocksalt phase. 

    However, in the non-centrosymmetric rhombohedral phase (illustrated by the solid lines in 

Supplementary Figure 1b, c, d) with Te being off-center, the corresponding wavefunction becomes 

segregated on one of these two sectors (𝑆# of Supplementary Figure 1e), while the local dipole fields 

around the displaced Te site is shifted along with the shifting of Te atom (Supplementary Figure 1d). 

These effects give the R-1 compound α-SnTe a residual dipole field felt by band states and thus give 

rise to a finite Rashba spin splitting according to the unified model described by Eq. (3), similar to that 

of R-2 spin splitting in BaNiS2. This illustrates the identification of the two inversion-partner sectors in 

non-layered SnTe and shows how the R-1 spin-splitting originates from the local symmetries of the 

sectors rather than being a consequence of the global inversion symmetry breaking.  
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Supplementary Figure 1. Non-centrosymmetric rhombohedral α-SnTe having strong R-1 effect. a, 

Crystal structure of centrosymmetric α-SnTe identify with two inversion sectors 𝑆" (pink domain) and 

𝑆#(cyan domain). The centrosymmetric phase transfers to a non-centrosymmetric rhombohedral phase as 

the Te atom displaced from Sn along [111] direction b, Band structure around the time-reversal invariant 

momentum Z along high symmetry A-Z and Z-U k-paths for both centrosymmetric (dashed lines) and non-

centrosymmetric rhombohedral phase (solid lines). c, Averaged one-dimensional electrostatic potential 

(ionic + Hartree) along the [111] direction, and d, the corresponding electric dipole fields. e, Charge density 

in the (101) plane across the Sn and Te atoms for the state of the highest valence band at 𝐤)*+ = (0.509, 

0.5, 0.491) (2𝜋/𝑎) with its corresponding state 𝜑 indicated in b by a black dot for the non-centrosymmetric 

rhombohedral phase. 
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Supplementary	 Note	 2:	 Non-symmorphic screw axis symmetry enforces the four-fold 

degeneracy of the energy bands at 𝐗 point of the tetragonal P4/nmm crystal 

We show in Figure 2d that a four-fold degeneracy is present at X point of the tetragonal P4/nmm 

crystal. In non-magnetic material, such four-fold degenerate at time-reversal-invariant (TRI) k points 

can be enforced by a Hermitian symmetry operator that anti-commutes with the spatial inversion 

symmetry.5 In the following, we will illustrate that, it is the non-symmorphic screw symmetry 

𝐶45| 𝑎 2 , 0, 0  -- which transforms (𝑥, 𝑦, 𝑧) to (𝑥 + <
4
, −𝑦, −𝑧) in position space -- that anti-

commutes with the inversion symmetry and therefore ensures energy bands to be four-fold degenerate 

at TRI X points. Presence of such four-fold degeneracy is crucial for a non-vanishing R-2 spin splitting. 

The coexistence of time-reversal symmetry operator T and the spatial inversion symmetry P in the 

nonmagnetic centrosymmetric crystals results in the double degeneracy (or spin degeneracy) of every 

energy bands. The symmetry operation PT transforms one spin component of each doubly degenerate 

bands to the other: 𝑃𝑇𝜓 𝐤, 𝛔 = 𝜓 𝐤, −𝛔 . Generally speaking, if L (including P) is a Hermitian 

symmetry operator of a centrosymmetric crystal, the transformation of the state 𝜓 of the Hamiltonian 

under a symmetry operation L, which is	𝐿𝜓, belongs to a state having the same eigenvalue as 𝜓. The 

Hermitian symmetry operator acting on the pair of degenerate states 𝜓 and 𝑃𝑇𝜓 generates a new pair 

of degenerate states 𝐿𝜓 and 𝑃𝑇𝐿𝜓. If these two pairs of doubly degenerate states are nonequivalent, 

the energy bands will be four-fold degenerate. Under a different Hermitian symmetry operator 𝒜 from 

L, these two pairs of doubly degenerate states 𝜓, 𝑃𝑇𝜓  and 𝐿𝜓, 𝑃𝑇𝐿𝜓  have different 

eigenenergies, i.e.,  

𝐴, 𝐴GH	 ∩ 𝐴J, 𝐴GHJ = ∅       (1) 

where 𝐴, 𝐴GH, 𝐴J , and 𝐴GHJ  are the eigen-energies of 𝜓,𝜓GH, 𝜓J , and 𝜓GHJ  under the symmetry 

operator 𝒜 , respectively. At wavevectors k, which are invariant under both 𝐿	and	𝒜 , the 

eigenenergies of these four states are degenerate, and thus the energy bands are four-fold degenerate at 

such k points. 

At (and only at) TRI k points, we could take 𝐿 = 𝑃, and the constrain on 𝒜 in Supplementary 

Eq. (1) then becomes 

𝐴, 𝐴GH	 ∩ 𝐴G, 𝐴H = ∅.      (2) 
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Considering two-fold symmetries, which have two eigen-energies, are the most common Hermitian 

symmetry operators, we choose 𝒜 as one of the two-fold symmetries and obtain	𝐴 = −𝐴G. After 

inserting it into Supplementary Eq. (2), it is straightforward to have  

𝒜𝑃𝜓 = 𝐴G𝑃𝜓 = −𝑃𝐴𝜓 = −𝑃𝒜𝜓,     (3) 

which reveals the anti-commutation between 𝒜 and 𝑃, 

{𝒜, P} = 0.             (4) 

Therefore, a Hermitian symmetry operator 𝒜, which anti-commutates with spatial inversion symmetry, 

ensures four-fold degeneracy of energy bands at TRI k points in the nonmagnetic centrosymmetric 

crystals. Such four-fold degeneracy is only available in non-symmorphic crystals because inversion 

symmetry P commutes rather than anti-commutes with all remaining symmetry operators in 

symmorphic crystals. The monolayer BaNiS2 having the space group P4/nmm (No. 129) possesses a 

Hermitian operator of screw axis symmetry 𝐶45| 𝑎 2 , 0, 0 , under which the X point is invariant. 

It is easy to verify that {𝒜 , P} = 0 taking 𝒜  = 𝐶45| 𝑎 2 , 0, 0 , and, therefore, the screw axis 

symmetry enforces the energy bands to be four-fold degenerate at TRI X point. Above, the non-

symmorphic symmetry is essential for the anti-commutation relation and the four-fold degeneracy at 

certain TRI points (on Brillouin Zone boundary). 

 

Supplementary Note 3: Restore the spin-split sector-segregated bands of monolayer BaNiS2 

from effective Hamiltonian 

   Based on the theory of invariants6 we could derive the effective Hamiltonian and restore the DFT 

results of the spin-split sector-segregated bands. The derivation and the symmetry analyze incorporated 

will present us a more fundamental view of how non-symmorphic symmetry plays a role in determining 

the R-2 spin splitting as revealed in Figure 1. The monolayer BaNiS2 has a non-symmorphic group 

P4/nmm (#129) consisting of 16 symmetry operators. Among these 16 operators, there are eight 

symmetry operators under which the X-point is invariant (i.e., 𝑅𝐤P = 𝐤P + 𝐆): 

 {𝑬│𝟎}: (𝒙, 𝒚, 𝒛) → (𝒙, 𝒚, 𝒛)	

{𝑪𝟐𝒙│(𝒂/𝟐, 𝟎, 𝟎)}: (𝒙, 𝒚, 𝒛) → (𝒙 + 𝒂/𝟐, −𝒚, −𝒛) 

{𝑪𝟐𝒚│(𝟎, 𝒂/𝟐, 𝟎)}: (𝒙, 𝒚, 𝒛) → (−𝒙, 𝒚 + 𝒂/𝟐, −𝒛) 

{𝑪𝟐𝒛│(𝒂/𝟐, 𝒂/𝟐, 𝟎)}: (𝒙, 𝒚, 𝒛) → (−𝒙 + 𝒂/𝟐, −𝒚 + 𝒂/𝟐, 𝒛) 
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{𝑰│𝟎}: (𝒙, 𝒚, 𝒛) → (−𝒙, −𝒚, −𝒛)	

{𝒎𝒙│(𝒂/𝟐, 𝟎, 𝟎)}: (𝒙, 𝒚, 𝒛) → (−𝒙 + 𝒂/𝟐, 𝒚, 𝒛) 

{𝒎𝒚│(𝟎, 𝒂/𝟐, 𝟎)}: (𝒙, 𝒚, 𝒛) → (𝒙, −𝒚 + 𝒂/𝟐, 𝒛) 

{𝒎𝒛│(𝒂/𝟐, 𝒂/𝟐, 𝟎)}: (𝒙, 𝒚, 𝒛) → (𝒙 +
𝒂
𝟐
, 𝒚 +

𝒂
𝟐
, −𝒛) 

(5) 

The rotation symmetry of these eight symmetry operators forms the little group D2h of the X-point. The 

character table of D2h is given in Supplementary Table 1. Note that BaNiS2 as a non-magnetic crystal 

also contains the time reversal symmetry 𝑇. 

 

(1) The effective model Hamiltonian in the absence of SOC 

   The distinct band topology along X − M and X − Γ of the monolayer BaNiS2 without SOC shown 

in Figure 1c can be understood from the effective model Hamiltonian. Since the Rashba bands of our 

interesting around the X -point are mainly derived from the Ni d-orbits with 𝑑5d*ed  and 𝑑fd 

character, the atomic d states of Ni atom 𝜙h(𝒓), where d denotes a hybridization state of 𝑑5d*ed and 

𝑑fd, are the reasonable choice as the basis of the invariant expansion. The Bloch basis Ni"(#), 𝑑, 𝐤  

can be explicitly expressed as a Bloch sum of the local d states, 

 
Ni"(#), 𝑑, 𝐤 =

1
𝑁

𝑒n𝐤∙ 𝐑q𝛕s t 𝜙h(𝐫 − 𝐑 − 𝛕"(#))
v

 
(6) 

Where 𝐑 is the lattice vector and 𝛕"(#) = ±(𝑎/4, 𝑎/4, 𝑧yns(t)) (𝑎 is the in-plane lattice parameter 

of the monolayer BaNiS2) is the relative position of 𝛼(𝛽) Ni atom within the primary cell for the origin 

setting in the middle of two Ni atoms. 

The transformation property of the basis is ready to obtain upon application of the symmetry 

operations given in Supplementary Eq. (5). Taking the glide reflection operator 𝑚5| 𝑎 2 , 0, 0  as 

an example, we find that wavefunctions of the bands at the X -point segregated on Niα and Niβ, 

respectively, have opposite parity under symmetry operation: 

 {𝑚5|(𝑎/2,0,0)} Ni"(#), 𝑑, X	 = ± Ni"(#), 𝑑, X	  (7) 

and thus, their interaction is strictly forbidden by symmetry. The energy equivalence but interaction 

forbidden of these two states causes an additional degeneracy besides the Kramers’ degeneracy for 

bands at the TRI X-point, which is consistent with the observed four-fold degenerate bands at the X-

point in the first-principles calculations. The same transformation rule could also apply to states along 
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X − M  direction, obtaining forbidden interaction between degenerate states segregated on two 

inversion-partner sectors and leading to the two-fold degeneracy of the energy bands in agreement with 

the first-principles calculation, as shown in Figure 1c. 

The basis transforms, respectively, under the symmetry operations of {𝑚e|(0, 𝑎/2,0)} and {𝐼|0} 

as 

 {𝑚e|(0, 𝑎/2,0)} Ni"(#), 𝑑, X	 = Ni"(#), 𝑑, X	 , (8) 

and   

 {𝐼|0} Ni"(#), 𝑑, X	 = ±i Ni#("), 𝑑, X	 . (9) 

Since the remaining symmetry operators of the D2h are formed by the product of these three operators, 

the transformation properties of the basis under their operations are the combination of the results 

presented in Supplementary Eqs. (7)-(9). Without SOC, the time reversal symmetry 𝑇 acts on the basis 

as a complex conjugate operator 𝐾: 

 𝑇 Ni"(#), 𝑑, X	 = ∓i Ni"(#), 𝑑, X	 . (10) 

From Supplementary Equations (7)-(10) we learn that the representation matrixes of the symmetry 
operations {𝑚5|(𝑎/2,0,0)}, {𝑚e|(0, 𝑎/2,0)}, {𝐼|0}, and 𝑇  acting on the basis Ni"(#), 𝑑, X	  are 

𝜏�, 𝜏�, 𝜏4 , and −𝑖𝜏�𝐾 , respectively. Here, 𝜏�, 𝜏�, 𝜏4, 𝜏�  are 2×2 Pauli matrixes. The symmetrized 

matrix and irreducible tensors of symmetry operations of the D2h point group up to second order in k 

are summarized in Supplementary Table 2 for the case without considering SOC. 

   According to the theory of invariant6, the effective Hamiltonian must be invariant under all eight 

symmetry operations of the D2h point group and, from Supplementary Table 2, we learn that all possible 

invariants up to second order in wavevector k at the X-point are (𝐶, 𝑘54, 𝑘e4)𝜏� and 𝑘5𝜏�. Neglecting 

the second order parabolic term, which will not contribute to spin splitting, the effective Hamiltonian 

of the spin splitting bands is therefore 

 H��� = 𝑡𝑘5𝜏�. (11) 

Here, t is a parameter that characterizes the strength of the interaction between two atomic d states 

located on two Ni atoms, respectively, within the primary cell. A diagonalization of Supplementary Eq. 

(11) yields the energy dispersion relation 

 𝐸± 𝐤 = ±𝑡𝑘5. (12) 

We, therefore, find that these two bands (without spin) arising from the atomic d orbitals of two Ni 

atoms, respectively, are degenerate when 𝑘5 is zero (i.e., along X − M direction), but spits when 𝑘5 
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is non-zero (i.e., along X − Γ direction). Such energy dispersion relation of the effective Hamiltonian 

explains well the results obtained from the first-principles calculations for the case without SOC, as 

shown in Figure 1c. 

 

 (2) The effective model Hamiltonian in the presence of SOC 

   Taking into account the spin degree of freedom, the basis must multiply the spin eigenstates 𝛔  

and becomes Ni"(#), 𝑑, 𝐤, 𝛔 . Like in the case without SOC, the transformation properties of the basis 

(including spin) can be deduced by acting on them by symmetry operators The matrix representations 

of the symmetry operations of {𝑚5|(𝑎/2,0,0)}, {𝑚e|(0, 𝑎/2,0)}, {𝐼|0}, and 𝑇 acting on the basis 

are −𝑖𝜎�𝜏�, −𝑖𝜎4𝜏�, 𝜎�𝜏4, and 𝜎4𝜏�𝐾	, respectively. Here, 𝜎�, 𝜎�, 𝜎4, 𝜎� are 2×2 Pauli spin matrices. 

Following the procedure of the theory of invariant, we obtain that all possible invariants 

𝐶, 𝑘54, 𝑘e4 𝜎�𝜏�, 𝑘5𝜎�𝜏�, 𝑘5𝜎4𝜏� , and 𝑘e𝜎�𝜏�  (given in Supplementary Table 3), under all eight 

symmetry operations of the D2h point group for wavevector at the X-point. Neglecting the non-relevant 

second order parabolic term on spin splitting, the effective Hamiltonian of spin splitting bands around 

the X-point is written as 

 H��� = 𝑡𝑘5𝜎�𝜏� + 𝛼v5𝑘5𝜎4𝜏� + 𝛼v
e𝑘e𝜎�𝜏�. (13) 

Here, 𝛼v5 and 𝛼v
e quantify the strength of the last two terms. In compared with the case without SOC, 

such effective Hamiltonian contains two additional terms induced by SOC, and hence known as Rashba 

terms. A diagonalization of Supplementary Eq. (13) yields the energy dispersion relation as 

 𝐸± 𝐤 = ± 𝑡4 + 𝛼v5
4 𝑘54 + 𝛼v

e4𝑘e4. (14) 

It is straightforward to learn that the four energy bands (including spin) along both X − M and X − Γ 

directions spits into two doubly degenerate branches (branch A and branch B), which agrees with the 

results (shown in Figure 1d) obtained from the first-principles calculations for the case with SOC. It 

worth noting that since the off-diagonal elements are zero when 𝑘5 = 0 in the effective Hamiltonian 

given by Supplementary Eq. (13), the interaction between two atomic d states originating from two 

inversion-partner sectors are forbidden by the symmetry along X − M direction (𝑘5 = 0). The nonzero 

off-diagonal elements when 𝑘5 = 0 implies allowed mixture between two atomic d states originating 

from two inversion-partner sectors along X − Γ. These results justify our findings of the wavefunction 
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segregation and fully delocalization on inversion-partner sectors along X − M and X − Γ directions, 

respectively. 

Upon applying a small bias potential 𝑈 perpendicular to the monolayer BaNiS2, the potential 

dropping on two inversion-partner sectors lifts the degeneracy of both branch A and branch B, giving a 

justification for the observation of the first-principles calculation as shown in Figure 1e. The effect of 

the applied field can be described by 𝑒𝑈𝜎�𝜏� added to Supplementary Eq. (13). Take it as a small 

perturbation, to first order in energy, immediately, the electric field induced splitting is ~2	𝑒𝑈. 

 
 
Supplementary Table 1. Character table of the D2h point group. 

D2h E  C4�  C4�  C4�  P  𝑚f  𝑚5  𝑚e  

Ag 1 1 1 1 1 1 1 1 

B1g 1 1 -1 -1 1 1 -1 -1 

B2g 1 -1 -1 1 1 -1 -1 1 

B3g 1 -1 1 -1 1 -1 1 -1 

Au 1 1 1 1 -1 -1 -1 -1 

B1u 1 1 -1 -1 -1 -1 1 1 

B2u 1 -1 -1 1 -1 1 1 -1 

B3u 1 -1 1 -1 -1 1 -1 1 

E1/2,g 2 0 0 0 2 0 0 0 

E1/2,u 2 0 0 0 -2 0 0 0 

	
	
	
Supplementary	 Table	 2.	 The	 symmetrized	 matrix	 and	 irreducible	 tensor	 of	 symmetry	

operations	of	the	D2h	point	group	up	to	second	order	in	k	without	considering	SOC.	

Irreps 
Symmetrized 

Matrix 
Irreducible 

tensor 
{𝐼|0} 𝑚5 (𝑎/2,0,0)} 𝑚e (0, 𝑎/2,0)} 𝑇 

Ag τ0 (𝐶, 𝑘54, 𝑘e4) 1 1 1 1 

B3u τ1 𝑘5 -1 -1 1 -1 

B2g τ2 - 1 -1 1 -1 

B1u τ3 - -1 1 1 1 
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Supplementary Table 3 The symmetrized matrix and irreducible tensors of symmetry operations of 

the D2h point group up to second order in k including spin. 

Irreps 
Symmetrized 

Matrix 
Irreducible 

tensor 
{𝐼|0} 𝑚5 (𝑎/2,0,0)} 𝑚e (0, 𝑎/2,0)} 𝑇 

Ag σ0τ0 (𝐶, 𝑘54, 𝑘e4) 1 1 1 1 

B3u σ0τ1, σ2τ3 𝑘5 -1 -1 1 -1 

B2u σ1τ3 𝑘e -1 1 -1 -1 

B1u σ0τ3 Uz -1 1 1 1 
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