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Abstract
The time evolution of the distribution of precipitate shapes and sizes in Al–Zn
alloys is studied via a mixed-space cluster expansion and kinetic Monte-Carlo
simulations. We find that the growth of precipitates in Al-rich Al–Zn alloys
follows classical Ostwald ripening already after ageing times of a few seconds.
Moreover, the distribution of the precipitates is temperature-dependent: the
higher the ageing temperature, the smaller the distribution width of the
precipitate size. We discuss the time evolution of the precipitates in terms
of short-range order parameters and compare them with experimental data.

1. Introduction

Quenching a solid solution of a binary metal alloy into the two-phase region of the phase
diagram (shown in figure 1 for the system Al–Zn [2,3]) leads to the formation of characteristic
precipitate microstructures [1]. Of special importance are coherent precipitates that have no
dislocations between the precipitate and the matrix. In heat-treatable light-metal alloys [4]
such as Al–Cu, Al–Mg, and Al–Zn, coherent precipitates effectively impede dislocation
motion [1, 4–6]. The chemical and structural properties of such precipitates are determined
by the identity of the phases being located to the left and right of the two-phase region in the
phase diagram (figure 1). In the case of the phase-separating system Al–Zn, the two-phase
region corresponds to elemental Al and Zn, so that precipitates formed from the Al-rich solid
solution consist of only Zn atoms. Our previous Monte-Carlo (MC) simulations of precipitates
in Al–Zn [7] have shown that although the precipitates are created by an inherently kinetic
heat treatment process, the size versus shape relation of fully developed precipitates (t → ∞)
can be explained in terms of thermodynamic arguments [7, 8]. However, the distribution of
precipitate shapes and sizes at finite ageing time is controlled by kinetics. Here, we study
the kinetic evolution of these precipitates. The kinetic evolution of an alloy morphology is
important for understanding how the final shape of the alloy comes about.
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calculated

AlZn

Figure 1. Al-rich side of the Al–Zn phase diagram. The dashed curve gives our calculated fcc
miscibility gap [2]. Quenching a solid solution below this line leads to the formation of coherent
precipitates. The experimental phase diagram was taken from [3].

The kinetic MC method [9–11] is one of the most successful approaches to describe
diffusion, growth, and microstructure evolution in alloy systems [12]. Various approaches
for describing shape evolution of microstructures in alloys use different methods such as
the Onsager equation in mean-field approximation [13–15], a microscopic mean-field kinetic
equation [16], the stochastic field method [17], or the discrete atom method [18–20]. In contrast
to such continuum models that require a knowledge of the energy surface for arbitrary atomic
configurations, we use an atomistic method [21] which requires only the energies E(σ) of
substitutional configurations σ . The latter energies can easily be calculated within the local
density approximation (LDA) [22, 23] fitted to a generalized Ising cluster expansion ECE(σ ).
One can use ECE(σ ) in conventional (not kinetic) MC simulations to study the thermodynamic
properties of the system. This approach was previously applied to describe the size versus
shape relation of coherent precipitates in Al–Cu [24], Al–Mg [25], and Al–Zn [7, 8]. For the
latter system, we found, in excellent agreement with experimental data (see [7] and references
therein), that with increasing size and decreasing temperature the shape of an individual
precipitate changes from a more spherical/compact shape to a more ellipsoidal/plate-like shape.
We have also calculated the coherent phase boundary, i.e. the locus of composition–temperature
points at which solubility in the solid solution phase is lost and coherent precipitates are formed.
We have calculated this line from MC simulations of ECE(σ ) [2] leading to a maximum at
Tc = 295◦C in the phase diagram for xZn = 0.40 (figure 1), in excellent agreement with
experimental values (see the references given in [2]).

In this paper, we apply kinetic MC simulations to the alloy system Al–Zn investigating
the time evolution of the final morphology. Experimental studies of kinetic properties of
precipitates in Al–Zn reveal the following behaviour [26,27]: (i) The distribution of precipitate
shapes changes with ageing time: the longer the ageing time, the less spherical and the more
ellipsoidal the precipitates become. (ii) The width of the distribution of precipitate shapes and
sizes depends on the heat treatment. Lowering the ageing temperature leads to a broadening of
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the size distribution compared with higher ageing temperatures. (iii) After the initial formation
of precipitates within the first few seconds for a given temperature and concentration, the short-
range order parameters of the alloy only show a weak time dependence. In the following, we
show that it is possible to predict, describe, and understand these effects via an atomistic,
first-principles LDA-based cluster expansion [21]. Using our theoretical model, we will study,
as a function of ageing time, (i) the distribution of Zn clusters at different temperatures, (ii) the
number of precipitates, and (iii) the time evolution of the short-range order of the alloy. We
will compare our results with those expected from classical Ostwald ripening which would
predict a t1/3 evolution for the average precipitate diameter.

2. Method

2.1. Cluster expansion of substitutional configurational energies

The energy ECE(σ ) of substitutional configurations is given by a mixed-space cluster expansion
(MSCE) [21]. In this approach, any configuration σ is defined by specifying the occupations
of each of the N lattice sites by an Al atom (spin index Ŝi = −1) or a Zn atom (Ŝi = +1). The
formation enthalpy of any substitutional configuration σ at its atomically relaxed state is then
given by

�HCE(σ ) =
∑

k
Jpair(k)|S(k, σ )|2 +

MB∑

f

Df Jf �̄f (σ ) +
1

4x − 1

∑

k
�E

eq
CS(k̂, x)|S(k, σ )|2.

(1)

The first sum describes all possible pair figures. It is expressed in reciprocal space, thus
affording a converged description of even long-range pair interactions [28]. Here, Jpair(k)

is the lattice Fourier transform of the real-space pair interactions, and S(k, σ ) are structure
factors. The second sum describes many-body (MB) figures, such as triangles, tetrahedra, etc.
Here, Jf is the real-space many-body interaction of figure f , Df stands for the number of
equivalent clusters per lattice site, and �̄f (σ ) are spin products. The last term in equation (1)
describes the constituent strain energy necessary to maintain coherency between bulk Al and
fcc Zn along an interface with orientation k̂. It can be calculated by deforming the bulk elements
(Al and fcc Zn) from their equilibrium lattice constants aAl and aZn to a common lattice constant
a perpendicular to k̂. We see that the first two terms in equation (1) describe atomistically
the ‘chemical energy’ of a configuration, while the third term describes the anisotropic (and
generally anharmonic) long-range strain energies.

We determine {Jpair(k)} and {Jf } by fitting �HCE(σord) to a set of corresponding
enthalpies �HLDA(σord) of 26 ordered (ord) AlnZnm compounds. The sets {σord} include
(among others) superlattices of different Zn compositions x = 0, 0.125, 0.25, 0.33,
0.40, 0.50, 0.60, 0.66, 0.75, 1.0 and layer orientations (001), (110), (111), (201), (311).
These formation enthalpies are calculated within the LDA as implemented by the
pseudopotential plane-wave method [29]. Comparing �HCE with �HLDA for nine ordered
Al–Zn compounds which were not used in the construction of {Jpair(k)} and {Jf } shows an
average prediction error of only 2 meV/atom [2]. This accuracy requires inclusion of up to
20 pair interactions.

2.2. Kinetic MC algorithms

Our kinetic algorithms use very simple approximations: (i) The precipitates are formed by
site-flips only and not by continuous atomic motions. The energies ECE(σ ) before and after
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spin-flips always correspond to geometrically fully relaxed configurations. This is guaranteed
by our MSCE-Hamiltonian of equation (1). (ii) Our model does not have vacancies. (iii) In
order to consider the energy barriers between different configurations, we accept information
from experiment: our jump frequencies, 1/τ0, as a function of temperature T were taken from
the experimental diffusion constant Dexp(T ) via

τ0(T ) = a2
nn

Dexp(T )
, (2)

where ann is the average nearest-neighbour distance between atoms. The experimental
determined function Dexp(T ) was taken from Hatch [4]. It is possible, however, to compute
diffusion coefficients from first-principles, but this will not be done here. Although this
seems to be a very rough approximation, Dexp(T ) contains a real ‘average’ energy barrier
and, therefore, our jump frequency implicitly contains this information too. We will see that
this simple approximation leads to very reasonable results regarding the time evolution of the
precipitate size distribution. It should be noted that this approximation pertains only to the
activation barrier and not the configurational energy, E(σ), given by the MSCE of equation (1).

We constructed two types of algorithm, which we will call ‘algorithm I’ and ‘algorithm II’.
Algorithm I (described here for Al-rich Al–Zn alloys) has the following simple structure:

1. Find all of the N Zn atoms in a random configuration, order them by site indices, and
choose the first Zn atom.

2. Determine how many of its neighbours are Al atoms.
3. Select randomly one of the Al neighbours.
4. If the energy difference δE caused by flipping the two atoms is δE < 0, flip the two

spins, but if δE > 0, flip the two spins with a probability of exp(−δE/kT ). Here, E is
obtained from equation (1). Note that this energy corresponds to the case where all atoms
are relaxed to the (local) minimum of energy at the configuration σ .

5. Repeat steps 2–4 for all Zn atoms.
6. Use equation (2) to transfer 1 MCS into ‘real time’.
7. Go to 1.

In this algorithm, one Monte-Carlo step (MCS) is defined as ‘one trial to jump for each Zn
atom’. The advantages of this algorithm are: (i) Zn atoms are not chosen randomly, but each
Zn atom has the chance to jump once per time step. Therefore, the jumps of different Zn atoms
are as simultaneous as possible. (ii) One MCS represents a constant time interval which allows
a very simple transformation in real time. The disadvantage of this algorithm is that it becomes
inefficient when most of the Zn atoms are already attached to only a few large precipitates.
Then, the jump probabilities become very low (especially for low temperatures), because
Al–Zn possesses clustering tendencies. Zn atoms that are in the interface region between Zn
precipitate and Al matrix will practically never leave the surface of the Zn precipitate. We
find that in the case of Al–Zn, algorithm I works best for temperatures T � 200 K and ageing
times t � 15 min.

An ansatz for a possible solution of this problem could be (a) try cluster algorithms and
(b) force an atom to move. Cluster algorithms (see e.g. [30, 31]) are based on the idea that
forming a cluster consisting of many spins first and flipping them simultaneously is less time
consuming than flipping individual spins. However, such algorithms are not very efficient if
the formation of large clusters is very time consuming by itself, but the probability for flipping
them is very low. In this case, for many formed clusters their flip is rejected. This is exactly
the situation encountered in phase-separating systems like Al–Zn.

The main problem of forcing a Zn atom to leave a precipitate surface (method (b)) is
that this Zn atom will most likely return to the precipitate surface in the next MCS. If we
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forbid this second step in the simulation, we would be confronted with a non-Markovian
process demanding a complex reconsideration of the function between experimental diffusion
constant and the computer time unit ‘MCS’. Furthermore, the following question arises: for
how many MCSs the ‘returning’ event has to be forbidden. Even if we do not allow for a
certain Zn atom to jump back to the precipitate surface in MCS number j , from which it was
removed in MCS number j − 1, it is very likely that this ‘returning’ event will happen in MCS
number j + 1. The best solution for the above problem seems to be an algorithm where the
chosen Zn atom is forced to jump without destroying the Markovian process. This is realized
in the following algorithm—algorithm II:

1. Find all of the N Zn atoms in a random configuration and order them by site indices.
2. Determine all the possible jumps S for each of the N Zn atoms (for an fcc lattice

Smax = 12N , if all Zn atoms would only have Al atoms as neighbours).
3. Calculate the energy change δE(i) for each allowed jump for all Zn atoms (i = 1, . . . , S).
4. If δE(i) > 0, calculate Wi = (1/τ0) exp(−δE(i)/kT ). If δE(i) < 0, calculate

Wi = 1/τ0.
5. Calculate Pi = Wi/Wtot, where Wtot = ∑S

i=1 Wi .
6. Select randomly one jump i from the S possible events according to their probability Pi .
7. Calculate the new total simulation time tMCS = tMCS−1 + 1/Wtot. (Note that Wtot =∑S

i=1 Wi is not a constant, but is different for each MCS. So, recording tMCS after each
MCS is a ‘must’.)

8. Recalculate all δE(i)’s.
9. Go back to step 4.

The efficiency of this method strongly depends on the question of whether the calculation of
the new δE(i)’s (step 8) is time intensive. An accepted spin-flip demands a recalculation of
S(k, σ ) in equation (1). However, as shown by Lu et al [32], the MSCE method allows one to
avoid the necessity of recalculating S(k, σ ) after each move by directly calculating the change
in Jpair(k)|S(k, σ )|2 for each move in real space [32]. In practice, algorithm II is clearly slower
for short ageing times and high temperatures, i.e. where nearly every flip is accepted. The
advantage of algorithm II lies in the simulation of long ageing times. As we can see from
step 4 of the algorithm description, now a single MCS is no longer a constant real time unit,
but depends on the corresponding probability Wtot. In practice, one MCS can now represent
real times of 1/1000 s up to many minutes. As a rough rule, we can conclude that algorithm II
is to be preferred, if one MCS corresponds to a real time of about 1 s.

It should be mentioned that in algorithm II a single MCS corresponds indeed to only one
flip of one Zn atom and not one trial-flip of each Zn atom. Since flip channel i is always
chosen randomly and we mostly consider a large number of Zn atoms (e.g. 1000–15 000), the
probability that the same Zn atom is chosen in MCS i, when it was already chosen in MCS
i − 1, is very small. So, due to the large system size, it is not necessary to forbid any kind of
jumps between Al and Zn atoms, i.e. we do not have to give up the restriction that the algorithm
should be based on the Markovian process. The concept of algorithm II is very similar to that
of the so-called ‘residence-time algorithm’ [11], where also one transition is performed at each
MCS. Different from the work of Soisson et al [33], who applied such an algorithm to study
Cu precipitation in Fe–Cu alloys, our model does not consider any vacancy jump mechanism.
Also, in our calculation the configurational part of the energy is treated with LDA accuracy.
Our present kinetic simulations are restricted to nearest-neighbour jumps only. This is not
generally justified, although it was already successfully applied in the literature (see e.g. [18]).
For certain applications, a necessary extension to second, third, and further neighbour jumps
may be needed.
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Thermodynamic-MC Kinetic-MC

Figure 2. Comparison between equilibrium configurations for an Al0.92Zn0.08 alloy resulting from
thermodynamic and kinetic MC simulations (only Zn atoms are shown).

Both algorithms fulfil the condition of detailed balance. Although the kinetic MC
algorithms are not efficient for studying equilibrium configurations (since they are much slower
than a simple thermodynamic MC algorithm), for higher temperatures it is still possible and,
therefore, a reasonable test to check if the kinetic MC code leads within statistical accuracy to
the same equilibrium configurations obtained by standard equilibrium MC. The code we used
for studying thermodynamic properties is a simple Metropolis algorithm allowing for flipping
of pairs of Al and Zn atoms in arbitrary distance (i.e. does not simulate a realistic kinetic
process) in order to reach the equilibrium configuration as fast as possible:

1. Select randomly one Zn and one Al atom.
2. Calculate the energy difference δE caused by flipping the two atoms. If δE < 0, flip the

two spins, but if δE > 0, flip the two spins with a probability of exp(−δE/kT ) (again,
E is obtained from equation (1)).

3. Go to 1.

We made such tests for a number of different MC cells and concentrations. As an example
for the kinetic MC versus thermodynamic MC comparison, figure 2 shows the result for an
Al0.92Zn0.08 alloy, embedded in a 30 × 30 × 30 MC cell at T = 300 K (only Zn atoms are
shown). For xZn = 0.08 the chosen temperature of 300 K is below the coherent miscibility line
(figure 1), so a precipitate should occur. The agreement between the predicted precipitate shape
in kinetic MC and thermodynamic MC seen in figure 2 is very good. It should be mentioned
that the computer time needed for reaching the equilibrium configuration is about a factor of
30 longer for the kinetic than for the thermodynamic MC algorithm. For a more quantitative
comparison, table 1 gives the first ten Warren–Cowley short-range order parameters αlmn (for
the definition of αlmn, see section 4) as obtained by the kinetic and equilibrium MC simulations.
The agreement is excellent.

3. Precipitate growth and precipitate size distribution as
a function of ageing time

We chose an Al0.932Zn0.068 alloy possessing a critical temperature of Tc ≈ 330 K. The MC cell
used consists of 56 × 56 × 56 sites (total of 175 616 atoms) which contains a total of 11 942
Zn atoms. Figure 3 shows the time evolution of the precipitate configurations at T = 250 K.
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Table 1. Calculated SRO parameters (equation (4)) of an Al0.92Zn0.08 alloy (T = 300 K) via
kinetic and thermodynamic MC. The values correspond to the configurations shown in figure 2.

(lmn) αthermo
lmn αkin

lmn

000 1.000 1.000
110 0.704 0.700
200 0.646 0.628
211 0.615 0.601
220 0.590 0.586
310 0.568 0.566
222 0.536 0.519
321 0.527 0.511
400 0.519 0.503
330 0.499 0.477
411 0.502 0.478

(c)   t = 45 sec

(f)  t = 2 min

(b)   t = 20 sec

(e)  t = 3 min

(a)  t = 5 sec

(d)  t = 5 min

Figure 3. Zn precipitates in Al–Zn as a function of ageing time. With increasing t , the average
size of the precipitates increases while their number decreases (only Zn atoms are shown).

We see that (i) already after 5 s, small Zn precipitates are visible with less than 10% of the Zn
atoms remaining in solution, and (ii) with increasing ageing time, the number of precipitates
decreases while their average size increases. Indeed, the number of precipitates decreases from
Np = 58 at t = 5 s down to Np = 10 at t = 5 min.

In order to see the influence of the ageing temperature on the precipitate size distribution,
figure 4 shows configurations for two different temperatures and ageing times. We see that, for
a constant ageing time, (a) the number of precipitates is larger for the lower ageing temperature,
and (b) the average size of precipitates is larger for the higher ageing temperature. In order
to quantify these observations, figure 5 gives a logarithmic presentation of the number of
precipitates N versus the ageing time t for three different temperatures. In all cases, the log N

versus log t plot shows a slope close to −1 (given by the dashed line) being expected for
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T = 200 K T = 300 K

t = 30 sec

t = 1 min

Figure 4. Zn precipitates in Al–Zn for two different ageing temperatures and times. For a constant
ageing time, a higher ageing temperature leads to larger, but less, precipitates (only Zn atoms are
shown).
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Figure 5. Logarithmic plot of number of precipitates versus ageing time in an Al0.932Zn0.068 alloy
(11 942 Zn atoms) for three different temperatures. The slope of all three curves is very close to
−1, i.e. the expected value for classical Ostwald ripening (- - - -).

classical Ostwald ripening. The fluctuations within each individual curve come by the limited
system size. So, e.g. for an ageing temperature of 250 K and an ageing time of 5 min, there are
only ten precipitates left leading to quite poor statistics. Figure 6 displays the ‘mean diameter’,
dm, of all precipitates as a function of ageing time for T = 250 K. Here, dm represents the
diameter of the corresponding sphere having the same volume as the observed precipitate.
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Figure 6. Logarithmic plot of mean precipitates diameter dm as a function of ageing time. The
resulting curve shows a slope of 0.31 very close to 1/3 (- - - -) expected for Ostwald ripening.

It is given by dm = 2rm = 2(ca2)1/3, where c and a are the thickness and length of the
ellipsoidal precipitates, respectively. Again, a logarithmic presentation is used allowing for a
direct determination of the observed slope. We find a slope of 0.31 very close to the 1/3 slope
of classical Ostwald ripening (given by the dashed line in figure 6). So, our result suggests that
the growth process of precipitates in Al–Zn represents an example of Ostwald ripening: smaller
precipitates disappear with increasing ageing time, while larger precipitates appear leading to
an increase of the mean diameter dm via dm ∝ t1/3.

Following figure 6, there is however a clear deviation from the t1/3 kinetics within the first
few seconds (t � 5 s) of ageing time, i.e. when the precipitates are formed. It is very likely
that initial composition fluctuations play an important role in the formation of the ‘seeds’ of
precipitation leading to a two-stage model. A detailed study of this nucleation process demands
future effort. In the framework of this paper, we concentrate on the ripening process of the
precipitates.

Figure 7 shows a distribution of precipitate sizes as a function of ageing time. In this
bar chart presentation, precipitates are defined again by their average mean diameter given by
dm = 2rm = 2(ca2)1/3. We see that: (i) For very short ageing times (t = 10 s), most of the
precipitates are extremely small (dm < 15 Å) and, therefore, possess a very compact shape.
(ii) With increasing ageing time, the average precipitate size increases (note that the scale of
the y-axis (number of precipitates) is different for the different ageing times). Unfortunately,
for t = 5 min our statistics are already pretty poor, because there are only ten precipitates left.
However, the tendency to get larger precipitates with increasing ageing time is still visible.
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Figure 7. Distribution of precipitates for three different ageing times (T = 250 K).

Figure 8 shows the distribution of precipitates as a function of temperature. An ageing time of
t = 30 s was chosen for the comparison. We see that (i) the maximum in the distribution shifts
to higher dm values with increasing ageing temperature, and (ii) lower ageing temperatures
lead to a broadening of the size distribution. Thereby, the size distribution width, �dm, is
55, 40, and 35 Å for temperatures of 200, 250, and 300 K, respectively (again, statistics are
quite poor for T = 300 K, because there are only eight precipitates left). This tendency agrees
with experimental investigations by Ramlau and Löffler [26] using the same Zn concentration
as we did. Unfortunately, a quantitative comparison is not possible, since simulation of an
ageing time of 19 days (used by the authors) would (a) most likely lead to the equilibrium
configuration, i.e. a configuration consisting of one precipitate only caused by the limited
system size in our simulation, so that there is no size distribution, and (b) lead to unreasonably
long computer times of about several months.
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Figure 8. Distribution of precipitates for three different ageing temperatures (t = 30 s).

4. Dependence of SRO on ageing time and temperature

The short-range order (SRO) can be described in terms of the Warren–Cowley SRO parameters
which are given for shell (lmn) by

αlmn(x) = 1 − P
A(B)
lmn

x
, (3)

where P
A(B)
lmn is the conditional probability that, given an A atom at the origin, there is a

B atom at (lmn). The sign of α indicates qualitatively whether atoms in a given shell prefer
to order (α < 0) or cluster (α > 0). The SRO parameter may be written in terms of the pair
correlations as

αlmn(x) = 〈�̄lmn〉 − q2

1 − q2
, (4)

where q = 2x − 1 and 〈�̄lmn〉 is the pair correlation function for shell (lmn). In diffraction
experiments, the portion of diffuse scattering due to SRO is proportional to the lattice Fourier
transform of αlmn(x):

α(x, k) =
nR∑

lmn

αlmn(x)ei · k · Rlmn . (5)
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Figure 9. Time dependence of the first five Warren–Cowley SRO parameters (T = 250 K).
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Figure 10. Time dependence of α110 for three different ageing temperatures. The temperature
T = 373 K is above the coherent miscibility line.

Figure 9 shows the values of the first five SRO parameters αlmn as a function of ageing
time (for T = 250 K). The figure corresponds to the real-space images shown in figure 3.
The SRO parameter shows a significant increase during the first few seconds of the ageing
process. This is in agreement with the fact that already after an ageing time of t = 5 s for the
chosen temperature (T = 250 K), more than 90% of all Zn atoms are parts of Zn precipitates
(figure 3) and, therefore, the configuration shows a strong clustering of Zn atoms. After
the first few seconds, the increase rate of αlmn is reduced. Unlike the earlier growth stage,
this increase in αlmn is no longer caused by the formation of many new precipitates, but by the
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disappearing of smaller precipitates in favour of larger precipitates (Ostwald ripening). So,
the total interface area of all precipitates between the Al matrix and the Zn atoms on the surface
of precipitates decreases, while the average volume of precipitates increases. In other words,
the system becomes more and more an ideal phase-separating system and, therefore, the αlmn

values increase. Naturally, α110 shows the strongest increase during the first few seconds,
because it is only sensitive to the first nearest neighbours and, therefore, least sensitive to the
morphology of precipitates. This becomes more obvious in figure 10, which shows α110 for
three different temperatures as a function of ageing time. The values of α110 for T = 250 K
and T = 200 K are nearly identical. A clear change in α110 can only be reached if the chosen
ageing temperature is above the critical temperature. As an example, figure 10 also gives the
time dependence of α110 for T = 373 K (≈1.1Tc). Although the chosen parameters correpond
to a point in the solid solution of the phase diagram, the alloy clearly presents a disordered
alloy and not a random alloy, e.g. at t = 100 s, α110(373 K) ≈ 0.34 standing for a strong
nearest-neighbour clustering tendency.

Following the discussion above, the slow increase of the SRO parameter after the initial
formation of precipitates should lead to only a weak time dependence of αlmn. Indeed, in
1989, Haeffner and Cohen [27] studied the SRO order behaviour of Al0.962Zn0.038 as a function
of ageing time via x-ray diffuse scattering. The resulting experimental SRO parameters
(T = 353 K) for two totally different ageing times are given in the second and fourth columns
of table 2: Although the ageing time for sample 2 is 56 times higher (!) than for sample 1, the
resulting SRO parameters for sample 2 are only 20–50% higher than those for sample 1. For a
quantitative comparison, we applied our kinetic MC algorithms to an Al0.962Zn0.038 alloy and
simulated ageing times of t = 3 h and t = 168 h. The simulation of an ageing time of t = 168 h
took about five weeks CPU on a Silicon Graphics Origin 2000. The comparison is given in
table 2 together with the SRO parameter of the corresponding equilibrium configuration. We
see that, especially for the shorter ageing time (t = 3 h), the theoretical values of the first four
shells are clearly larger than in experiment, while the agreement is excellent for higher shells
((222), (321), (400), etc). In principle, this observation also holds for the second sample
(t = 168 h), although the agreement with experiment in the lower shells is better than for
the first sample (t = 3 h). This could be a hint that our theoretical decrease in αlmn is too
strong at the early phase of the simulation. Other reasons could be the following: (i) The
consideration of only nearest-neighbour jumps is not sufficient. (ii) The experimental values
possess a large error. Nevertheless, even for the long ageing time of 168 h the configuration
cannot be described by the equilibrium configuration. This becomes obvious by considering
the SRO parameters of the equilibrium configuration given in the last column of table 2. They
are nearly a factor of two higher than those for an ageing time of 168 h, emphasizing the fact
that a description by thermodynamic arguments would not be sufficient.

5. Summary

We have investigated the time evolution of the precipitate size and shape distribution in
Al–Zn via an atomistic quantum mechanical approach, known as ‘mixed-space cluster
expansion’ [21], connected with simple kinetic MC algorithms. The change in energy between
different configurations is treated exactly within the MSCE, considering all other atoms of the
MC cell, but the activation barrier is simulated by the experimental diffusion constant as a
function of temperature. Although this rough approximation does not allow us to describe
the path of an individual Zn atom, it should be a very good approximation for the description
of the time evolution of the precipitate distribution. We find that: (i) The growth of Zn
precipitates in Al-rich Al–Zn alloys follows, after the first few seconds, a dm ∝ t1/3 power law
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Table 2. Experimental SRO parameters of an Al0.962Zn0.038 alloy given by Haeffner and Cohen [27]
at T = 353 K for t = 3 h and t = 168 h and comparison to kinetic MC values (this work). The
right column gives the calculated parameters for the corresponding equilibrium configuration.

α
exp
lmn αtheo

lmn α
exp
lmn αtheo

lmn αtheo
lmn

(lmn) (t = 3 h) (t = 3 h) (t = 168 h) (t = 168 h) (equil.)

000 0.967 1.000 1.113 1.000 1.000
110 0.176 0.309 0.244 0.357 0.569
200 0.110 0.282 0.154 0.296 0.512
211 0.094 0.184 0.141 0.231 0.473
220 0.086 0.154 0.125 0.198 0.449
310 0.077 0.114 0.105 0.168 0.422
222 0.072 0.100 0.099 0.133 0.389
321 0.070 0.074 0.090 0.122 0.377
400 0.053 0.077 0.070 0.103 0.368
330 0.048 0.051 0.076 0.090 0.347
411 0.058 0.057 0.072 0.091 0.351
420 0.054 0.047 0.070 0.080 0.336

and, therefore, represents an example of classical Ostwald ripening. (ii) The distribution of
precipitates shows a temperature dependence: the higher the ageing temperature, the smaller
the distribution width. (iii) The SRO parameters show a dramatic increase during the first few
seconds of the ageing process caused by the formation of precipitates. Compared to this initial
increase of the αlmn values, the increase caused by the following change in the distribution by
Ostwald ripening is weak. Nevertheless, our quantitative comparison between experimental
and theoretical SRO parameters shows that even after an ageing time of t = 168 h, it is not
possible to describe the corresponding structure by use of the equilibrium structure: the found
SRO parameters are up to a factor of two smaller than those corresponding to the equilibrium
configuration.
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