
Acta mater. 48 (2000) 4007–4020
www.elsevier.com/locate/actamat

PREDICTING THE SIZE- AND TEMPERATURE-DEPENDENT
SHAPES OF PRECIPITATES IN Al–Zn ALLOYS
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Abstract—We study theoretically the size versus shape versus temperature relation of precipitates in Al–Zn
via quantum-mechanical first-principles simulations. Our parameter-free model, based on a mixed-space clus-
ter expansion, allows the prediction of the experimentally observed size and temperature dependences of the
precipitate shape. We find that aging experiments can be explained in terms of equilibrium shapes. The
precipitates change from a nearly spherical to a more ellipsoidal/hexagonal shape with increasing size and
decreasing temperature. They always flatten in the [111] direction, which can be interpreted as a consequence
of a mechanical instability of face-centered cubic Zn when rhombohedrally distorted along [111] and a strong
anisotropy of the chemical energy. The excellent agreement between experiment and theory shows that our
model can be used to quantitativelypredict precipitate shapes and sizes. 2000 Acta Metallurgica Inc.
Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Precipitates are formed by quenching a homogeneous
solid solution into a two-phase region of the phase
diagram, followed by sample aging [1–3]. Coherent
precipitation (i.e., with no dislocations between pre-
cipitate and matrix) often occurs when the aging tem-
perature is below the coherent phase boundary. The
identity of the phases in the two-phase region deter-
mines the geometrical and chemical properties of the
precipitates. In Al–Zn, the two-phase region corre-
sponds to elemental Al and Zn, so that precipitates
formed from the Al-rich solid solution consist of only
Zn atoms. In Al–Cu, the two-phase region corre-
sponds to Al and Al3Cu, so that the precipitate
observed is a compound ([1]; for a review of the con-
troversial results on coherent precipitation in Al–Cu,
see theScripta MetallurgicaViewpoint Set, edited by
Gerold [4]). Precipitates are important for a few
reasons. (1) In metal alloys, they act as obstacles for
dislocations. This effect is responsible for strengthen-
ing and hardening of metal alloys. Sincecoherentpre-
cipitates involve no dislocations between precipitate
and matrix, they are very effective at strengthening
in alloys [1–3]. (2) In semiconductor alloys, precipi-
tates lead to profound changes in their optical proper-

* To whom all correspondence should be addressed.

1359-6454/00/$20.00 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
PII: S1359-6454(00 )00209-3

ties [5, 6], including changes of band gaps and polar-
ization.

The interesting feature of the Al–Zn system is the
existence of a solid solution over a broad temperature
and concentration regime [7–10] (indeed, of all the
elements, Zn has the largest solid solubility in Al with
a maximum of 66.4 at.% Zn [11]). Since Al–Zn
belongs to the class of heat-treatable alloys, knowl-
edge of the shapes and sizes of the precipitates is
essential for understanding the extent of strengthen-
ing. Indeed, there are many experimental studies of
shape versus size of Al–Zn precipitates [12–21] using
electron microscopy [transmission electron
microscopy (TEM), high-resolution electron
microscopy (HREM)] [12–15, 18], small-angle neu-
tron scattering (SANS) [16], X-ray diffuse scattering
(XDS) and small-angle X-ray scattering (SAXS) [13,
20, 21]. Experimental studies of precipitates in Al–
Zn exhibit a broad series of coherent face-centered
cubic (fcc) shapes, including spherical Guinier–
Preston zones [2, 10], ellipsoidal and partially coher-
ent platelets (with coherency along [111]) [13, 15,
17–19]. These results, summarized in Fig. 1, agree on
the following points.

1. The precipitates show a deterministic shape versus
size relation: very small precipitates possess a
more spherical shape (c/a < 1 in Fig. 1) until they
reach a critical radius of about 15–25 A˚ . Then, as
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Fig. 1. Experimentally observed size versus shape relation in Al–Zn at room temperature (RT). Data are taken
from different references (given in the figure).rm = (ca2)1/3 is the radius of the associated sphere having the

same volume as the corresponding precipitate.

the size increases, they become more ellipsoidal
(smallerc/a values).

2. The precipitates show a shape versus temperature
relation: in general, the transition from the nearly
spherical shape into the more ellipsoidal shape
occurs at smaller precipitate sizes the lower the
applied aging temperature.

3. The ellipsoidal precipitates always have their short
axis parallel to the [111] direction.

The last feature allows the definition of ac/a ratio
and, therefore, a quantitative measure for the descrip-
tion of the precipitate shape: whilea represents the
long axis of the ellipsoid (perpendicular to [111]),c
is its thickness (parallel to [111]). The size is given
by rm = (ca2)1/3, denoting the radius of the associated
sphere having the same volume as the correspond-
ing precipitate.

Although these experiments use completely differ-
ent aging times, the distribution of points in Fig. 1 is
deterministic; i.e., for a fixed aging temperature, the
c/a ratio for a given precipitate size has a unique
value. For samples aged at room temperature the ratio
c/a is nearly 1 up to aboutrm = 2 nm. Then, thec/a
ratio starts to decrease until it reaches a value of about
0.3 at rm = 6 nm. For a given sizerm, c/a can only
be changed by lowering the aging temperature: the
lower the aging temperature, the smaller is the
resultingc/a ratio. This observation leads to the con-
clusion that the size–shape relation of precipitates

does not depend on the aging time within experi-
mental accuracy and, therefore, isnot controlled by
kinetics. Atomistically, this means that each individ-
ual precipitate represents a local equilibrium con-
figuration. This is because atoms in a given precipi-
tate exchange much faster with each other than with
the other precipitates. Consequently, a theoretical
model for describing the shape versus size and tem-
perature relation in precipitates can be based onther-
modynamics.

In principle, one could determine the shape versus
size versus temperature of a precipitate if one optim-
izes the free-energyF(rm; T) of a given sizerm at a
given temperatureT with respect to all possible
shapes. Technically, if one knew how the formation
enthalpyDH(s) depends on the configurational vari-
ables, this could be done via Monte-Carlo simulation
of an alloy box at a given (rm; T). The most detailed
way to describe configurational variables is atomistic;
e.g., a configurations is a list of “spin variables”
{ Ŝi, i = 1, …, N} denoting whether sitei is occupied
by an A atom (Si = 2 1) or a B atom (Si = + 1).
Thus, the problem is to determine the function
DHf(s). Again, in principle, this can be done quan-
tum-mechanically; i.e., evaluate

DHf(s) = Etot(alloy; s) 2 xEtot
A (aA) 2 (1 (1)

2 x)Etot
B (aB),

whereEtot(alloy; s) = kCuĤ(s)uCl/kCuCl andĤ is the
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system’s Hamiltonian.EtotA and EtotB (aB) are the total
energies of bulk elementsA andB at the equilibrium
lattice constantaA and aB, respectively. While this
plan is straightforward, most previous approaches to
this problem have used instead a highly simplified,
non-quantum-mechanical model ofDHf(s) (note,
however, Refs. [22, 23]). The simplifications are cent-
ered around truncating the range of pair interactions
[20], using macroscopic quantities to define “effec-
tive” atomistic quantities [24, 25], or applying con-
tinuum approaches in the context of empirically para-
metrized free-energy functionals [3, 26, 27]. As an
example, Lee [28] used an interfacial energy that is
independent of local strain and crystallographic orien-
tation for his studies of the coherency strain via a
discrete atom method. In this model, the interfacial
energy of each interface atom is defined by its number
of unlike bonds. For an interface, e.g., in the [111]
direction (three unlike neighbors per atom) and in the
[110] direction (i.e., an interface parallel to the [111]
plane), the difference in the resulting interfacial
energy is given by a factor of 1.29. However, our
calculation of the interfacial energies for different
directions atT = 0 using our model based on the
local-density approximation (LDA) gives a 6.30 times
larger interface energy for [110] than for [111] inter-
face atoms. Moreover, we see a strong orientation
dependence of the interfacial energy; i.e., small pre-
cipitates cannot be correctly described by a constant
value for the interfacial energy. This example makes
it clear that a quantum-mechanical approach is essen-
tial for describing precipitate shapes in systems which
show a strong anistropy in the interfacial energy. An
earlier quantum-mechanical study for the Al–Li sys-
tem used a well-defined model supercell for the
matrix–precipitate interface to predict the matrix–pre-
cipitate interfacial free-energy [29], but this ansatz
does not allow a study of the complete shape of a
precipitate, sometimes consisting of many thousands
of atoms. Another access for theoretical studies of
precipitates are fitting procedures, e.g., analyses of
small-angle scattering patterns by non-linear fitting to
a theoretical scattering curve based on a hard-sphere
liquid model [30, 31]. These studies always need
experimental input data and the particle shape found
always represents an average, and does not give the
shape of an individual precipitate. Earlier theoretical
investigations by Khachaturyan and co-workers [32,
33] have shown (by use of a two-dimensional model)
that the equilibrium shape of a precipitate at a given
volume is determined by a balance between chemical
free-energy (related to the inhomogeneous compo-
sition distribution) and the elastic energy. Recently,
Rubin and Khachaturyan [24] investigated the
dynamics and morphology of coherent microstruc-
tures in Ni–Al alloys. Separating the free-energy into
a stress-free part and the elastic energy, they con-
cluded that the observed [100] faceting of precipitates
in Ni–Al is caused by strain. For their three-dimen-
sional model they took necessary input parameters

like crystal lattice misfit and elastic moduli from dif-
ferent experimental measurements (see references in
Ref. [24]).

In contrast to empirical methods, our group has
developed instead a fully atomistic, quantum-mechan-
ical formulation of DH(s) which is both accurate
(being based on first-principles calculations) and fast
(so it can be used in Monte-Carlo simulations). It not
only includes anisotropies in the interfacial energies,
but also takes inhomogeneous elastic energies as well
as anharmonic elasticity into consideration [34]. The
idea is to expandDH(s) linearly into a sum of ener-
gies characteristic of atomic figures such as pairs, tri-
angles, tetrahedra, and determine these energies from
a set of first-principles calculations on prototype
ordered compounds. ThisLinear Expansion in Geo-
metric Objects approach [35] has been already
applied to predict theT = 0 ground-state structures of
many alloy systems [36, 37], the finite-temperature
enthalpy and short-range order of alloys [38–41], and
recently the precipitate shapes in Al–Cu [22] and Al–
Mg [23].

In the present paper, we shall show that precipitate
shape versus size versus temperature in Al–Zn alloys
(Fig. 1) can be correctly described using this quan-
tum-mechanicalparameter-freemodel.

The paper is organized as follows. First (Section 2),
the theoretical model is introduced and the theoretical
procedure explained. Next (Section 3), our calculated
precipitate shapes are compared with experimentally
observed forms of precipitates as a function of size
and temperature. In Section 4, we describe how the
[111] “flattening” of precipitates is correlated with a
mechanical instability of fcc Zn. Furthermore
(Section 5), it is shown how the size versus shape
relation atT = 0 K can already be explained qualitat-
ively by energy calculations for simple model precipi-
tates. Finally (Section 6), we discuss the size versus
shape versus temperature relation by separating the
total energy into physically motivated pieces such as
strain and chemical energy.

2. THEORETICAL MODEL AND CONCEPTS

The basis of our approach is amixed-space cluster
expansion[35, 42], known asLinear Expansion in
Geometric Objects. It allows one to calculate the for-
mation enthalpyDHf(σ), equation (1), of any arbitrary
atomic configuration–even those consisting of more
than 100,000 atoms—including energy lowering due
to relaxations. Formulation of the method requires
T = 0 formation enthalpies of 20–30 ordered com-
poundsApBq consisting ofonly 2–16 atomsper unit
cell. The formation enthalpyDHf(ApBq, s) of such
orderedApBq bulk compounds is defined as the energy
gain or loss with respect to the bulk constituents at
their equilibrium lattice constants:

DHf(ApBq; s) = Etot(ApBq, s) 2 xEtot
A (aA) (2)

2 (1 2 x)Etot
B (aB).
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Here,s denotes the type of ordered structure, andaA

andaB are the equilibrium lattice constants of the bulk
elementsA and B. Etot

A (aA) and Etot
B (aB) are the total

energies ofA and B, respectively. The formation
enthalpies of such small unit-cell structures can be
easily calculated within the local-density approxi-
mation (LDA) [43–48]. In this very successful
approximation, the energy density is approximated by
the corresponding expression of thehomogeneous
electron gas with the replacement of the constant den-
sity n0 by the local densityn(r) of the actualinhomo-
geneoussystem. The pseudopotential method was
applied for the calculations [49, 50]. We used pseudo-
potentials of Troullier–Martins type [51] in the Klein-
man–Bylander form [52]. They were carefully tested
and successfully applied in an earlier Al–Zn study
[41].

The mixed-space cluster expansion (CE) is an
efficient and accurate method for calculating ground
states, mixing enthalpies, superlattice energies, phase
diagrams, short-range order (see, e.g., Refs. [34, 37,
40]) and, recently, precipitates [22, 23]. Any con-
figurations is defined by specifying the occupations
of each of theN lattice sites by an Al atom (Ŝi =
2 1) or a Zn atom (Ŝi = + 1). The formation enthalpy
of any configurations is then given by

DHCE(s) = O
k

Jpair(k)uS(k, s)u2 + OMB

f

DfJfP̄f(s) +(3)

1
4x 2 1O

k
DEeq

CS(k̂, x)uS(k, s)u2.

The first term includes all pair figures, whereJpair(k)
andS(k, s) are lattice Fourier transforms of real space
interactions and spin-occupation variables. The
second sum represents many-body interactions and
runs over symmetry-inequivalent clusters consisting
of three or more lattice sites.Df is the number of equi-
valent clusters per lattice site, andP̂f(s) are structure-
dependent geometrical coefficients. The last sum-
mation involves theconstituent strain energy, DEeq

CS,
which is defined as the strain energy of bulk Al and
fcc Zn required to maintain coherency along an inter-
face with orientationk̂. DEeq

CS can be calculated by
deforming the bulk elements (Al and fcc Zn) from
their equilibrium lattice constantsaAl and aZn to a
common lattice constanta perpendicular tok̂.

Our formalism does not obtain the interaction ener-
gies from small-amplitude waves as done in Ref. [3],
but, instead, we use LDA total energies of ordered
structures (i.e., large concentration waves) for fitting
the expansion. Also, unlike earlier models using the
Landau stress-free free-energy functional [24, 33]: (1)
our model includes explicitly all chemical interactions
(e.g., charge transfer) and a large number of pair and
multibody interactions, which is necessary for a
detailed quantitative description of experimentally

observed physical properties; and (2) the model is
parameter-free, i.e., no experimental results are used
as input parameters.

For finite-temperature studies, the CE Hamiltonian
is combined with Monte-Carlo (MC) simulation
based on the Metropolis algorithm. We used the
canonical ensemble with fcc lattices containing from
27,000 up to 216,000 atoms. The model was recently
applied to calculate the coherent fcc miscibility gap
in Al–Zn by annealing the solid solution, lowering
the temperature, and looking for the temperature at
which the specific heat shows a maximum [41]. The
ability to correctly predict the coherent fcc miscibility
line in the phase diagram represents an important pre-
requisite for the precipitate studies. The coherent
phase boundary is depressed below the incoherent
miscibility gap due to the elastic strain associated
with maintaining coherency between precipitate and
matrix [53–55]. Experimental measurements of the
top of the coherent miscibility gap from direct
measurement techniques, such as X-ray diffraction,
TEM studies and neutron scattering studies [56–58],
give values from 318 to 328°C for compositions of
about 37–40% Zn in good agreement with our calcu-
lations (TC = 295°C for 40% Zn; for details, see Ref.
[41]). Precipitate shapes were calculated for precipi-
tates consisting ofNZn = 272 up toNZn = 11,656 Zn
atoms in the following way. A large enough (see
below) Monte-Carlo cell is chosen to guarantee that
the precipitate shape formed is not influenced by the
cell boundaries. We used periodic boundary con-
ditions with the constraint that boundary sites are
always occupied by Al atoms. These atoms are
“frozen”, i.e., cannot flip their identity. This restric-
tion has the advantage that precipitates cannot grow
over the cell boundaries. The number of sites in the
cell and the chosen number of Zn atoms,NZn, auto-
matically define the compositionx of the alloy
Al1 2 xZnx. The critical temperatureTC(x), where the
precipitation of Zn occurs, is known from our earlier
calculated coherent phase boundary [41]. Starting
from a random configuration for Al1 2 xZnx at a tem-
perature well above the coherent phase boundary, the
precipitate is formed by MC annealing to tempera-
tures below the coherent phase boundary. At the end
of the simulation all precipitates coalesce into one
precipitate representing the equilibrium configuration
for a given temperature and concentration. Typically,
the temperature is lowered in 10 K steps. It is essen-
tial to ensure that the shape of the precipitate does
not depend on the selected size of the MC cell. For
everychosen number of Zn atomsNZn, the indepen-
dence of precipitate shape atT→0 K resulting from
MC annealing on the cell size was tested by using
different MC cells. As an example, Fig. 2 compares
the resulting shapes of a precipitate containing
NZn = 2175 atoms, using two different MC cells
(30 × 30 × 30 and 40× 40 × 40). We see that the two
shapes possess practically the samec/a ratio.

Fig. 3 illustrates the results of our MC simulation
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Fig. 2. Dependence of the equilibrium precipitate shape on the size of the Monte-Carlo cell (only Zn atoms
are shown).

of an Al0.966Zn0.034 alloy containing NZn = 918 Zn
atoms as a function of temperature (only Zn atoms
are shown). We start from a temperature far above
(here,T = 2TC) the critical temperatureTC to ensure
presence in the solid solution of the phase diagram.
The equilibrium configuration at this temperature rep-
resents a disordered alloy. The precipitate is formed
during annealing belowTC, until for T→0 all Zn
atoms are part of the formed precipitate.

3. EQUILIBRIUM SHAPES OF PRECIPITATES

Applying the concept described in Section 2, we
calculated the shapes of precipitates in Al–Zn for dif-
ferent numbers of Zn atoms. Fig. 4 shows a selection
of precipitates for different temperatures belowTC

and different sizes. It can be seen that: (1) precipitates
become more ellipsoidal/hexagonal and well-ordered
with decreasing temperature; (2) precipitates flatten
with increasing size; and (3) the short axis is parallel
to the [111] direction. This is visible best in the
middle bottom picture. This preferred orientation can
be interpreted as a consequence of two effects: a
mechanical instability of fcc Zn and a strong ani-
sotropy of the chemical energy of the system as dis-
cussed below in Section 4.

For a quantitative comparison of calculated and
experimental shapes, we determined thec/a ratios of
precipitates (c and a are shown schematically in the
bottom right picture of Fig. 4). This determination
allows a calculation of the mean radiusrm = (ca2)1/3.
The experiment versus theory comparison of the
resultingc/a ratios as function ofrm is shown in Fig.
5 for two different aging temperatures (T = 300 K

and T = 200 K). The theoretical results are given by
solid lines. For both temperatures, the agreement
between our simulations and experimental measure-
ments is excellent. This demonstrates the predictive
power of ourthermodynamicmodel in describing the
size versus shape versus temperature relation of pre-
cipitates in Al–Zn.

4. WHY ARE THE AL–ZN PRECIPITATES
ELONGATED ALONG [111]?

The experimentally observed and predicted (Fig. 4)
“flattening” in [111] can be interpreted as a conse-
quence of an unusual instability of fcc Zn. Fig. 6 com-
pares the LDA-calculated total energies of fcc Zn that
is uniaxially distorted along the [100] and [111] direc-
tions. The calculation is volume-conserving; i.e., the
in-plane lattice constantsa are varied, while the third
lattice constantc is chosen so as to maintain the con-
stant volume of the undistorted unit cell. Here,
c/a = 1 represents the undistorted fcc state. We see
that distortions along the [100] direction have an
energetic minimum atc/a = 1 (the ideal fcc cell), dis-
torting fcc Zn in the [111] direction leads to a new
minimum aroundc/a = 1.15 lying 2 5.5 meVbelow
the energy level of the ideal undistorted fcc Zn unit
cell. Thus, unlike other fcc-based Al alloys (like Al–
Cu), in Al–Zn the [111] direction is the elastically
softest direction over the whole concentration regime.
Besides the strain, the formation enthalpy of any con-
figuration is controlled by the chemical nature of the
atoms, as will be discussed in Section 6. As we have
shown earlier [41], for Al–Zn the chemical energy
shows a strong anisotropy, being lowest for the



4012 MÜLLER et al.: PREDICTING PRECIPITATE SHAPES

Fig. 3. Equilibrium configurations of an Al0.966Zn0.034 alloy from Monte-Carlo simulations above and below
TC, only Zn atoms are shown. Starting from a random configuration the Zn precipitate (NZn = 918) is formed

during careful annealing below the critical temperatureTC(x) given by the coherent fcc miscibility gap.

ordered AlpZnq compounds whose layers are oriented
along the [111] direction. Consequently, we find [41]
that such [111] superlattices show unusually stable
formation enthalpies. For example, the Al3Zn3 super-
lattice along [111] has a formation enthalpy of only
DHf = + 2.8 meV/atom [41], while [001]-oriented
structures are much higher in energy. The conse-
quence for the formation of precipitates is now obvi-
ous: in no direction other than [111] are deformations
so low in energy. Therefore, the “flattening” of pre-
cipitates in the [111] direction evident in Fig. 4 is
caused by the extremely small [111] strain in Al–Zn
in combination with a strong anisotropy of the chemi-
cal energy.

It is noteworthy that thec/a ratio (with respect to
ideal close packing) at which the fcc Zn total energy
has a minimum is practically identical to thec/a ratio
in hexagonal close-packed (hcp) Zn (shown in Fig. 6
as a hexagon). Experimentally, hcp Zn has an anom-
alously largec/a ratio of 1.15 (with respect to ideal
close packing). This anomaly of hcp Zn has been the
subject of a number of earlier investigations (e.g.,
Refs. [59, 60]). The observation of the largec/a value
in fcc Zn (Fig. 6) suggests that the physical mech-
anism that is responsible for the anomalousc/a ratio
of hcp Zn could be the same as that causing the insta-
bility of fcc Zn. A detailed discussion about the insta-
bility of fcc Zn can be found in Ref. [41].
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Fig. 4. Dependence of calculated coherent fcc Zn precipitate shape on the number of Zn atoms and temperature
in Al–Zn alloys. The bottom right marks thec- anda-axes of the precipitate, which can be used for a quantitat-

ive comparison to experimental data (only Zn atoms are shown).

Fig. 5. Comparison of size versus shape relation of precipitates in Al–Zn between our calculations and experi-
mental results for two different temperatures.rm = (ca2)1/3 is the radius of the associated sphere having the

same volume.
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Fig. 6. Volume-conserving first-principles total energy calculations of fcc Zn deformed along the (100) and
(111) directions. The energy differences caused by distortions along (100) and (111), as well as for hcp Zn,
are always given with respect to the undistorted fcc lattice. The energy of hcp Zn is denoted as an open

hexagon.

5. PHYSICAL ANALYSIS OF THE
COMPUTATIONAL RESULTS

In order to shed light on the predicted size-depen-
dent precipitate shape, we construct model precipi-
tates with agivenshape,c/a, and then evaluate their
energy as function of size. Naturally, our cluster
expansion HamiltonianHCE of equation (3) allows the
calculation of any arbitrary given configuration at
T = 0 K, i.e., without any Monte-Carlo simulations.
The advantage of such an inverse approach is that the
calculated energies of given shapes isolate the influ-
ence of the shape change on the energy, while the
MC simulation changes the shape and the degree of
order (i.e., disorder caused by finite temperature)at
the same time, thus not allowing the effects to be sep-
arated. We chose the ideal sphere (c/a = 1), as well
as hexagons with varyingc/a ratios of 0.85, 0.50 and
0.35, as model precipitates for our calculations and
determined theirT = 0 energies for different numbers
NZn of Zn atoms. The model precipitates are embed-
ded in a 40× 40 × 40 fcc lattice cell. All sites that
are not occupied by the Zn atoms, are occupied by
Al atoms. So, the total number of atoms of any con-
figuration is always 64,000. It should be mentioned
that such a calculation of a formation enthalpy for a
configuration consisting of 64,000 atoms does not
take longer than a few seconds on a workstation or
a modern PC. This short computer time for—in an
atomistic sense—huge systems makes our cluster
expansion a powerful tool.

Fig. 7 shows the dependence of theT = 0 energy
of the four chosen model precipitates on their size.
Only for extremely small precipitates (less than about
90 Zn atoms) does the ideal sphere (c/a = 1.0) rep-
resent the lowest energy atT = 0. With increasing
size, the lowest-energyc/a ratio decreases, until at
about 1600 Zn atoms the model withc/a = 0.35
becomes the energetically favorable shape. The tran-
sition points of the energy curves belonging to differ-
ent c/a ratios are denoted in Fig. 7 by arrows. This
calculation can be used to construct a step function
in the size versus shape diagram, which we show in
Fig. 8. For comparison, the size versus shape curve
obtained via MC annealing forT→0 is also shown.
It can be seen that theT = 0 energies of the model
precipitates with given ratioc/a already predict quali-
tatively the observed size–shape relation:c/a becomes
smaller with increasing size. It should be emphasized
that the models chosen in Fig. 7 are assumed models
and do not represent equilibrium configurations like
the precipitates calculated from MC simulations
(Figs. 2–5). However, these model precipitates clearly
show that the observed size-dependent shape of pre-
cipitates can be already explained in terms ofT = 0
energies.

6. SHAPE-CONTROLLING FACTORS: CHEMICAL
AND STRAIN ENERGY

Until now, the energy of precipitates was always
studied by considering thefull cluster expansion
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Fig. 7. T = 0 energy of precipitate models withassumed c/a value and number of Zn atoms, as obtained from
the cluster expansion.

Fig. 8. Size versus shape step function resulting from the energies in Fig. 7, and comparison with the size
versus shape dependence forT→0 K from Monte-Carlo simulations.

Hamiltonian of equation (3). This does not show
which part of theHCE controls the shape versus size
and temperature relation. Next we separate our cluster
expansion Hamiltonian into two parts, namely the
chemical energy Echem containing all pair and multi-
body interactions (and, therefore, the chemical nature
of the alloy system) and thestrain energy ECS:

DH = Echem(s) + ECS(s). (4)

The physical picture is as follows. We imagine for-
ming a precipitate in two steps. First, we allow only
strain energies to come into play. The energy func-
tional of the strain is
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ECS(s) =
1

4x 2 1O
k

DEeq
CS(k̂, x)uS(k, s)u2. (5)

As described in Section 2,DEeq
CS can be calculated by

the energy change caused by deformation of thepure
bulk elements Al and fcc Zn in well-defined direc-
tions for a common lattice constanta. Consequently
DEeq

CS, and thereforeECS(s), does not include infor-
mation about the strength of chemical interactions
between Al and Zn atoms, but is a function of compo-
sition x and directionk̂ only. Precipitate shapes calcu-
lated by considering onlyECS(s) will therefore reflect
the elastic properties of the alloy system. Second, we
present the case where non-strain (pair and
multibody) interactions to come into play:

Echem(s) = O
k

Jpair(k)uS(k, s)u2 + OMB

f

DfJfP̄f(s). (6)

This part includes all of the information about
strength and importance of different chemical interac-
tions characterized by effective cluster interactions
Jpair andJf. It does not consider the energy necessary
to maintain coherency between the Al and fcc Zn
matrix caused by the lattice misfit; i.e., the precipitate
is able to maintain coherency with the Al matrix for
any arbitrary precipitate size. Precipitate shapes cal-
culated by considering onlyEchem(s) will therefore
reflect the properties of the chemical interactions in
Al–Zn. Naturally, this separation is not unique, but,
as we shall see, it allows us to discuss and understand
by which energetical factors the precipitate shape is
controlled. It should be emphasized that an analogous
decomposition of precipitateshapescorresponding to
the two defined energy parts of the Hamiltonian is
not possible because, unlike the energies, geometrical
shapes arenot additive.

For the following, a fixed precipitate size
(NZn = 11,656) was chosen. The Monte-Carlo cell
consisted of 60× 60 × 60 = 216,000 atoms which
defines the considered alloy as Al0.946Zn0.054. The MC
annealing process was made for three different cases:
(a) using only the consituent strain energyECS, (b)
using only the chemical energyEchem, and (c) using
the full Hamitonian DH for the calculation. The
resulting shapes forT→0 K are shown in Fig. 9. We
see that the strain part [Fig. 9(a)] is platelet-stabiliz-
ing, while the “chemical part” [Fig. 9(b)] leads to a
more spherical shape. The observed equilibrium
shape [Fig. 9(c)] atT = 0 K will therefore be given
by a (non-additive) combination of these two effects.
Recently, similar results were found for atomistic cal-
culations with a model Hamiltonian [23]. Further-
more, we see that the compact shape resulting from
the calculation without the constituent strain, Fig.
9(a), possesses interfaces that are oriented in one of

Fig. 9. Precipitate shape atT→0 K from Monte-Carlo calcu-
lations using (a) only the constituent strain energyECS, (b) only
the “chemical” energyEchem and (c) the full Hamiltonian
ECS + Echem. While the strain part leads to a platelet, the chemi-
cal interactions promote a nearly spherical precipitate (only Zn

atoms are shown).

the four [111] directions. As mentioned Section 4,
this preference is a consequence of a strong ani-
sotropy of the chemical energy for Al–Zn (for details,
see Ref. [41]). The described behavior is also known
from earlier studies on different systems using the
continuum approximation [3, 26, 27]. However, the
continuum approximation is not able to describe
atomistic features, and therefore is a good approxi-
mation only if interfacial area and precipitate size are
sufficiently large (see also discussion in Section 1).

The knowledge that different energy parts stabilize
different characteristic shapes can be used to study
the phase-stabilizing factors atfinite temperatures.
For this purpose, we stored the strain and chemical
energy of equilibrium configurations obtained at dif-
ferent finite temperatures of the MC annealing pro-
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cess. Unlike the simulations leading to Fig. 9, the
decomposition of the energy was always madeafter
the MC simulation. The resulting energy curves for
the total HamiltonianDH, the chemical energyEchem

and the strain energyECS as function of temperature
are shown in Fig. 10. Since the energy was separated
after the simulation, for each temperature, the sum of
chemical and strain energy must be equal to the total
energyDH per Zn atom. We observe the following:

1. at high temperatures ( > 150 K) the contribution
of the chemical energy to the total energy is larger
than the contribution of the strain energy, while
the opposite is true for lower temperatures (,
150 K); and

Fig. 10. Dependence of energyDH on temperature for a given precipitate size (NZn = 11,656). After annealing,
the energy was decomposed into strainECS and chemicalEchem parts. While for temperatures higher than
| 150 K the contribution of the chemical part to the total energy is larger than that of the strain part, the

opposite is true for lower temperatures. ForT→TC andT→0 K the resulting precipitate shapes are shown (only
Zn atoms are shown).

2. while the chemical energy decreases strongly with
decreasing temperature, the strain energy is nearly
temperature-independent.

The temperature dependence of the two energy
components becomes more obvious if we separate
them into temperature-dependentand temperature-
independentparts. For this, the CE Hamiltonian is
written as

DH = Echem(N, TC) + [Echem(N, T)
2 Echem(N, TC)] + ECS(N, 0) + [ECS(N, T) (7)

2 ECS(N, 0)].
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Here, Echem(N, TC) is the temperature-independent
chemical energy of the precipitate (evaluated at
T→TC), andECS(N, 0) is the temperature-independent
strain energy of the precipitate (evaluated atT→0).
The reason for this choice is that the chemical part is
larger forT→TC, while the strain part is dominant for
T→0. The two equilibrium shapes corresponding to
T→TC and T→0 are shown in Fig. 10. The energy
terms of equation (7) are presented graphically in Fig.
11, where the two temperature-independent reference
energies,Echem(N, TC) and ECS(N, 0), are given as
horizontal lines. This clearly demonstrates the strong
temperature dependence of the chemical energy given
by the shaded area between the reference energy
Echem(N, TC) and the chemical energyEchem(N, T).
This observation is in excellent agreement with earl-
ier theoretical studies [27, 29, 61] reporting a strong
temperature dependence of interfacial energies. These
investigations show that the anisotropy in interfacial
energies is removed by configurational entropy which
leads to a strong temperature dependence of the
chemical energy and, therefore, to more spherical pre-
cipitates at high temperatures with faceting occuring
at low temperatures.

Fig. 11. Temperature dependence of chemical energy and strain energy (NZn = 11,656). The dark and bright
shaded areas give the deviation of the chemical and strain energy, respectively, from a chosen temperature-
independent reference value. While the chemical energy shows a strong temperature dependence, the strain
energy is nearly temperature-independent. The precipitate shapes of the chosen “reference” energies,

Echem(N, TC) and ECS(N, 0), are shown in Fig. 10.

7. SUMMARY

A cluster expansion approach known asLinear
Expansion in Geometric Objectscombined with
Monte-Carlo simulations allows a theoretical descrip-
tion and understanding of the experimentally
observed size versus shape versus temperature
relation of precipitates in Al–Zn alloys. The simul-
ation results also go through a quantitative compari-
son with experiment, the agreement is excellent. The
precipitate shape shows a transition from a nearly
spherical to a more ellipsoidal/hexagonal shape with
increasing sizeand decreasing temperature. The
“flattening” in the [111] direction can be interpreted
as a combination of two effects: a recently found
instability of fcc Zn when rhombohedrally distorted
along [111] [41], and a strong anisotropy of the
chemical energy. The size versus shape versus tem-
perature relation can be decribed bythermodynamics;
i.e., the relation does not depend on the growth con-
ditions, but only on the size–shape distribution of pre-
cipitates: the longer the aging time, the more larger
(and therefore) ellipsoidal the precipitates found in
experimental studies [15].



4019MÜLLER et al.: PREDICTING PRECIPITATE SHAPES

The dependence of the shape on the size at
T = 0 K can already be found by calculating energies
for perfectly ordered model precipitates. We used an
ideal spherical precipitate and hexagons withc/a
ratios of 0.8, 0.5 and 0.35 for our calculations. These
four model precipitates already give qualitatively, via
Monte-Carlo simulations, the observed size versus
shape relation: namely, a decreasingc/a ratio with
increasing precipitate size.

The separation of the cluster expansion Hamilton-
ian into chemical and strain energy allows a deeper
view inside the energetically controlled size versus
shape relation. Monte-Carlo simulations only taking
the chemical and strain energy into account lead, for
T = 0 K, to different characteristic shapes for both
energy parts: while the strain energy is platelet-stabil-
izing, the chemical part leads to a more spherical
shape. Using this separation also for finite tempera-
tures, it turns out that the shape versus size versus
temperature relation for a given precipitate size is
controlled by two different factors:

1. competition between strain and chemical energy—
the chemical energy dominates over the strain part
for higher temperatures, and the opposite is true
for lower temperatures; and

2. temperature dependence of chemical energy—
while the strain energy is nearly constant as a
function of temperature, the chemical energy
decreases strongly with decreasing temperature.

Since our model is parameter-free, the excellent
agreement demonstrates the ability to predict precipi-
tate shapes and sizes even without carrying out
experiments.
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17. Hübner, G., Löffler, H. and Wendrock, G.,Cryst. Res.

Technol., 1986,21, 8.
18. Gerold, V., Siebke, W. and Tempus, G.,Phys. Stat. Sol.

(a), 1987,104, 213.
19. Guilarducci de Salva, A., P Simon, J., Livet, F. and Guyot,

P., Scripta metall., 1987,21, 1061.
20. Haeffner, D. R. and Cohen, J. B.,Acta. metall., 1989,

37, 2185.
21. Fumeron, M., Guillot, J. P., Dauger, A. P. and Caisso, J.,

Scripta metall., 1980,14, 189.
22. Wolverton, C.,Phil. Mag. Lett., 1999,79, 683.
23. Wolverton, C.,Model. Simul. Mater. Sci., 2000,8, 323.
24. Rubin, G. and Khachaturyan, A. G.,Acta mater., 1999,

47, 1995.
25. Shneck, R., Brokman, A. and Dariel, M. P.,Phys. Rev. B,

1992,46, 483.
26. Thompson, M. E., Su, C. S. and Voorhees, P. W.,Acta

metall., 1994,42, 2107.
27. Lee, J. K., Barnett, D. M. and Aaronson, H. I.,Met. Trans.

A, 1977,8A, 963.
28. Lee, J. K.,Scripta metall., 1994,32, 559.
29. Sluiter, M. and Kawazoe, Y.,Phys. Rev. B, 1996, 54,

10381.
30. Triolo, R., Caponetti, E. and Spooner, S.,Phys. Rev. B,

1989,39, 4588.
31. Floriano, M. A., Caponetti, E. and Triolo, R.,Phys. Rev.

B, 1992,45, 1016.
32. Wang, Y., Chen, L. -Q. and Khachaturyan, A. G.,Scripta

metall., 1991,25, 1387.
33. Wang, Y., Wang, H., Chen, L. -Q. and Khachaturyan, A.

G., J. Am. Ceram. Soc., 1993,76, 3029.
34. Ozolins, V., Wolverton, C. and Zunger, A.,Phys. Rev. B,

1998,57, 4816.
35. Zunger, A., inStatics and Dynamics of Alloy Phase Trans-

formations (NATO ASI), eds P. E. A. Turchi and A. Gonis,
Plenum Press, New York, 1994, p. 361.

36. Lu, Z. W., Laks, D. B., Wei, S. -H. and Zunger, A.,Phys.
Rev. B, 1994,50, 6642.

37. Ozolins, V., Wolverton, C. and Zunger, A.,Phys. Rev. B,
1998,57, 6427.

38. Wolverton, C., Zunger, A. and Lu, Z. -W.,Phys. Rev. B,
1994,49, 16058.

39. Silverman, A., Zunger, A., Kalish, R. and Adler, J.,Phys.
Rev. B, 1995,51, 10795.

40. Wolverton, C., Ozolins, V. and Zunger, A.,Phys. Rev. B,
1998,57, 4332.

41. Müller, S., Wolverton, C., Wang, L. -W. and Zunger, A.,
Phys. Rev. B, 1999,60, 16448.

42. Laks, D. B., Ferreira, L. G., Froyen, S. and Zunger, A.,
Phys. Rev. B, 1982,46, 12587.

43. Slater, J. C.,Phys. Rev., 1951,81, 385.
44. Zunger, A. and Freeman, A. J.,Phys. Rev. B, 1977, 15,

5049.
45. Zunger, A. and Freeman, A. J.,Phys. Rev. B, 1977, 16,

906.
46. Zunger, A. and Freeman, A. J.,Phys. Rev. B, 1977, 16,

2901.
47. Ceperley, D. M. and Alder, B. J.,Phys. Rev. Lett., 1980,

45, 567.
48. Perdew, J. P. and Zunger, A.,Phys. Rev. B, 1981,23, 5048.
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