
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.138.65.115

This content was downloaded on 14/07/2015 at 22:09

Please note that terms and conditions apply.

Prediction of alloy precipitate shapes from first principles

View the table of contents for this issue, or go to the journal homepage for more

2001 Europhys. Lett. 55 33

(http://iopscience.iop.org/0295-5075/55/1/033)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/55/1
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Europhys. Lett., 55 (1), pp. 33–39 (2001)

EUROPHYSICS LETTERS 1 July 2001

Prediction of alloy precipitate shapes from first principles

S. Müller
1(∗), C. Wolverton

2
, L.-W. Wang

3 and A. Zunger
1

1 National Renewable Energy Laboratory - Golden, CO 80401, USA
2 Ford Research Laboratory, MD3028/SRL - Dearborn, MI 48121-2053, USA
3 Lawrence Berkeley National Laboratory - Berkeley, CA 94720, USA

(received 21 December 2000; accepted in final form 20 April 2001)

PACS. 61.66.Dk – Alloys.
PACS. 71.15.Mb – Density functional theory, local density approximation, gradient and other

corrections.
PACS. 81.30.Mh – Solid-phase precipitation.

Abstract. – We have elucidated the physical mechanisms governing the observed size- and
temperature dependence of precipitate shapes in Al-Zn alloys via quantum-mechanical first-
principles simulations. In remarkable quantitative agreement with alloy aging experiments, we
find that with decreasing temperature and increasing average size, the precipitates change from
spherical to plate-like shape. Although the precipitates are created by an inherently kinetic
heat treatment process, the entire series of their size vs. shape relation can be explained in
terms of thermodynamic arguments and understood in terms of strain and chemical energies.

The temperature-composition phase diagram of a solid state A1−xBx alloy [1] may con-
sist of homogeneous single-phase regions (such as ordered compounds AmBn, or disordered
solid solutions) as well as heterogeneous, phase-coexistence regions (such as phase-separation).
First-principles calculations based on the density-functional approach have been very useful
in helping one to understand the stability of simple single-phased materials. This includes
calculations of perfectly ordered compounds [2] as well as perfectly random alloys [3, 4], both
requiring for their crystallographic description only small unit cells, containing O(10) atoms.
The restriction to simple homogeneous structures leaves unexplored significant portions of the
phase diagrams of many materials. Perhaps the best-known examples of heterogeneous phase-
coexistence are phase separation of an alloy into its constituents [1] A1−xBx ⇀↽ (1−x)A+xB
or into a constituent plus a compound [1], e.g., A1−xBx ⇀↽ A3B+A. Such solid-state decom-
position reactions create precipitates which define an important part of the microstructure
of many alloy systems. The early stage of these reactions typically involves the formation
of coherent precipitates that adopt the crystallographic lattice of the alloy from which they
emerge [5]. Coherent precipitates have practical importance, as they act to impede dislocation
motion, and thus lead to “precipitation hardening” in many alloys [5–8]. Despite their im-
portance, precipitate microstructures were thus far not amenable to first-principles theories,
since their description requires “unit cells” containing 103–105 atoms or more, well beyond
current capabilities of first-principles methods.
Of particular interest are the shapes and sizes of precipitates which are found to be strongly

correlated: For example, Al1−xCux alloys exhibit a transition of coherent precipitates from
{100} planes of Cu atoms to Cu-Al-Al-Al-Cu thin platelet structures [9, 10]. In Al1−xZnx,
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many experimental studies have been performed to examine the shapes and structure of
precipitates [11–17] (due to the ability of Al-Zn to harden via precipitate heat-treatment).
The Zn precipitates exhibit a remarkable series of shapes and sizes: Small precipitates tend
to be spherical, until they reach a critical size RC of about 15–25 Å (dependent on the aging
temperature) at which point they become ellipsoidal/plate-like with the short axis parallel to
the [111] direction. The transition radius RC depends on temperature: it shrinks as the aging
temperature is reduced. While different aging times lead to different distribution of sizes [12],
remarkably, the size vs. shape relation is universal, irrespective of whether the aging period
is minutes or weeks. In an atomistic sense, this observation raises the possibility that each
individual precipitate represents locally an equilibrium configuration. Such local equilibria
are a consequence of the fact that atoms in a single precipitate exchange more readily with
each other than with other precipitates. Our strategy will hence be to assume that for Al-Zn
a thermodynamic (rather than kinetic) description of size vs. shape might be appropriate,
and examine the extent to which this does or does not agree with the measured distribution
of sizes and shapes. We find that it does: Our calculations are quantitatively in excellent
agreement with experimental results [11–17].

Prediction of precipitate size vs. shape requires optimization of the free-energy F (R̄, T )
for a given average size R̄ and temperature T with respect to all possible shapes. As we will
see, in an atomistic description this requires consideration of cells containing sometimes more
than 100000 atoms [18]. Many previous descriptions of precipitate shapes utilized contin-
uum approaches in the context of empirically parametrized free-energy functionals (see, e.g.,
refs. [7,19,20]). Here, we use an atomistic approach based on an LDA-derived cluster expansion
(CE). The basic ideas are: i) to expand the energy ∆HCE(σ) of an arbitrary alloy configuration
{σ} as a linear sum of the energies characteristic of the underlying atomic “geometric objects”
such as pairs, triangles, tetrahedra [21], ii) to determine these characteristic energies by map-
ping ∆HCE(σord) for simple, ordered configurations onto the corresponding LDA excess ener-
gies ∆HLDA(σord), and iii) to find the equilibrium precipitate shapes at finite temperatures by
Monte-Carlo (MC) simulation of ∆HCE(σ) at temperatures below the coherent miscibility gap.
This mixed-space cluster expansion approach (MSCE) [21] affords LDA accuracy in total en-
ergies along with a computational speed that permits detailed MC simulations (105 atoms/cell
with 1000 spin-flips per atom and temperature) of precipitate microstructures [10,18,22].

In our MSCE approach [21], any configuration σ is defined by specifying the occupations
of each of the N lattice sites by an Al atom (spin-index Ŝi = −1) or a Zn atom (Ŝi = +1).
The formation enthalpy of any configuration σ at its atomically relaxed state is then given by

∆HCE(σ) =
∑

k

Jpair(k)|S(k, σ)|2 +
MB∑

f

DfJf Π̄f (σ) +
1

4x − 1
∑

k

∆Eeq
CS(k̂, x)|S(k, σ)|2 . (1)

The first two terms represent the chemical energy, Echem (often refered to as interfacial en-
ergy). Here, the first sum describes all possible pair figures. Jpair(k) is the lattice Fourier
transform of the real space pair interactions, and S(k, σ) are structure factors. The second
sum describes many-body figures, such as triangles, tetrahedra, etc. Here, Jf is the real-space
effective many-body interaction of figure f , Df stands for the number of equivalent clusters
per lattice site and Π̄f (σ) are spin products. The third term, the constituent strain, ECS (often
referred to as coherency strain), describes the strain energy necessary to maintain coherency
between bulk Al and fcc Zn along an interface with orientation k̂. It can be calculated by
deforming the bulk elements (Al and fcc-Zn) from their equilibrium lattice constants aAl and
aZn to a common lattice constant a perpendicular to k̂. The constituent strain is a function
of composition x and direction k̂ only, but does not include information about the strength
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Fig. 1 – Shape vs. temperature of a Zn precipitate in the Al24825Zn2175 alloy. Only Zn atoms are
shown. With decreasing temperature, the shape changes from a nearly spherical (large c/a) to a more
plate-like (small c/a) form.

of chemical interactions between Al and Zn atoms.
We determine {Jpair(k)} and {Jf} by fitting ∆HCE(σord) to a set of 26 ordered (ord)

AlnZnm compounds. The sets {σord} includes (among others) superlattices of ten different
Zn-compositions five different layer orientations. These formation enthalpies are calculated
within the LDA as implemented by the pseudopotential plane-wave method [23]. Comparing
∆HCE to ∆HLDA for 9 ordered Al-Zn compounds which were not used in the construction
of {Jpair(k)} and {Jf} shows an “average prediction error” of only 2 meV/atom [24]. This
precision requires inclusion of up to 20 pair interactions.
To calculate equilibrium shapes of coherent precipitates we use ∆HCE(σ) of eq. (1) in

canonical ensemble MC simulations. In order to exclude boundary effects, unit cells containing
up to 216000 atoms were needed for the largest precipitates. The MC annealing process is ini-
tialized at a sufficiently high temperature, where the solid solution is thermodynamically sta-
ble. Using a given number NZn of Zn atoms in the MC cell (hence, a given average precipitate
size R̄), the system is carefully annealed below the coherent fcc miscibility gap. Upon crossing
this solvus, a coherent precipitate is formed (fig. 1(a) and (b)). The MC cell size and number
of spin flips are increased until the precipitate shape remains unchanged. At this point we
record the shape obtained for a given average size R̄ = (ca2)1/3 and temperature T . The shape
is measured by the ratio c/a between the short (c) and the two long (a) axes of the precipitate.
Figure 1 shows the calculated equilibrium shape of an Al24825Zn2175 supercell as a func-

tion of its aging temperature. For clarity, only the Zn atoms are displayed in the figures of
the present paper(1). The phase boundary between solid solution (fig. 1(a)) and coherent

(1)Note that due to perspective view, one might misinterpret some of the shapes shown in figs. 1 and 2. For
instance, the shape in fig. 2(d) is plate-like, not needle-like.
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Fig. 2 – Dependence of the precipitate shape on its size (given by the number of Zn atoms) for T → 0.
Only Zn atoms are shown. With increasing size, the shape changes from a nearly spherical (larger
c/a) to a more plate-like form (smaller c/a).

precipitate (fig. 1(b)) is calculated to be Tc = 360 K at this composition. We see that above
Tc at T = 450 K there is a disordered phase, but Zn begins to precipitate once we lower the
temperature below Tc. Figure 2 shows the low-temperature limit of the equilibrium shapes
for various precipitate sizes (MC cell sizes: 27 000–216 000 sites). We see from fig. 1 and 2
that 1) for a given number of Zn atoms the precipitate becomes flatter (smaller c/a) with
decreasing temperature. At low temperatures the precipitates show faceting with [111] facets;
2) with increasing number of Zn atoms, the precipitate shape changes from a nearly spherical
(c/a ≈ 1) into a more plate-like shape; 3) precipitates flatten in the [111] direction (fig. 1(d)).
To critically assess these results quantitatively, fig. 3 compares the measured [11,13,15–17] and
calculated precipitate shapes (c/a) for two different temperatures. The experimental values
correspond to Al1−xZnx alloys with x = 0.068 and x = 0.138 for T = 300 K and T = 200 K,
respectively. Our quantum-mechanical predictions were done for exactly these two concen-
trations and temperatures. The agreement is excellent: Our thermodynamic theory accounts
quantitatively for the change of c/a ratio with size and temperature. For samples aged at
room temperature the shape c/a is nearly 1 up to about rm = 2 nm. Then, the c/a-ratio
starts to decrease until it reaches a value of about 0.3 at rm = 6 nm. For a given size rm, c/a
can only be changed by lowering the aging temperature: The lower the aging temperature the
smaller is the resulting c/a ratio. We conclude that although the precipitates are created by
an inherently kinetic heat treatment process, the entire series of their size vs. shape relation
can be explained in terms of thermodynamic arguments. Furthermore, first-principles theory
can predict the size vs. shape relation within experimental accuracy.

To understand the physical contributions which give rise to points 1)-3) above, we analyze
the shapes obtained in our simulation by using the partitioning of the cluster expansion
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Fig. 3 – Shape (c/a) vs. size relation of Zn precipitates for two different temperatures. The mean
precipitate redius rm is given by rm = (ca2)1/3. The lines denote the results from our calculations,
the open points are taken from different experimental studies [11,13,15–17].

Hamitonian, eq. (1), into chemical energy, Echem, and constituent strain energy, ECS. We
annealed again the Al24825Zn2175 supercell (used for the temperature study in fig. 1), but
this time instead of using the full Hamiltonian in the MC simulation we used only a) the
constituent strain energy ECS, and separately b) the chemical energy Echem. a) Using only
the strain part ECS in the simulation gives platelet-stabilization with c/a → 0. As expected,
the direction of the platelet is the elastically softest direction of the precipitate [7, 18–20].
The soft direction for coherency strain is [111], not the [100] direction common for fcc lattice,
even though [100] is the softest direction for bulk elastic strain in Al-Zn alloys [25, 26]. The
reason is the following: Zn is naturally an hcp element, but in Al-rich Al1−xZnx alloys, it
is forced to have the fcc structure of the alloy. It thus develops an instability [24] in the
form of an anomalously low energy for the [111]-deformed unit cell. As a consequence, [111]
is the elastically softest direction of fcc-Zn, resulting in extremely small (< 1 meV/atom)
coherency strain energies along this direction. This [111]-soft precipitates are embedded in a
matrix of Al which has an elastically soft [100] direction. While the [100] softness of Al has
been shown to yield spinodal decomposition fluctuations along this direction [27], it does not
control the plate orientation of (relatively) large Zn precipitates due to the well-known result
of Khachaturyan [7] that the habit plane of a precipitate is determined by the elastic constants
of the precipitate phase, and not by those of the matrix. So, for Zn-rich alloys, the constituent
strain would be dictated by the elastic response of Al, and hence would become more and more
isotropic. b) Using only the“chemical part” Echem leads to a compact, but faceted polyhedron.
The interfaces are oriented in the four [111] directions. This faceting caused by the chemical
part of the Hamiltonian is a consequence of a strong anisotropy of the chemical energy for
Al-Zn. This chemical anisotropy is evident from the fact [24] that [111] oriented Aln/Znn

superlattices have much lower chemical energies than superlattices in other orientation.
In order to study quantitatively the importance of Echem and ECS, we calculated them for

different assumed (i.e. not annealed by Monte Carlo) precipitate shapes, such as spheres and
hexagonal plates as well as flat [111] layers and random alloys. The resulting values for Echem

and ECS are collected in fig. 4. We see from fig. 4 that:
a) In the range 0.35 < c/a < 1 the strain energy ECS depends only weakly on c/a. Only

for the ideal [111] layers (c/a → 0) is ECS characteristically lower than for all other shapes.
b) On the other hand, Echem decreases significantly with decreasing c/a ratio even though

the interfacial area increases. For examples for ∼ 300 Zn atoms (energies are given in meV/Zn
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Fig. 4 – Chemical energy, Echem, and constituent strain energy, ECS for different precipitate models
with different shapes and sizes. While ECS is nearly structure independent, Echem shows a size- and
shape dependence.

atom), Echem is 10.5, 9.5, 7.0 for c/a = 1, 0.8, 0.35, respectively. This is a consequence of an
unusually strong anisotropy of the chemical energy in Al-Zn.

c) Echem decreases as the precipitate size increases since the surface-to-volume ratio in-
creases.

The conventional understanding (see, e.g., [7]) of spherical vs. plate-like precipitate shapes
is based on the balance between strain and interfacial (chemical) energies: As precipitates get
larger, strain energies dominate over chemical energies, and lead to plate-like shapes along the
elastically soft direction. For small precipitates, chemical energies can dominate, and hence
lead to spherical shapes which minimize interfacial area. Although this view is certainly
correct in cases where the chemical energies are isotropic, we find here that Al-Zn shows an
extremely large anisotropy of the chemical energy which plays an important role in shapes of
Zn precipitates, particulary in the extent to which the precipitate facet at low temperatures:
The anisotropy of the chemical energy depends on temperature. At low T , when entropy is
unimportant, only energy-minimizing configurations emerge. Thus, the anisotropy of chemical
energy is exposed at its maximum at low T . In contrast at high T , where many configurations
coexist due to entropy, the chemical anisotropy is largely averaged out. Although one might
qualitatively expect [111] faceting intuitively (since these interfaces are close-packed), we find
that the large, unexpected anisotropy of Echem leads to quantitatively large [111] facets.

We can now explain the observations 1)-3) we deduced from fig. 3:
1) At low T , the strong anisotropy of the chemical energy creates facets along planes of low

interfacial energy. Indeed, the calculations of figs. 1 and 2 demonstrate the energetic preference
for [111] facets. However, the chemical part alone, while stabilizing facets, still leads to c/a = 1
(as shown by Herring [28], the equilibrium shape obtained from pure chemical interaction is
determined by the Wulff construction which does not allow flattening). Indeed, only ECS can
produce c/a < 1. Thus, the equilibrium c/a value at T → 0 is dictated by the competition
between Echem (driving c/a → 1) and ECS (driving c/a → 0). Figure 4 shows that the magni-
tudes of ECS and Echem alternate, being connected thus to different c/a values. At high tem-
peratures, where the chemical anisotropy diminishes, we observe spherical precipitates, exactly
as found in earlier theoretical studies that assumed simplified, isotropic chemical terms [20].
This explains why as the temperature decreases we find a spherical-to-faceted shape transition.
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2) As the number NZn of Zn-atoms increases, c/a decreases since the variation of strain
energy with shape is smaller (point a) above) than the variation of the chemical energy with
shape (point b) above).
3) Precipitates flatten in the [111] direction since both the elastic instability of fcc Zn and

the chemical anisotropy of Al-Zn happens to occur along [111].
One might think that the use of continuum elasticity plus empirical interfacial energies

might have sufficed to study precipitate shapes in Al-Zn. However, our work shows effects
that are unsuspected, such as the large anisotropy of the interfacial energies and the critical
role of the elastic constants of an unstable phase: fcc-Zn. Our approach provides both,
quantitative predictions as well as a microscopic picture for the variations in shape and size
with temperature, supporting the view that thermodynamic, rather than kinetic explanations
are sufficient for describing precipitate shapes in Al-Zn.
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