
Pseudopotential Theory of Semiconductor Quantum Dots

Alex Zunger

National Renewable Energy Laboratory, Golden, CO 80401, USA

(Received July 31, 2000; accepted October 2, 2000)

Subject classification: 71.15.Dx; 73.21.La; S5.11; S5.12; S7.11; S7.12; S8.11; S8.12

This paper reviews our pseudopotential approach to study the electronic structure of semiconduc-
tor quantum dots, emphasizing methodology ideas and a survey of recent applications to both
“free-standing” and “semiconductor embedded” quantum-dot systems.

1. Introduction: What Are the Bottlenecks Limiting Accurate Theoretical Modeling of
Semiconductor Quantum Dots Analyses of the experimental observations on quantum
dots reveal that a theory of quantum dots must encompass both single-particle electro-
nic structure and many-body physics.
Regarding the single-particle electronic structure, the available methods are either insuf-

ficient or impossibly complicated. The prevailing single-particle method for quantum nano-
structures –– the effective-mass approximation (EMA) and its “k � p” generalization ––
were carefully tested by us [1–3], and were found to be insufficiently accurate for our
purposes. Specifically, the underlying continuum-like EMA misses the atomistic nature of
quantum dots. Indeed, in attempting to expand the dot’s wavefunction in terms of only
the VBM and CBM of the infinite bulk solid at the Brillouin zone center (k = 0) the EMA
produces but a rough sketch of the dot’s microscopic wavefunctions. The limited accuracy
originating from the neglect of multi-band coupling prevents reliable calculations of wave-
function expectation values such as energy levels [1–4], exchange energies [5] and inter-
electronic Coulomb repulsion [6] in free-standing quantum dots. Of course, one can fit
experimental results within the EMA approach. In other words, this theory can accommo-
date experimental facts, but rarely predicts them. For semiconductor-embedded dots such
as InAs/GaAs, the k � p method is much better [26]. The other “single-particle” method ––
the local density approximation (LDA) –– is limited in terms of the number of atoms it
can handle. While very small Si particles can be calculated [7], real (e.g., self-assembled
dot structures) require �103–105 (including the barrier material) atoms for their descrip-
tion, well outside the range of LDA capabilities. Furthermore, the “LDA errors” in the
band gaps and effective masses preclude contact with spectroscopic data on dots.
Regarding the many-body description needed, the highly precise Quantum-Monte-

Carlo (QMC) approach can unfortunately be used for large dots (103–105 atoms) only
with EMA wavefunctions [8], not with, e.g., pseudopotential wavefunctions. On the
other hand, the Configuration Interaction (CI) approach for dots [9] can be used to
predict many-body (e.g., multiplet) effects with accurate atomistic wavefunctions.
The “Theoretical Technology” needed to address the electronic structure of quantum

dots should thus be capable of incorporating multi-band coupling (unlike the EMA),
describe arbitrary shapes and materials, include realistic surface or interface effects, and
capture many-body (multiplet) effects for objects containing 103–105 atoms (including
the “barrier” between dots in a supercell). Until recently, such theoretical technology
was unavailable.
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2. Overcoming Theory Bottlenecks: The “Order-N” Pseudopotential Configuration-In-
teraction Approach We have developed an accurate, general-purpose electronic
structure approach suitable for addressing the leading physical questions pertaining to
quantum dots. The method has two parts: A: The single-particle problem and B: the
many-body problem. In what follows, we describe the main ideas behind this new
method, followed by a discussion of its limitations and our approach to these limitations.

2.1 A: The single-particle problem
1. The shape, size and composition of the dot are accepted as “input”, i.e., there is no

attempt to predict them from “growth models”. This decision stems from the observa-
tion that such variables are often not controlled by the thermodynamics of the growth,
but that post-growth, it is possible to measure the approximate shape, size and composi-
tion, thus use them as “input” to the theory. We can do arbitrary 3D shapes and com-
position profiles [4].

2. Atoms are relaxed to their strain-minimizing positions using an atomistic “force
field” fit to LDA [10]. We currently use a three-parameter generalized “Keating mod-
el” that fits C11, C12, C44 and reproduces LDA relaxation of energies of related ordered
compounds. We avoid the less-accurate continuum elasticity approach for strain minimi-
zation, in which the atomistic point-group symmetry of the dot is often overlooked [4].

3. The single-particle screened pseudopotential is fit to bulk solids: The total screened
pseudopotential is written as a superposition of atomically screened potentials at sites
Rn for atom type a,

Vext þ Vscr ¼
P

n;a
Vaðr � Rn;aÞ : ð1Þ

The screened potentials {Va} are fit to the measured band structure and anisotropic
effective masses of the underlying bulk materials, as well as to the LDA-calculated bulk
wavefunctions, deformation potentials, and band offsets [11, 12]. We thus avoid “band
gap LDA errors”. We have developed a few schemes permitting us to achieve “LDA
quality wave functions” [11, 12] with “experimental quality band gaps and masses”.
Spin–orbit splitting is included. For certain elements a, a non-local potential is used. A
separate potential is fit for the surface atoms [13], assuring reproduction of the electro-
nic structure obtained from model “slab calculations”.

4. The wavefunctions are expanded in plane-waves, thus affording a microscopic de-
scription (not just a macroscopic, “envelope-function” description), as well as represent-
ing multi-band coupling (i.e., many bands at G) and inter-valley (G–X–L) couplings [10].

5. The pseudopotential-plane wave Hamiltonian is diagonalized incredibly rapidly via
the order-N “Folded Spectrum Method” (FSM) [14, 15]. Our philosophy is that much
of the physical interest in quantum dots centers around energy levels in the vicinity of
the band gap, but that current computational approaches do not take advantage of this
fact. For example, a 10000 atom Si dot has 20000 occupied levels, but only the few
highest are “interesting”. Still, quantum mechanics forces us to calculate all of the
19999 levels below the VBM (= level number 20000) or the CBM (= level number
20001). This is wasteful, not to mention time consuming. The Folded Spectrum Method
[14] thus “folds” the lowest �19999 levels to very high energies, leaving the VBM or
CBM as the lowest solutions of the modified Hamiltonian (H –– A)2. Finding the eigen-
solutions to the squared Hamiltonian is both sufficient (as the VBM and CBM are
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captured) and very fast. These solutions are identical to those that are obtained by
diagonalizing brute-force the full Hamiltonian. In practice, we search for �10 eigensolu-
tions in the neighborhood of the VBM and CBM. Another modification of this method,
the Linear Expansion in Bloch Bands (LCBB) [16], affords an even faster diagonaliza-
tion, applicable literally to million-atom quantum dots. These methods run on a parallel
computer platform for extra speed, as described in Ref. [15].

2.2. B: The many-body problem
1. Inter-electronic integrals are computed numerically: Given the single-particle wave

functions {wi} from the pseudopotential calculation, we calculate the screened inter-elec-
tronic Coulomb Jij and exchange Kij [9, 17], integrals numerically using a multi-grid
approach. The screening includes both ionic and electronic parts. The latter is described
phenomenologically via literature models, and depends on the size R of the quantum dot,
as well as on the inter-particle separation |re––rh|. More details are given in Refs. [5, 6, 9].

2. Many-body effects are included via configuration interaction: The wave function
of an exciton (or multi-exciton) is described as a superposition of a limited number
of Slater determinants corresponding to many-particle excitations. This “configura-
tion-interaction” many-body Hamiltonian is diagonalized to yield the many-body en-
ergy and the multiplet structure of the dot. Convergence is examined by increasing
the number of determinants (currently up to 40000). More details are given in Ref. [9].

2.3 What have we neglected?
1. The exact atomic positions in dots are often unknown. The atomic positions used

are only as good as the experimental input. However, it now appears that inside large
(>1000-atom) dots, the measured interatomic distances are very close to the bulk val-
ues. Hence, uncertainties in exact positions are confined to the surface area. We use
realistic models for the surface atomic structure based on LDA surface (slab) calcula-
tions. Nevertheless, experimental uncertainties in shape and composition profile is a
real limitation for the theory.

2. The single-particle wave functions are not self-consistent. This is a controlled error,
since self-consistency can be implemented. Our tests, documented in Ref. [6] demon-
strate only small (<5 meV) errors. Nevertheless, some critical parts of the dot (e.g., next
to impurity atom) do need self-consistency.

3. The CI expansion is truncated. Although we perform what is normally termed
“Full CI” (all Slater determinants that evolve from the bound states in the dot are
accounted for), this neglects the contribution of continuum states to the correlation
energy. The Quantum-Monte Carlo (QMC) method does include continuum states, but
can be currently applied only to single-band EMA models. Thus, to get an estimate of
our errors, we applied both the QMC and the CI approaches to a single-band model of
a dot with finite potential barriers [18]. A typical exciton total energy (for a dot with
40 �A diameter, me = 0.1, mh = 0.5) is 140 meV. The correlation energy is 2 meV. QMC
gets the full 2 meV, while our CI gets only 1 meV of the correlation energy. Note that
we can apply CI to a multi-band (e.g., pseudopotential) Hamiltonian, while QMC is
currently limited to EMA.

4. The screening function is phenomenological. We have tested all screening functions
available in the literature and find some differences between them. We are continuing
to search for the “best” screening function.

phys. stat. sol. (b) 224, No. 3 (2001) 729



3. Recent Pseudopotential Results
on the Theory of QuantumDots The
electronic structure of quantum dots
involves:

(i) “High-energy problems” (i.e.,
the 1–3 eV range excitonic energies);

(ii) “intermediate-energy problems” (i.e., the �0.1 eV range charging energies); and
(iii) “low-energy problems” (i.e., the 0.01–0.001 eV splittings due to electron–hole ex-

change and different multi-exciton multiplets.

3.1 The main accomplishments to date for the “high-energy problems”
1. Reproduced accurately the excitonic gap for “free-standing” Si dots (Ref. [19, 20]),

InP dots (Ref. [12, 13]) and CdSe dots (Ref. [21, 22]). Our results are closer to experi-
ment than other models even though other models (e.g., EMA and k � p) often fit the
experimental quantum dot data directly. For CdSe, we calculated not only the lowest
exciton, but also the seven excited excitons above it [22]. The agreement with experi-
ment was remarkable, as illustrated in Fig. 1 (Si), Fig. 2 (InP), and Fig. 3 (CdSe). No fit
is involved beyond the bulk bands.

2. Established new quantum-size scaling laws. Textbook models predict that band gaps
Eg scale with quantum-size as Eg � R––2, whereas electron–hole Coulomb energies Jeh
scale as Je,h � R––1. These results hold in the single-band effective-mass approach which
retains kinetic energies of confined particles but neglect potential-energy-induced multi-
band coupling. Our multi-band results reveal new, material-dependent scaling laws, e.g.,
for Si [19, 20] Eg � R––1.4 while for InP [12, 13] Eg � R––1.3, whereas Coulomb energies

scale as [6] Jeh � R––0.8. These new
scaling laws are important as they
reveal, for the first time, the inter-
play between kinetic-energy (EMA-
like) effects and multi-band cou-
pling effects.
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Fig. 1. Calculated (^) and measured (*)
excitonic gaps in Si dots (Ref. [20] and
references therein). The triangles show
LDA results of other authors

Fig. 2. Calculated (*) and measured
(& and line) excitonic gaps in InP dots
(Ref. [5] and references therein)



3. Established an energy-level model
for the “semiconductor embedded”
self-assembled InAs/GaAs dots [23–
29]. Perhaps the most studied quan-
tum dots are the “self-assembled”,
strained InAs/GaAs dots. We pro-
vided the first comprehensive theory
for interpreting a broad range of ex-
perimentally determined energy levels
in such structures resulting from PL
and PLE measurements, as well as in-
ter-subband spectroscopy and Stark
effect. The results include the determi-
nation of excitonic energies; spacings

between electron levels, hole levels; electron and hole binding energies; wetting-layer
energies, the magnitude of the excitonic dipols, and their pressure dependence. We be-
lieve that such results could become a “standard energy level model” for these types of
dots. We show in Fig. 4 the realistic wavefunctions that result from such atomistic calcu-
lations. Note that they do not look at all as EMA (s, p, d) states.

3.2 The main accomplishments to-date for the “intermediate-energy problems”
1. Predicted the electron-addition energies in freestanding InAs [30, 31] and CdSe [32]

dots, in excellent agreement with recent STM-carrier injection experiments. Figure 5
illustrates the predictability of the model for both addition energies and quasi-particle
gaps of InAs. More importantly, by calculating the total energies for different electronic
configurations of the charged dot, we have.

2. Established deviations from Hund’s rule as well as “spin-blockade” [32]. Such devia-
tions represent the competition between gain of exchange energy (favoring Hund’s
rule) and Coulomb repulsion. Our recently published predictions [32] await experimen-
tal testing.

3.3 The main accomplishments to-date, for the “low-energy problems”
Established theory of electron–hole exchange in dots [5, 9, 17]. We tackled a long-

standing fundamental problem in quantum dot physics: Does the electron–hole ex-
change have just a short-range part (resulting from wavefunction overlap) or could it
have a long-range component? In bulk solids, the long-range component results from
dipole interactions which average to zero in a spherical dot. It was thus believed that in
dots, there is but a short-range exchange. Indeed the measured e–h exchange was al-
ways fit to a short-range formula with the scaling Dx � R––3.
Our accurate wavefunctions permitted an assessment of long versus short-range com-

ponents. We found in Si, InP, and CdSe an unequivocal long-range component which
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Fig. 3. Calculated (*) and measured (other
symbols) excitonic transitions in CdSe dots
(Ref. [22] and references therein)



dominates over the short-range component [5, 9, 17]. Our subsequent analytical study
[17] revealed that the long-range exchange originates from the previously neglected
monopol-monopol interactions. Our calculated exchange splitting versus size agreed
very well with the measured data for InP [9] and CdSe [9] (without any fit). This work
established a new view on the microscopic nature of electron–hole exchange interac-
tions in nanostructures. A similar recent study on multi-excitons in InAs/GaAs dots [33]
establishes the nature of many-body multiplet effects in the spectra.
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Fig. 4. Color top view of calculated electron and hole wavefunctions squared for lens-shaped and
pyramidal InAs dot embedded in GaAs; Ref. [23]



4. Summary The pseudopotential approach is a practical method for describing atom-
istic and microscopic aspects of the electronic structure of nanostructures. When such
aspects are not important (e.g., large systems), an atomistic approach is not needed,
and conventional continuum approaches are fine. Furthermore, continuum approaches
can be conveniently used to fit known data even for small nanostructures, although the
predictive ability of these methods is questionable.
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