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Momentum-space formalism for the total energy of solids 

J Ihm, Alex Zunger and Marvin L Cohent 
Department of Physics, University of California and Materials and Molecular Research 
Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA 

Received 8 May 1979 

Abstract. A momentum-space formalism for calculating the total energy of solids is derived. 
This formalism is designed particularly for application with the self-consistent pseudo- 
potential method. In the present formalism, the total energy is obtained through band- 
structure calculations without involving additional integrations. The Hellman-Feynman 
theorem is derived, as is a modified virial relation for the pseiidopotential Hamiltonian 
which provides an alternative way of calculating forces and total energies. 

1. Introduction 

The calculation of the total energy of solids and related derivatives with respect to 
structural degrees of freedom has been an ongoing problem since the early days of solid 
state physics (Wigner and Seitz 1933, 1934, Fuchs 1935). Quantum-mechanical calcu- 
lations on molecules suggest that correlation effects might sometimes be responsible for 
most of their binding energy (Schaefer 1972). The solid state approaches have concentrated 
on efforts to include most of these effects through an effective potential I/corr[p(r, Y’)] 
(Hohenberg and Kohn 1964, Kohn and Sham 1965), rather than by complicated wave- 
function-related configuration interactions or many-electron perturbation techniques. 
Besides the problem of considering correlation effects, the self-consistent solution of the 
Schrodinger equation within a desired accuracy is quite difficult ; typically, the experi- 
mental binding energy of elemental solids is 10-4-10-5 times the total energy. These 
difficulties have inspired a large set of total-energy calculations that circumvents the 
complete solution of the Schrodinger equation (Harrison 1966, Heine and Weaire 1970). 
It is based on various approximations to the nearly-free-electron representation and may 
include the effect of more localised electrons (e.g. d states in transition metals) through 
specific interaction models (Moriarty 1974, 1977). As the variational self-consistent 
charge density remains unspecified in this approach, various forms of linear dielectric 
screening of the basic Coulomb interactions are introduced (Harrison 1966, Heine and 
Weaire 1970). 

Another set oftotal-energy calculations is based on direct solutions ofthe Schrodinger 
equation within a given interaction model : for example, Hartree-Fock (Harris and 
Monkhorst 1971, Wepfer et al 1974), density-functional (Ching and Callaway 1974, 
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Zunger and Freeman 1977a, b, c, 1978) or model potentials (Wendel and Martin 1978). 
Unlike the situation in molecular physics, we have in this case to deal with divergent 
terms. Moreover, the calculation of the total energy poses a practical difficulty associated 
with the need to compute a large number of six-dimensional integrals for the electron- 
electron interaction term. In linear band structure approaches (e.g. linear combination 
of atomic orbitals), this leads to a large number of multicentre integrals (Schaefer 1972, 
Harris and Monkhorst 1971, Wepfer et a1 1974). 

This major difficulty has led to a number of ‘shape approximations’ in which the 
charge density p(u)  is replaced by a radially scalar quantity such as the muffin-tin (DeCicco 
1965, Averill 1972, Snow 1973, Janak 1974) or cellular approaches (Wigner and Seitz 
1933,1934; Fuchs 1935). As the angular parts are readily treated, the calculation reduces 
to essentially one-dimensional integrals. 

Total-energy calculations within the muffin-tin approximation have been reported by 
Averill (DeCicco 1965, Averill 1972, Janak 1974) on alkali metals and rare-gas solids, 
by Snow (1973) on copper, by Sabin et al(1975) on Ne, by Janak et al (Janak et al 1975, 
Janak and Williams 1976) on Li, Be, Na, Al, Ar, K, Ca and Cu and recently on a series 
of transition metals. These calculations have reproduced both the cohesive energies and 
the equilibrium zero-pressure lattice constants and have revealed interesting regularities 
in their properties. This approach is, however, usiially specialised to  the study of close- 
packed materials for which the muffin-tin approximation to the charge density seems 
valid. Extensions of the muffin-tin approximation to open structures like molecules, 
tetrahedrally bonded insulators and semiconductors have revealed serious errors both 
in the one-electron energies and in the cohesive energy. Generalisation of this method 
to include non-muffin-tin corrections seems to be extremely complicated at present 
(Danese 1974). Usually the calculation of the binding energy is complicated by the need 
to treat accurately core energies which constitute a large part of the total energy (e.g. 
98 % in Fe) but introduce a negligible lattice-constant dependence other than to screen 
the nuclear charge. If the muffin-tin approximation is assumed, it is possible to use a 
direct algebraic cancellation (DeCicco 1965, Averill 1972, Janak 1974) of these large 
energies by subtracting the atomic core energies. However, when the charge density is 
not approximated, all-electron calculations become very complicated. 

Despite these difficulties, self-consistent all-electron calculations of the total energy 
without muffin-tin approximations have been performed on a number of systems. 
These include the Hartree-Fock calculations on metallic hydrogen, diamond, LiF and 
BN (Harris and Monkhorst 1971, Wepfer et a1 1974) and the density functional calcula- 
tions on diamond (Goroff and Kleinman 1970) and on LiF, BN, Tis, and diamond 
(Zunger and Freeman 1977a, b, c, 1978). Although excellent results have been obtained 
for these cases, calculations become extremely time consuming when extended to 
systems containing other than first-row elements. 

In the present paper, we follow a different approach to the calculation of the total 
energy of solids. This involves a direct calculation of the total energy from the variation- 
ally determined valence-electron eigenvalues and charge densities and does not use any 
shape approximation to p(v). The large and geometry-insensitive core contributions are 
explicitly projected out of the total-energy expression by using a pseudopotential 
formalism. The local density formalism for the exchangexorrelation potential is self- 
consistently employed in the calculation. Most importantly, a drastic simplification of 
the total-energy expression is made by formulating the relevagt expression for the total 
energy in momentum space. This expression is particularly designed to be applied with 
the pseudopotential method and a plane-wave basis set. The present formalism, however, 
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is readily applicable to calculations with mixed basis sets (e.g. plane wave plus Gaussian) 
as well. This enables us to extend our calculations to the case of transition metals. 

The virtue of the present method rests in its computational simplicity; once we 
perform the band structure calculation, the total energy is automatically obtained as a 
sum of a few previously calculated terms without multicentre integrations. The only 
input is the core pseudopotential, and no other adjustable parameters are necessary. 
Application of the present method to the study of bulk and surface Si (Ihm and Cohen 
1979) and the transition metals MO and W (Zunger and Cohen 1979) will appear in 
separate papers. In addition to the momentum-space expression for the total energy, 
we derive the Hellmann-Feynman theorem and the virial relation for the pseudo- 
potential Hamiltonian to provide an alternative way of calculating forces and total 
energies. 

In 5 2, the momentum-space expression for the total energy in the pseudopotential 
formalism is derived. The Hellmann-Feynman theorem and the modified virial theorem 
for the pseudopotential Hamiltonian are proved in 5 3 and 4 respectively. 

2. Momentum-space formalism for totabenergy calculations 

Following the conventional density functional formalism (Hohenberg and Kohn 1964, 
Kohn and Sham 1965) in a pseudopotential framework (Phillips and Kleinman 1959), 
the total crystal energy (defined as the total energy difference between the solids and 
isolated cores) is given by 

Etotal = T + I/ + E J r )  d3r, (1) 

T = $*(r) (- V2)Gj(r )  d3r, (2) 

s 
where the total kinetic energy, T is 

i 

and the electrostatic potential energy, V is 
,- 

Rydberg units are used throughout the paper. $i(r) is the (pseud0)wavefunction of the 
valence electron where the index i denotes both the wavevector k i  and the band index 
n and runs over all occupied valence states. p(r) 3 xj$f(r)$i(r)  is the (pseudo)valence- 
electron density, 2 is the valance of the ion and the R, is the lattice vector. Although we 
confine ourselves here to one kind of ion for notational convenience, generalisation to 
many kinds of ions is straightforward. The first term in equation (3) is the core-valence 
interaction energy for angular-momentum-dependent pseudopotentials (2, Ups, l(r)pl ,  
where P, is the projection operator on angular momentum E ) .  The second term is the 
(valence) electron4ectron Coulomb energy, and the last term is the lattice (ion-ion) 
energy. The ion-ion interactions can be replaced rigorously by point-ion interactions 
as long as the ions are spherically symmetric and non-overlapping. The last term in 
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equation (1) is the density functional exchange-correlation contribution to the total 
energy (Hohenberg and Kohn 1964, Kohn and Sham 1965). 

The corresponding one-electron Schrodinger equation derived variationally from 
equation (1) is 

where 

P x c ( d  E W c ( v ) l M 9 .  
The general form for E x c  is not known. Employing the X, method (Slater 1974), we obtain 

px,(v)  = -a(3/n) (3.”)”3(p(v))’/3, 

and 

For explicitness, equations (5) and (6) will be used to calculate the exchange-correlation 
in the present paper. It should be straightforward, however, to modify the expression in 
compliance with particular approximations employed for the exchangecorrelation 
(Zunger and Cohen 1979). 

It is to be noted that the pseudopotential method based on equation (4) has been 
very successful in calculating the band structure of solids and is at present a well- 
established technique. However, the total (crystal)-energy equation (equation 1) has 
not been tested as much because of the lack of a practical scheme of evaluating various 
integrals appearing in the equation. Moreover, it is not obvious whether the pseudo- 
valence electrons alone can give a reasonable result for the cohesive energy because 
calculations using other methods show that extreme accuracy is required in the calcula- 
tion of the cohesive energy. The separation between valence and core electrons is a 
first-order approximation of the non-linear exchange-correlation function. Indeed, a 
total-energy calculation provides a far more stringent test of the pseudopotential method 
than a band-structure calculation does. It suffices here to refer to the successful applica- 
tions of the present formalism for bulk and surface Si (Ihm and Cohen 1979) and bulk 
MO and W (Zunger and Cohen 1979). 

Thus far, we have not made use of the periodicity of the system. To simplify equation 
(l), each quantity will be expanded in terms of plane waves. In contrast to the all-electron 
potential, the smooth pseudopotential may permit rapid convergence of the plane-wave 
expansion. We can also cope with more localised features by generalising the present 
method to the mixed-basis (plane waves plus localised orbitals) formalism. The ensuing 
modifications in the mixed-basis set formalism are briefly outlined in the Appendix. Let 
the momentum-space representations of the wavefunction, the charge density, the inter- 
electronic Coulomb potential and the exchange-correlation potential be denoted by 
$(ki + G),  p(G), Vcou,(G) and pXc(G), respectively, where the G are reciprocal lattice 
vectors. The Fourier component of the interelectronic Coulomb potential, Vcou,(G) is 

&&4 = 8V(G) /G2> (7) 
from the Poisson equation. Let t2 denote the total volume of the system and N denote 
the total number of atoms; then Qat = O/N.  Using this Fourier representation, the 
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Coulomb repulsion energy becomes: 

Using the translational invariance and the decomposition of the plane waves into 
spherical harmonics and Bessel functions, the pseudopotential energy can be written as : 

c j $ ~ )  uPs,,(r - R ~ )  d3r 
i ,  P ,  1 

exp[i(G' - C).RP]  
N 

!J 

= Q $*(ki + G)$(ki + G')C 
i ,  I ,  G, G' 

x (1/aat) exp[ -i(ki + G). Y] UPsJr) P, exp[i(ki + G'). r] d3r 

(9) 

J 
= a $*(ki + $ ( k i  f G ) S ( G  - U p s , l , k i + G , k , + G ' ,  

i , l , G , G '  

where S(G' - G )  is the structure factor and the generalised non-local form factor is: 

'ps, I ,  k , + G ,  k , + G '  = - (l/aat)Sexp[ -i(ki + C). r] Ups, 1 ( ~ )  P I  exp[i(k, + G'). Y] d3r 

= (l/QaJ (21 + 1)4n Ups,l(r)jl(lki + Glr)jl(lki + Glr) 

(10) 
s 

x r2 dr P,(cos y). 

In the last line of equation (lo), the spherical symmetry of the ionic pseudopotential of 
the isolated atom is assumed, and thej, and PI  are spherical Bessel functions and Legendre 
polynomials, respectively, with 

COS y = [(ki + C).(k,  + G')]/(lki + GI. Iki + GI). 

It is by virtue of the plane-wave expansion that we have a simple analytic expression 
for the non-local pseudopotentials in equation (10). 

In the local pseudopotential approximation, the pseudopotential energy (equation 9) 
reduces to : 

It will be shown later that the multiple sum in equation (9) need not be evaluated in the 
final expression for the total energy (equation 26). For practical purposes, it is very 
convenient to decompose the general non-local pseudopotentials into a purely local 
part and non-local parts, namely, 

m c Ups,L(r) PI = Up,(4 + Wps,l(r) - Ups(rV1  = Up&") + qs,I(4 f i l s  (12) 
1 1 I 

where Ubs,l(r) U p s , l ( ~ )  - UPs(r), such that the purely local pseudopotential, Ups(v),  
takes care of the long-range interaction (UPs(r) - -2z/r for large r) thereby making the 
non-local parts, the values of Ups, l(r) ,  of short range. This procedure is always possible 
because at large r, UPsJr) - -2Z/r for any 1 (i.e. the angular-momentum dependence 
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disappears for large r). We still have infinite degrees of freedom for behaviour of U,,(v) 
at small values of r .  If required, UJY) can be chosen such that both U,,(v) and U b s , I ( ~ )  
are as smooth as possible at small r. In the local approximation, U b s , I ( ~ )  = 0 identically. 
Note that the Fourier transforms of the functions U ~ s , f ( r )  do not have singularity at 
G = 0. Combining equations (9), (11) and (12), the core-valance interaction energy 
becomes : 

j $ * ( Y )  Ups, I(Y - RJ P , $ i ( V )  d3r = c S(G) U,,(G) P(G) 
i, P ,  1 L 

(13) 1 + c $ * ( k i  + $ ( k c  + G') '(G - ' b s , l , k , + G ,  k ,+G '  > 
i, I ,  G ,  G' 

where the non-diagonal terms in the second sum represent non-local ki + G to ki  + G 
scattering events. The one-electron Schrodinger equation (equation 4) in the momentum 
representation becomes : 

[ ( k ,  + G')2 tjGG, + V&] $(ki + G') = Ei$(ki + G )  (14) 
G' 

where 

V&, = Vco,,(G' - G )  + pxc(G' - G )  + S(G' - G )  [U,,(G' - G )  

+ U b s , l , k , + G , k , + G ' l .  (15) 
I 

From equations (l), (8) and (13) it can be seen that the total energy (equation 1) reduces to 

) + '  
'bs, I ,  k , + G , k , + G '  

1 
i ,  I ,  G ,  G' 

$*(ki + G )  $(ki + C') S(G - G )  

2 z 2  

P f V  

To simplify equation (16), we multiply on the left of equation (4) by $?(Y), integrate 
over Y and sum over i ,  and substitute the result into equation (1): 

2 z 2  
Etotal = - 3 s 2P(Y) P(Y') d3r d3r' - pXc(r)  p(v) d3r + 4 1 

1 I Y  - Y'l s u , v  IR, - RvI 

I * + v  

In practice, some mathematical manipulations are necessary to calculate E,,,,, 
from equation (17) because Vcoul(0), U,,(O) and 

2 z 2  c 
z,v IRz - RvI 

u + v  

are individually divergent quantities. First, we solve the band-structure eigenvalue 
problem, equation (14), with Vcou,(0) and U,,(O) set equal to zero. This corresponds to a 
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constant shift of the potential (or redefinition of the vacuum level). This arbitrary 
shift is compensated for by the following procedure. For small [Cl, the local potential is: 

U,,(G) = ( -  8nZ/S1,,G2) + a, + (higher terms in G), (18) 

where the constant term a, is given by: 

a1 = lim[U,,(G) + (8nZ/Qa,G2)] = (l/Qa,) [U,,(v) + (2Z/r)] d3r 
G - 0  s (19) 

measuring the degree of repulsiveness of the pseudopotential (equivalently, the degree 
of cancellation of kinetic energy in the core region). Note that equation (18) is no more 
than a formal expansion because G takes only discrete values in periodic systems. Also, 
notice that we do not have a term of order 1/G in the expansion in equation (18). If U,,(G) 
had a term like 1/G in the expansion near G = 0, then a,, as defined by equation (19), 
would diverge. This, in turn, means that the total energy (equation 26) would diverge. 
One example of this behaviour is the Simons-Bloch pseudopotential (Simons and 
Bloch 1973) 

UsB(r) = -2Z/r + B,P,/r2, (20) 
I 

where the B ,  are constants depending on 1. a, diverges with this potential (unless an 
artificial cut-off is introduced) because of the unphysically long-range character of the 
l/r2 potential added to -2Zlr. (In fact, a, - l /G rather than a constant.) Even in the 
presence of the ions neutralising the whole system, the total average potential felt by the 
electrons is infinite with this pseudopotential. The Simons-Bloch pseudopotential 
without a cut-off is therefore inadequate for application to extended systems even though 
it might give good results for localised systems such as atoms or molecules. 

Another quality relevant to the total energy is j3, defined from the expansion at small 
G of the charge density: 

(21) p(G) = (Z/Qa,) + /IC2 + (higher terms in G). 

From equation (7), we have 

/I is a rather complicated integral. Fortunately, /I does not appear in the final expression 
for the total energy because both the electron-electron interaction and the ion-electron 
interaction contain j3 and cancellation occurs, as will be shown in equation (25). 

The lattice (ion-ion) energy per atom is usually expressed (Coldwell-Horsfall and 
Maradudin 1960) assuming the average electrostatic potential is zero, as 

(potential) = 0 
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where the prime means that R, = 0 is excluded in the summation. Combining equations 
(7), (18), (21) and (23), the energy per atom coming from the three divergent terms (with 
S(0) = 1) is: 

22' [".' 8n[(Z/X2,, + pG2l2 
GZ lim s2,,[~Vc0,,(G) p(G) + UJG) p(G)] + 4 c' ~ = lim 

G-0 v lRvI G-0 

(25) 
In summary, we solve equation (14) with Vcoul(0) and U,,(O) set equal to zero and then 

add (a,Z + yEwatd) to the total energy. The final expression for the total energy per atom 
is 

1 
Etotal(per atom) = - ei - $at 1 Vcoul(c) P(G) - S a t  1 ~u,c(G) + ' 1 2  

Ni G # O  G 

+ YEwald' (26) 
The first term on the right-hand side is the sum of the electron eigenvalues of the 

occupied states; the second and third terms correspond to the correction for overcounting 
of the electron4ectron interaction. The fourth term is the correction coming from the 
'pseudo' nature of the potential, and the last term is the ion-ion Coulomb energy. The 
non-local pseudopotential contribution (Equation 9) does not appear explicitly here; 
it enters equation (26) indirectly through band-structure eigenvalues, values of ei and 
charge density, p(G). 

Because of the non-uniqueness of the pseudopotential, a ,  may depend on the choice 
of the pseudopotential. In order for the pseudopotential method to make sense, Etotal 
should not be significantly affected by a change in a , Z .  In fact, the change in a , Z  is 
mostly neutralised by the corresponding change in the value el .  Suppose we have two 
different pseudopotentials which give equally good band structures, but one has a 
stronger repulsive core than the other. The ionic pseudopotential with a stronger 
repulsive core may give a larger value of a,,  but it also gives rise to a downward shift of 
the overall band energy ei. This can be seen clearly when we note that the zero of the 
pseudopotential, by definition, coincides with the spatial average of the pseudopotential 
because U,,(G = 0) is set equal to zero. A stronger repulsive core means a higher average 
potential, hence, lower eigenvalues relative to the average potential. (Equivalently, 
change in the pseudopotential close to the origin results in changes in high G components, 
which affects the relative band structure very little but causes a rigid shift of the band 
structure.) 

The advantage of the pseudopotential scheme in the total-energy calculation is 
obvious when we compare the ratio of the cohesive energy to the total energy (in Rydberg 
units). For tungsten, Ecohesive/Etotal N 0.6/30000 with all-electron calculation while 
Ecohesive/Etota,(pseudo) - 0.6/16 with pseudopotential calculation. An extreme accuracy 
is required for the all-electron calculation whereas the condition is three orders of 
magnitude relaxed using the pseudopotential method. 

On the other hand, the useflilness of the momentum representation approach to the 
total energy rests in part on the convergence rate ofthe reciprocal lattice sums in equation 
(26). These are of the form Cc f(G) p(C) where f(G) is Vcoul, the exchange potential V ,  
or the correlation potential V,,,,. We have examined the convergence rate for the rather 
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extreme case of the transition metals MO and W (Zunger and Cohen 1979) (characterised 
by localised d states). We have found that a convergence of 3 mRyd in the individual 
momentum sums can be reached by including about 500, 200 and 200 plane waves, 
respectively, for f = V,,,,, V ,  and KO,,. A convergence of 1 mRyd requires about 1000 
plane waves. Note that for f = UPS(G) (required is we use equation 16 rather than equa- 
tion 17)  a much higher cut-off is required (e.g. about 1500 plane waves for MO) due to the 
localised nature of transition-metal pseudopotentials (Zunger and Cohen 1979). In 
contrast, only about 200 plane waves are required for a 1 mRyd accuracy for the Si 
total energy (Ihm and Cohen 1979) because the corresponding pseudopotential is much 
smoother. 

3. Hellmann-Feynman theorem 

We prove here the Hellmann-Feynman theorem for the pseudopotential Hamiltonian. 
The X u  approximation is assumed for the exchange-correlation potential. The result 
is independent of the approximation employed for the exchange-correlation contri- 
bution because this theorem has been proved (Hellmann 1937, Feynman 1939, Slater 
1972) to hold for the all-electron case both with and without the Xa approximation. 
Particular care is required for the treatment of the non-local operator; otherwise, the 
proof exactly parallels Slater's proof (Slater 1972) for the all-electron case. 

There are two different sources contributing to VR,Etota,. One comes from explicit 
dependence of the total energy on R, and the other from the implicit dependence through 
I)~(Y), as the solution of the one-electron Schrodinger equation, I)i depends on R,. The 
latter contribution is identically zero as in the all-electron case proven by Slater (Slater 
1972) since the non-local operator satisfies the relation: 

[U,,, I(r) &I+ = [PI Ups, 1(y)  mt = ups, l(r) PI. (27) 

The rest of the proof is identical to the all-electron case. Therefore, we will consider 
below only the former contribution. 

In equation (3), there are two terms explicitly dependent on R,. The negative gradient 
of the last term in equation (3) with respect to R, is 

which gives the force exerted on the ion at R,  by other ions. Note that we have assumed 
the ions are spherically symmetric and non-overlapping. The force exerted on the ion 
by the electrons is rather complicated and has a unique interpretation in the pseudo- 
potential formalism. As we will see shortly, the force has a classical interpretation only 
if we regard -(in) V,"U,,(v) as the effective charge density of the ion. We define an 
angular-momentum-dependent effective charge density of the ion by 

pion, ,(v) is not directly related to the real charge distribution of the core. Combined with 
the corresponding angular-momentum-dependent valence charge density, it gives the 
effective ion-electron interaction without calculating the core-electron contributions 
separately. The electronic counterpart to pion, ,(v) is the 'projected electron density' 
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Note that pelec, l (r)  is not identical to p1 xi @(Y) I)~(v) = p ,p ( r ) .  Now we take the gradient 
of the first term on the right-hand side of equation (3), 

I- r 

Using the identity 

equation (31) becomes 

x d r - pion, l(r‘ - RJ E,(r’) d3r’ = F , ,  
3 ’ -  1 s 

where 

(33) 

is the effective electric field produced by electrons and experienced by pion, 1. It reduces 
to a usual all-electron result if V ( r )  = -2Z/r because pion becomes a delta function 
from equation (29). F ,  is the force integrated over the ion localised at R ,  and over the 
total valence electrons. Therefore, ( F ,  + F,)  gives the total Coulombic force exerted on 
the ion, hence the Hellmann-Feynman theorem. 

We now go on to derive the momentum-space expression for theHellmann-Feynman 
theorem. Since F ,  can be calculated exactly using Ewald’s method, we will concentrate 
on the simplification of F ,  in momentum space. 

From equation (9), we have 

F ,  = -vR,Q $*(ki + G, $(ki + C exp[i(G’ - 4 1  N - ’  U p s , l , k , + G , k , + G ‘  
V 

i ,  1 ,  G ,  G’ 

= --iQat (G‘ - G )  exp[i(G - G).  RBI $*(ki + G) $(ki + G’) 
i ,  1 ,  C , G ‘  

‘ps, 1, k , + C ,  k, + G ‘  (35 )  
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In the local pseudopotential approximation, equation (35) is reduced as 

F 2 ,  = - VR,Q 2 exp(iC. R,) N - '  Ups(G) p(C) = - iQa, 1 G exp(iC . R,) 
v .  G G 

x Ups(G) p(G)* 

Summarising, the Hellmann-Feynman theorem in the momentum-space is 

- ioa, 1 (C' - G)exp[i(G' - C) . R,] 
2z2 

-'RPEtotal = -'R,, F ( R ,  - R,( 
i, I ,G,G' 

Possible applications of the theorem are diverse. For example, we can study the equi- 
librium configuration of the surface atoms, the surface chemisorption, effects of the 
impurities and defects in the bulk and the surface, or the phonon modes of solids. 

4. Virial theorem 

It is a well known fact of classical mechanics that the time average of the bounded motion 
in a r" potential field gives the virial relation (Goldstein 1950) 

(kinetic energy) = (potential energy) (38) 
Because the pseudopotential does not show the simple l/r behaviour, a trivial result is 
that the usual virial theorem does not hold for the pseudopotential Hamiltonian. For 
the all-electron Hamiltonian of the solid, Slater has shown (Slater 1972) that 

KE = -LpE 2 - I C R  2 p * 'RwEtotal. (39) 

The core of his proof lies in the relation 

where U(Y) is the Coulomb potential between an electron and nucleus. For the pseudo- 
potential case, we obtain 

Comparing equations (40) and (41) and using 
Y .  Vr commutes with the angular momentum 

the fact that the purely radial operator 
projection operator P, we arrive at the 
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conclusion that equation (39) is to be modified for the pseudopotential Hamiltonian 
as follows: 

KE = -+PE - 4 R,  . VR,Etotal 
P 

The difference between the all-electron case (equation 39) and the pseudopotential case 
(equation 42) originates primarily from the cancellation theorem. The correction term 
in equation (42), which is usually a large negative quantity, represents the reduction of 
the kinetic energy due to  the repulsive pseudopotential near the nuclei. For example, 
with the Simons-Bloch pseudopotential in equation (20), - B,/r2 enters the parentheses 
of the correction term in equation (42). Now the total energy is 

Etotal = PE + KE = -KE - R , .  V p ~ t , , a l  
IC 

In most periodic systems, R,  . VR,Etotal of an atom not on the surface is automatically 
zero by symmetry (The force on individual atoms is zero.). In that case, equation (43) 
is useful for calculating the total energy at equilibrium (especially so if the pseudopoten- 
tial is local), although it is not as powerful as in the all-electron case where E,,,,, is simply 
the negative of the kinetic energy. We will not examine the trivial momentum-space 
expression of equation (43). 
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Appendix 

When crystal wavefunctions include localised features which cannot be represented 
efficiently by plane waves (e.g. d orbitals in transition metals) it becomes advantageous 
to employ a 'mixed' representation where real-space basis functions such as Gaussians 
are present (Louie et al 1979); 

Here Cz) denotes the variational expansion coefficient of the localised orbitals and 
q5z)(r) denotes a Bloch basis function constructed from the localised real-space basis 
orbitals d,(r), where p indicates the central-field quantum numbers (n,  E, m). A Bloch 
transformation on d,(r) yields 

6:)(r)  = N-'12 exp(ik,. R,) d,(r - R J  
R, 
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The kinetic energy associated with the wavefunction in equation (Al)  is 

($i(r)l-V21$i(r)) = TLL + Tpp + T p L ,  (A31 
where TLL, Tpp, and TpL denote the contributions of the localised-localised, plane 
wave-plane wave and plane wave-localised orbitals, respectively. To obtain conveni- 
ent expressions for TLL and Tp4 (Tpp has been calculated in the text), we first Fourier 
transform the Bloch orbitals, q5e)(r) as 

@(r)  = S(G) d,(ki + G) exp(i(ki + G ) .  r), (A41 
G 

where d,(ki + G) denotes the Fourier transform of the elemental localised basis function, 

d,(ki + G) = exp( -i(ki + G ) .  r )  d,(r) d3r. ( ‘45) 

For simple localised orbitals (e.g. Gaussians, Slater orbitals, etc) d,(ki + C )  can be cal- 
culated analytically. Now the TLL in equation (A3) is calculated using 

(A61 

s 
(@)(r)l  -V21@(r)) = (ki + G)’IS(G)!*d;(ki + G )  d,(ki + G). 

(exp[i(k, + G) .  r]I-V214E)(r)) = (ki + G)2 S(G)d,(ki + G). 

G 

The TpL contribution is calculated from the following relation 

(A7) 
If there are more than one kind of atoms present, the above expressions become a little 
complicated. Equation (Al) now reads 

t,hi(r) = 1 $(ki + G )  exp[i(k, + G ) .  r ]  + C$ $zA(r), 
G w 

where CI denotes different kinds of atoms (at different sites in the unit cell). Equations (A6) 
and (A7) become, in this case, 

(@:i(~)l -V’I@$(V)) = (ki + C)2 S$(G) Sp(G) d;m(k, + G) d,&k, + G), (A91 
C 

and 

(exp[i(k, + G ) .  r ] I -V2 /  @!i(r))  = (ki + C)’ S,(G) dJk, + G). (A10) 
Matrix elements of other operators are calculated in a similar way. 

In practice, it is necessary to assess the value of the cutoff, G,,,(G < G,,, in the sum- 
mation) which will stabilise the summation in equation (A6). As the number of terms in 
eqnation (A6) does not affect the size of the secular equation to be solved variationally 
(the latter is determined by the number of terms in equation Al), G,,, can easily be 
increased to obtain good convergence. 
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