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We present a parallel implementation of the previously developed folded spectrum
method for empirical pseudopotential electronic structure calculations. With the par-
allel implementation we can calculate a small number of electronic states for systems
of up to one million atoms. A plane-wave basis is used to expand the wavefunctions
in the same way as is commonly used inab initio calculations, but the potential
is a fixed external potential generated using atomistic empirical pseudopotentials.
Two techniques allow the calculation to scale to million atom systems. First, the
previously developed folded spectrum method allows us to calculate directly a few
electronic states of interest around the gap. This makes the scaling of the calculation
O(N) for an N atom system and a fixed number of electronic states. Second, we
have now developed an efficient parallel implementation of the algorithm that scales
up to hundreds of processors, giving us the memory and computer power to simu-
late one million atoms. The program’s performance is demonstrated for many large
semiconductor nanostructure systems.c© 2000 Academic Press
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I. INTRODUCTION

Most electronic structure calculations are based on solving an effective single-particle
Schrödinger equation

Ĥψi (r) ≡
[
−1

2
∇2+ V(r)

]
ψi (r) = εiψi (r), (1)

where{ψ(r)} are orthogonal single particle wavefunctions andV(r) is the total potential of
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the system. There are two main strategies for solving Eq. (1), reflecting two distinct types
of physical problems:

The first class of physical problems requires the calculation of allNocc eigensolutions
of Eq. (1) corresponding to theNocc occupied states. For example, if Eq. (1) corresponds
to a 1000 atom Si cluster, there areNocc= 1000× 2 doubly occupied levels for this four
valence electron/atom system. The need to solve for all occupied levels stems from the
need to determine the atomic positions or vibrational properties. Since atomic positions
(vibrations) depend on the first (second) derivatives of the total energy with respect to
displacements, and since the total energy depends on allNocc eigensolutions of Eq. (1),
these types of physical problems require a “full solution” of Eq. (1).

One also needs to calculate allNocc eigensolutions to determine equilibrium atomic po-
sitions in those problems where the geometry is difficult to guess or approximate at the
outset. This includes molecular shapes, surface reconstruction patterns in semiconductors,
atomic rebonding next to defects in insulators, and structural phase transitions under pres-
sure. For this class of physical problems one needs in fact to solve Eq. (1) iteratively, since
V(r ) is unknown at the outset, and since it depends functionally on allNocc solutions{ψi }
via V(r )=V [{ψ i , i = 1, . . . ,Nocc}]. The two leading methodologies that specify this func-
tional relationship are the Kohn–Sham [1] approximation to the density functional theory [2]
and the Hartree–Fock method [3], both of which provide a specific functional relationship
between{ψi , i = 1, . . . ,Nocc} andV(r ) of Eq. (1). Since allNocceigensolutions are needed,
and since the orthogonalization ofNocc solutions scales asN3

occ, the computational effort
here scales asN3, whereN∝ Nocc is the number of atoms. This limits the applicability of
this approach to systems containing only a few hundred atoms.

The second class of physical problems requires the eigensolutions of Eq. (1) in only a
small energy range, e.g., just below and above the Fermi energy. This is appropriate for
those physical problems where the total energy is not needed, because the atomic positions
and the potentialV(r ) can be modeled at the outset or are given. For example, free-standing
nanostructures made of>1000 atoms often possess bulk-like interatomic distances which
are known; in strained nanostructures one can accurately evaluate the structural parameters
from continuum elasticity [4] or atomistic elasticity [4, 5] (e.g., the valence force field, VFF)
without having to solve Eq. (1). For these types of problems, it would be wasteful to solve for
all eigensolutions of Eq. (1), as the physical interest often lies within a narrow energy range
(e.g., the optical transitions across a band gap). Naturally, solving Eq. (1) for only a subset
of the eigensolutions means that we cannot constructV(r )=V [{ψ i , i = 1, . . . ,Nocc}], but
must knowV(r ) at the outset. This is the case whenV(r ) is some external potential (e.g.,
the “confining potential” in nanostructures), when it can be constructed as a superposition
of screened ionic pseudopotentials [6] (the empirical pseudopotential method [7]), or when
one can approximateV(r ) by first solving Eq. (1) self-consistently for smaller subsystems
and then assembling them together.

Very often, the system size in this class of problems is very large, ranging from a few
thousand atoms (e.g., free standing quantum dots [8–11], composition modulations in alloys
[12], random superlattices [13], short range order [14], impurities [15], ordered alloys [16])
to a few million (e.g., embedded quantum dots [17]. Two techniques enable us to solve such
large-scale problems:

(i) The folded spectrum method (FSM) [18, 19] allows us to calculate directly the
band edge states without calculating all the other states below the band edge. As a result,
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the method hasO(N) scaling for a fixed number of states. Section II of this paper describes
the computational aspects of the folded spectrum method in detail. This method has been
applied to the study of free-standing [8–11] and embedded [17] quantum dots, as well as to
various inhomogeneous alloys [12, 14, 16], superlattices, [13] and impurities [15].

(ii) The other technique involves an efficient parallel implementation of the algorithm
using a specialized parallel fast Fourier transformation (FFT). To simulate a system contain-
ing a million atoms, parallel computation becomes necessary to obtain the required memory
and computer power to perform the calculation on a reasonable timescale. Since the wave-
functionsψi (r) are expanded in a plane-wave basis, the most time-consuming operation to
solve Eq. (1) is the FFT. In our current ESCAN (Energy SCAN) code, an efficient parallel
FFT subroutine is used to transform the wavefunction from plane-wave representation to a
real space grid. The parallel FFT is described in detail in Section III.

In Section IV, we discuss speed-up curves for a few different-sized heterostructure systems
on different numbers of processors of a Cray T3E computer. In Section V we present an
example application of this code to the calculation of an embedded quantum dot system of
one-half million atoms.

II. THE FOLDED SPECTRUM METHOD

The central idea of the folded spectrum method [18, 19] is that an eigensolution (ε, ψ)
(we drop the subscripti ) of Eq. (1) also satisfies

(Ĥ − εref)
2ψ = (ε − εref)

2ψ, (2)

whereεref is a fixed reference energy. Furthermore, theNoccth (Nocc+ 1th) state, counted
from the bottom of the energy spectrum ofĤ , becomes the lowest state in the spectrum
of (Ĥ − εref)

2 if εref is placed inside the band gap and close to the top of the valence
band (bottom of the conduction band). This is illustrated in Fig. 1. (The idea of using the
squared Hamiltonian was used in the residual minimization method approach to iteratively
diagonalize large matrices [20].) This fact is used in the FSM to calculate the band edge

FIG. 1. Folded spectrum energy scheme. The spectrum ofĤ has been folded atεref into the spectrum of
(Ĥ − εref)

2. The valence band maximum (VBM) state and the conduction band minimum (CBM) states have
become the lowest states in the spectrum of(Ĥ − εref)

2.
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state{ψ} by seeking the variational minimum of

F = 〈ψ |(Ĥ − εref)
2|ψ〉. (3)

Unlike the variational minimum of〈ψ |Ĥ |ψ〉, which yields the lowest energy state ofĤ ,
the minimum solution ofF gives the band edge states ifεref is placed inside the band gap.
Although simple algorithmically, the real challenge of the FSM is to develop a scheme
which findsψ efficiently from the minimization ofF . This is not an easy task because
changingH to F significantly increases the condition number of the linear operator (the
matrix) [21]. We have used the conjugate gradient method to solve the variational minimum
of F (this is described in detail in Ref. [19]). The Lanczos method is also appropriate for
this type of problem, and a study of a variant of the method applied to the FSM is presented
in [22].

To explain how we use the conjugate gradient method for this problem we must go into
more detail of the plane-wave expansion for the wavefunctions. In a plane-wave represen-
tation the wavefunctions can be written as

ψ(r) =
∑

q

a(g)ei g·r . (4)

The selection of the number of plane-waves is determined by a cutoffEcut in the plane-wave
kinetic energy1

2|g|2, where{g} are the reciprocal lattice vectors. The wavefunctionψ is
stored in reciprocal space by its coefficientsa(g). It is transformed onto a real space grid
ψ(r) by applying a parallel FFT, which will be described in the next section.

Application of (Ĥ − εref)
2 to ψ is carried out [19] by twice applying [−12∇2+V(r) −

εref] to ψ . The term− 1
2∇2ψ is computed in reciprocal space, whilleV(r)ψ(r) is obtained

by using an FFT to transforma(g) to real space,ψ(r), then applyingV(r) toψ(r) and trans-
forming the product back tog space. The result can be cast in the same form as

∑
g c(g)ei g·r

(with the same energy cutoff for{g}). Then [− 1
2∇2+V(r) − εref] is applied again to this

function to get the final resultF . Once F is obtained, we minimize it with respect to
the variational wavefunction coefficientsa(g), using the preconditioned conjugate gradient
method [23]. The conjugate gradient method is defined as a series (indexed by superscript
{ j }) of sequential line minimizations of the task functionF . A line minimization implies
adding a search wavefunctionPj (r) to the current wavefunctionψ j (r) and constructing a
new wavefunctionψ j+1(r),

ψ j+1(r) = ψ j (r) cos(θ)+ Pj (r) sin(θ), (5)

which minimizesF at a value ofθ . In this procedure, the search functionPj (r) is made
orthogonal toψ j (r). The next search directionPj+1 is given by

Pj+1(g)= A(g)χ j+1(g)+ β j Pj (g), (6)

where

χ j+1(r) ≡ ∂F

∂ψ j+1(r)
=
[
−1

2
∇2+ V(r)− εref

]2

ψ j+1(r). (7)
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The preconditionerA(g) is ag-space function

A(g)= E2
k(

1
2g2+ V0− εref

)2+ E2
k

, (8)

whereV0 is the average potential andEk is the average kinetic energy of the wavefunctionψ .
Theβ j in Eq. (6) is determined using the Polak–Ribiere formula [21]:

β j =
∑

g A(g)[χ j+1(g)− χ j (g)]χ j+1(g)∑
g A(g)χ j (g)χ j (g)

. (9)

Usually, a few wavefunctions{ψi } are minimized simultaneously while being kept mutually
orthogonal.Nl line minimization steps are carried out for each wavefunction followed by a
subspace diagonalization based on(Ĥ − εref)

2. Then, we start another sequence of line min-
imization iterations. This forms an outside loop. This algorithmic structure is the same as
in the minimization of〈ψ |Ĥ |ψ〉 in the conventional conjugate gradient method [23]. At the
end of the minimization, to unambiguously obtain the eigenenergies{εi } of Ĥ , a subspace
diagonalization based on̂H is carried out. We useNl ∼ 100 (the square of typicalNl values
used in conventional conjugate gradient methods based onĤ ). The number of outside loops
is typically 5–10, to converge to an accuracy of 10−6 Ryd in the Raleigh quotient of the
wavefunction. This is about the same number of outside iterations as is used in conventional
methods. Following the above procedure, the computational effort to solve for each wave-
functionψi (r ) scales linearly with the system size,N (more exactly, it scales asN ln N
due to the FFT). Thus if we increase the size of the system, always calculating the same
number of wavefunctions, then the computational cost scales linearly with the system size.

III. PARALLELIZATION STRATEGY

The two most important criteria driving the choice of any parallelization strategy are
equal division of the computational workload among the processors (load balancing) and
minimization of the communications. Due to the plane-wave expansion used in the ESCAN
code the parallelization scheme we have chosen has strong similarities to those used forab
initio plane-wave codes [24, 25] but there are some differences. In the case of the ESCAN
code, since we calculate a small number of electronic states, the FFT will dominate the
calculation time for all system sizes (typically it takes more than 80% of the total run time).
In ab initio plane-wave codes theN3 scaling of the orthogonalization step will dominate as
we go to large systems while the FFT part of the calculation (scaling asN2 ln N) dominates
for smaller systems. Therefore, inab initio codes, load-balancing schemes are typically
driven by the orthogonalization part of the calculation, distributing the same number of
wavefunction coefficients to each processor. This is done either by giving as near as possi-
ble an equal number of bands to each processor [25] or by dividing up theg vectors for each
band among the processors, giving as closely as possible an equal number ofg vectors to
each processor. Distribution by bands is not possible for the ESCAN code, as we normally
calculate only a small number of bands, typically four to six, so we must divide theg
vectors among the processors. While parallelization over thek points is another possibility,
we are typically using only thek= 0, 0 point in the ESCAN calculations. The main dif-
ference between a load-balancing scheme based on a division ofg vectors for ESCAN and
a self-consistent code is that the former is driven by the requirement of load balancing the
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FIG. 2. Distribution ofg vector columns to three processors. Theg vector columns are produced by dividing
the sphere ofg vectors intozdirection columns (see Fig. 3a). The columns are then ordered by length and assigned
to the three processors as shown, with processor zero being assigned all the red columns, processor one the blue
columns, and processor two the green columns.

three-dimensional distributed FFT rather than the orthogonalization part. Distributed 3d
FFTs are among the most demanding algorithms on the interconnect system of a parallel
computer as the communications are global (there is no physical locality in the communica-
tion structure) and of significant size (the complete data set is communicated). We will now
describe in more detail our approach to parallelizing the FFT to load balance the calculation
and minimize the communications. Our approach is similar to the method used in Ref. [24]
for ab initio plane-wave codes.

In reciprocal space the data set representing a band is a sphere of points or more generally
an ellipsoid. In this section, for simplicity, we will assume the data set is a sphere and the
grid in real space is a cube. Our parallelization scheme is easily extended to the more general
case of an ellipsoid. To perform a three-dimensional FFT it is necessary to perform one-
dimensional FFTs in each of the three dimensions. We work with a data order of (x, y, z) in
real space and (z, y, x) in g space. Library FFTs usually return the data in the same order as
provided but in our application it is not necessary for the data to have the same order. This
avoids a global transpose and the associated communications. In order to load balance for
the first step in the 3d FFT, where we perform one-dimensional FFTs on all thez-columns,
it is necessary to have the same number ofz-columns ofg vectors on each processor. A
second weaker constraint to the load balancing is that the number ofg vector coefficients
should not vary too much between the processors, as this would result in some processors
requiring much more memory than others and hence reduce the size of systems that can be
run on a given number of processors. In order to satisfy these two constraints we used the
following load-balancing scheme (see Fig. 2):

1. Divide the sphere ofg vectors into columns in thez direction; each column is
defined by a (gx, gy) index (see Fig. 3a).

2. Order these columns in descending order according to their length.
3. Assign these columns to the processors as shown in Fig. 2.

In this way we give, as closely as possible, an equal number of columns to each processor
while still having approximately the same number ofg vectors on each processor. Now
that we have determined theg space data layout we can describe the distributed three-
dimensional FFT. Allg space calculations performed in the code are done with this data
distribution.
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FIG. 3. Parallel three-dimensional FFT. This shows which processors deal with which part of the grid during
the three dimensional FFT. The colors red, blue, and green correspond to the part of the grid that resides on
processors zero, one, and two (for more details see text in Section III).

The size of the real space grid for the potential is typically taken to be twice the diameter
of the g space sphere. A large saving in computations and communications can be made
by not performing FFTs on the zero columns and not transforming the zero columns. At
each step of the distributed 3d FFT, the data we are working on are expanding out to fill
the full real space grid. For this reason it is inefficient to use FFT parallel libraries, which
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cannot take advantage of this saving and often have very restricted data layouts such as
the requirement that each processor must hold a complete plane of data. Starting with the
z-column distribution ofg vectors described above the three-dimensional FFT on a single
band is performed in the following way (see Fig. 3):

1. Each processor pads out the ends of each of thez-columns ofg vector coefficients
that it holds with zeros to form full lengthz-columns on each processor. The complete data
set is now a cylinder of length 2d and diameterd, whered is the diameter of the originalg
vector sphere and 2dis the cube size (see Fig. 3b).

2. Each processor performs one-dimensional FFTs on its set ofz-columns.
3. The cylinder of data is now reorganized fromz-columns toy-columns (ordered by

their x, z indices) with each processor now holding a contiguous set ofy-columns. Global
data redistribution is required at this step (i.e., going from Fig. 3b to Fig. 3c), as can be seen
by the changes in color of the data elements. Each processor is given as closely as possible
the same number ofy-columns.

4. They-columns (which are sections through the cylinder) are now padded with zeros
at the ends to form full-length columns. The complete data set is now a slab of dimension
d in thex direction and 2din the other directions (see Fig. 3d).

5. Each processor performs one-dimensional FFTs on its set ofy-columns.
6. The slab of data is now transformed fromy-columns (x, z ordered) tox-columns

(y, z ordered) with each processor now having a set of contiguousx-columns (i.e., going
from Fig. 3d to Fig. 3e). Each processor is given as closely as possible the same number of
x-columns. Communications are minimized at this step since most of the transformations
are local to the processor with only data at the interfaces of the colored blocks being
communicated. In the ideal case where there are complete (y, x) planes on each processor
the transpose can be done locally on each processor and there are no communications. Due
to our choice of data layouts in the FFT the main communications are in step 3, where the
data set (the cylinder) is much smaller than the slab.

7. Thex-columns are now padded at the ends with zeros so the global data set is now
the complete cube of side 2d(see Fig. 3f).

8. Each processor performs one-dimensional FFTs on its set ofx-columns, producing
the final distributed real space representation of the wavefunction.

The reverse of this process is performed to go from real space tog space. In the commu-
nications routines in the FFTs, to reduce latency effects as much as possible, each processor
gathers the data it has to send to each of the other processors before sending. In the case
of a 0 point calculation we follow the same procedure but work with a half sphere ing
space.

IV. CODE PERFORMANCE

We have tested the speed of our program on an InAs/GaAs quantum dot system. The po-
tentialV(r) is constructed as a superposition of screened atomic empirical pseudopotentials.
More explicitly, we have

V(r) =
∑
Rα

vα(|r − Rα|), (10)
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where{Rα} are the atomic positions of atom typeα. The spherical atomic empirical pseu-
dopotentialsvα(r ) are obtained via a fit to the bulk band structure of the constituent mate-
rials [6]. The empirical pseudopotentials of Ref. [26] are used for InAs and GaAs. Using
this method, the potentialV(r) of a million atom system can be readily constructed. The
main task here is to calculate the wavefunctionsψi (r) near the band edge of the energy
spectrum (i.e.,i near Nocc). A 5 Ryd cutoff energy is used for the plane-wave basis in
Eq. (4).

To test the speed of the code for different numbers of processors and different system sizes
we chose three InAs/GaAs quantum dot systems containing 8000, 97,336, and 1,000,000
atoms (see Fig. 4). The real space grid sizes for the potential for these systems are 1283,
2883, and 5763. The number of processors we tested ranges from 2 to 512. For reasons of
memory the 97,336 atom system does not run on fewer than 8 processors and the 1,000,000
atom system does not run on fewer than 128 processors. The timings are shown for one
state, with 50 line minimizations and without spin–orbit interactions. The speedup of the
code is extremely good, with only the smaller systems showing poor performance for
very large processor counts that they would typically not be run on. As the number of
processors increases, the ratio of communications to calculations increases and the speedup
becomes less linear. When there is less than a full (y, z) plane on each processor this also
causes greatly increased communications as is the case of the 8000 atom system on 256
and 512 processors (real space grid size is 1283). The results presented here are for a
Fortran90 and SHMEM (the low-level communication library on Cray and SGI machines)
version of the code. MPI versions of the FFTs have a less linear speedup on the Cray
T3E.

FIG. 4. Speedup curves on the Cray-T3E900 parallel supercomputer for three different sizes of InAs/GaAs
quantum dots.
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V. APPLICATION: ELECTRONIC STATES OF A PYRAMIDAL QUANTUM DOT

The ESCAN code is particularly suited to studying quantum dots, as it is reasonably
straightforward to construct accurate empirical pseudopotentials for these systems, and the
number of atoms, while being beyond the size possible withab initio codes, is within
the reach of the parallel ESCAN code. In this section, to illustrate the applicability of the
ESCAN code to these types of problems, we will present some results for a self-assembled
pyramidal quantum dot with one quarter million atoms.

Self-assembled semiconductor quantum dots have received a lot of attention recently
[27]. The most interesting properties of these quantum dots is the change in the band gap
as a function of the quantum dot sizes and the physical confinement of the band edge
electronic states inside the quantum dot. We have calculated a pyramidal shaped InAs
quantum dot embedded in a GaAs matrix. The base length of the pyramid is 20a, where
a= 5.653Å is the GaAs lattice constant. The height of the pyramid is 10a. This particular
dot was discussed in Ref. [26]. The atomic positions are relaxed from the ideal zinc blende
structure due to the lattice mismatch between InAs and GaAs. This relaxation is calculated
using a atomistic valence force field model [5]. The resulting{Rα} is used in Eq. (10)
to calculateV(r). Spin–orbit interaction is represented as an atomic nonlocal part in the

FIG. 5. Charge density isosurface plots of the CBM and VBM states for a pyramidal quantum dot (InAs
pyramid placed inside a GaAs matrix) of base size 113Å. The complete system contains about 250,000 atoms.
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potential. As a result, the wavefunctionψi (r) has spin-up and spin-down components. The
relaxed InAs pyramid is placed inside a 28a× 28a× 30a GaAs matrix periodic supercell.
The resulting system contains one quarter million atoms. We have calculated the four
conduction band minimum (CBM) states and four valence band maximum (VBM) states.
The real space grid size is 448× 448× 480. On a 128-processor run, each processor holds
298 z-columns and holds on average 42,300g coefficients for each wavefunction. The
number ofg coefficients varies from 42,284 to 42,310, which balances the memory usage
on each processor. The whole calculation takes about 20 h on 128 processors of a Cray T3E
computer.

The band gap increases from 0.41 eV for bulk InAs to 0.96 eV in the quantum dot. The
charge density of the four CBM states and four VBM states are plotted in Fig. 5. They are
all localized inside the quantum dot. A more detailed account of this work has been reported
in [26].

VI. CONCLUSION

We have introduced an atomistic approach to calculating the electronic states of sys-
tems up to one million atoms. In this approach, the wavefunction is expanded using a
plane-wave basis, as in conventionalab initio calculation, but the potential is constructed
non-self-consistently from an atomistic empirical pseudopotential. The calculation of large
systems is made possible by two techniques: (1) the folded spectrum method introduced
previously [18, 19], which reduces the calculation effort from the conventionalO(N3) scal-
ing to O(N) scaling, for a fixed number of electronic states; and (2) an efficient parallel
implementation of the algorithm using specialized FFTs, which is introduced here, allow-
ing the code to scale to hundreds of processors. With these techniques, we demonstrated
that direct million atom electronic structure calculations are possible. As the technological
and scientific importance of semiconductor nanostructures increase rapidly, such large-
scale accurate numerical calculations become more and more necessary. The empirical
pseudopotential calculation is much faster than the self-consistentab initio calculations,
and it avoids the band gap problem in such calculations [28] by fitting to the experimen-
tal band structure. On the other hand, it is much more accurate and provides possibilities
for further improvements on atomistic details compared to phenomenological continuum
theories like the k.p. model [29]. Thus it provides a useful middle ground for large-scale
electronic structure calculations for the near future. This approach is not limited to the em-
pirical pseudopotential method. It is applicable to any fixed, Fourier transformable potential
V(r ).
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