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PACS. 73.20.Dx – Electron states in low-dimensional structures (superlattices, quantum well
structures and multilayers).

Abstract. – The ground-state configuration of a system of N electrons or holes (N =
1 · · · 8) in strongly confined InAs, InP, and Si quantum dots (diameter ∼ 30 Å) is calculated
using pseudopotential single-particle energies and wave functions as input to the many-body
expansion of the total energy. The validity of generally accepted “rules of level occupation”
(Hund’s rule, Aufbau principle, and single spin-flip rule) is examined. We find that while Hund’s
rule is generally obeyed, deviations from the Aufbau principle are common when single-particle
energy levels are separated by a few meV. We also find a few instances where the single spin-flip
rule is violated, leading to “spin blockade” in linear conductance.

When a quantum dot is weakly coupled to an electron reservoir, either via a gate struc-
ture [1–4] or an STM tip [5,6], one can load, one by one, N electrons or holes into the dot by
changing the gate voltage or the tip-substrate bias. The ability to successively load carriers into
the dot enables one to study the “rules of level occupation” determining the sequence in which
the energy levels of the dot are occupied. These rules are best illustrated by considering a dot
with a pair of spatially degenerate single-particle energy levels ea1, ea2 and a non-degenerate
energy level eb such that the single-particle energies obey ε(ea1) = ε(ea2) < ε(eb).

i) Hund’s rule: Degenerate single-particle levels are occupied with a maximum number of
unpaired electrons. For example, the transition from N = 1 to N = 2 electrons will prefer

e↑a1
Hund−→ e↑a1 e↑a2 (1a)

over

e↑a1
Non-Hund−→ e↑a1 e↓a1 . (1b)

This preference stems both from the gain of attractive exchange energy between the two
parallel spin electrons in eq. (1a), and from the reduction of the repulsive electron-electron
Coulomb energy via the placement of each electron in a separate spatial orbital (ea1 �= ea2).

ii) The Aufbau principle: Non-degenerate single-particle levels are occupied in order of
increasing single-particle energy. For example, the N = 2 to N = 3 transition would prefer to
c© EDP Sciences
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complete the occupation of the (ea1, ea2) shell before beginning to occupy the next (eb) level:

e↑a1 e↑a2
Aufbau−→ e↑a1 e↓a1 e↑a2 (2a)

rather than

e↑a1 e↑a2
Non-Aufbau−→ e↑a1 e↑a2 e↑b . (2b)

This preference stems from the saving of the ea2 → eb promotion energy in process (2a).
iii) Single spin-flip rule: Each electron that is added to or removed from a dot changes the

total number of unpaired electrons Nu by no more than one (∆Nu = ±1). For example, the
transition from N = 3 to N = 4 will prefer to reduce Nu from three to two (∆Nu = −1):

e↑a1 e↑a2 e↑b
∆Nu=−1

−→ e↑a1 e↓a1 e↑a2 e↑b (3a)

rather than to zero (∆Nu = −3):

e↑a1 e↑a2 e↑b
∆Nu=−3

−→ e↑a1 e↓a1 e↑a2 e↓a2 . (3b)

In (3b) the addition of a single electron causes the spins of the previously present electrons
to flip. Violation of the “single spin-flip rule” will lead to “spin blockade” effects, whereby
transitions that violate this rule are missing in the linear conductance spectrum at zero tem-
perature [7].

While early on only large (> 500 Å) quantum dots could be fabricated [8], it is now
possible, via colloidal synthesis [9], to produce semiconductor nanocrystals whose dimensions
are smaller than the bulk exciton radius (“strong confinement regime”). The electron and hole
addition spectra in such dots are being studied experimentally using single-dot capacitance
spectroscopy [4] or single-dot tunneling spectroscopy [5, 6]. Hund’s rule was observed [3] to
be obeyed in large (∼ 500 Å), electrostatically confined quantum dots, and was predicted [10]
to be followed also in intermediate-size (∼ 200 Å) self-assembled quantum dots. It was not
examined for strongly confined nanocrystals (∼ 30 Å). To our knowledge, the validity of the
Aufbau principle was not discussed in detail. Finally, spin-blockade was predicted theoretically
for simple 2D models of dots [7]. It was not studied for strongly confined quantum dots.

In this paper we study theoretically Hund’s rule, the Aufbau principle, and the single spin-
flip rule for semiconductor quantum dots (InAs, InP, and Si) in the strong-confinement regime.
Unlike previous calculations based on a continuum, effective-mass description of the electronic
structure [10–12], we use here an atomistic approach to calculate the single-particle energies
and wave functions used as input to the many-body expansion of the total energy. We find
that while Hund’s rule is generally obeyed, deviations from the Aufbau principle are common
when single-particle energy levels are separated by a few meV. For example, processes similar
to the one described by eq. (2b) are the preferred transport channel in 30.3 Å diameter InAs
dots for both electron and hole injection. We also find a few cases where the single spin-flip
rule is not obeyed, and the transport channel (3b) is preferred over (3a). While the electron
and hole occupation sequence is sensitive to the spacing of the single-particle energy levels, and
therefore depends on the size and shape of the quantum dots, our results illustrate how single-
particle effects can combine with interelectronic Coulomb and exchange effects to produce a
particular occupation sequence.

In the screened Hartree-Fock approximation, the Hamiltonian of a charged quantum dot
with a full valence band and a few electrons in the conduction band can be reduced to an
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effective Hamiltonian involving only the conduction band electrons, provided that the electron-
electron interaction is screened by the quantum dot dielectric constant:

Ĥ =
∑

i

εi c†i ci +
1
2

∑
ijkl

V (ij, kl) c†i c†j cl ck , (4)

where c†i is the creation operator for an electron in the single-particle orbital i, ci is the cor-
responding destruction operator, εi is the single-particle energy of the orbital i, and V (ij, kl)
are the screened Coulomb matrix elements:

V (ij, kl) = e2
∑
σ,σ′

∫ ∫
ψ∗

i (r, σ) ψ∗
j (r

′, σ′) ψk(r, σ) ψl(r′, σ′)
ε(r, r′) |r − r′| dr dr′ , (5)

calculated using the single-particle wave functions ψi(r, σ). If we denote by n1, n2, · · · the
occupation numbers of the conduction band energy levels (with

∑
i ni = N) in a given con-

figuration, the diagonal matrix elements of the Hamiltonian (4) are

EN (n1, n2, · · · ) =
∑

i

εi ni +
∑
i<j

(Ji,j − Ki,j)ni nj , (6)

where Ji,j ≡ V (ij, ij) and Ki,j ≡ V (ij, ji) are the diagonal Coulomb and exchange energies,
respectively [13]. The off-diagonal matrix elements of the Hamiltonian (4) introduce coupling
between different configurations.

The single-particle energies εi and wave functions ψi(r, σ) are obtained here from the
solution of the Schrödinger equation

[
− h̄2

2m
∇2 + Vps(r) + V̂nl

]
ψi(r, σ) = εi ψi(r, σ) , (7)

where m is the bare electron mass, Vps(r) is the total pseudopotential of the system (dot
+ ligands that passivate the surface dangling bonds), and V̂nl is a short-range operator that
accounts for the non-local part of the potential and for spin-orbit coupling. The pseudopo-
tential Vps(r) is calculated from the superposition of local atomic pseudopotentials, which
are fitted to reproduce the measured bulk transition energies, deformation potentials, and
effective masses, as well as the bulk single-particle wave functions calculated using density-
functional theory in the local-density approximation [14]. The pseudopotentials used here are
from ref. [15] (InAs), ref. [16] (InP), and ref. [17] (Si). The solution of eq. (7) is performed
by expanding the wave functions ψi(r, σ) in a plane-wave basis set, and calculating the near-
edge states using the folded spectrum method [17]. The screened Coulomb integrals V (ij, kl)
of eq. (5) are calculated using the atomistic pseudopotential wave functions obtained from
eq. (7). We use a phenomenological model [18] for the microscopic dielectric function ε(r, r′),
which depends both on the interparticle separation (r − r′) and on the quantum dot radius
R. For r → r′ the dielectric function tends to 1 (regardless of the dot radius R), so that the
short-range interaction is unscreened. For |r − r′| 
 (interatomic bond length) the screening
function approaches the quantum dot macroscopic dielectric constant, which depends on the
dot radius R [18].

The many-particle Hamiltonian of eq. (4) is diagonalized in a single-configuration basis set.
In this approach, we construct a set of N -particle Slater determinants |n1, n2, · · · 〉, such that∑

i ni = N . We then retain the Hamiltonian matrix elements between Slater determinants
that are degenerate at the single-particle level, as a consequence of spatial degeneracy or spin



246 EUROPHYSICS LETTERS

e2

e1

h1 h2

e4

InAs,  InP Si

e3

h4

e3

h1 h2 h3

e2

h3

e5 e6
e4

e1

Fig. 1 – Schematic diagram of the near band-edge single-particle energy levels of InAs, InP, and Si
spherical quantum dots. The valence band levels are denoted as h1, h2, etc. in order of decreasing
energy starting from the valence band maximum, while the conduction band levels are denoted as e1,
e2, etc. in order of increasing energy starting from the conduction band minimum.

degeneracy of the single-particle orbitals. Finally, the ground-state configuration for a given
number N of electrons (or holes) is obtained by scanning different single configurations and
diagonalizing the many-particle Hamiltonian (4) in search of the configuration with the lowest
energy.

Our approximations are: i) The single-particle energies and wave functions are obtained by
solving eq. (7) for a fixed, non–self-consistently screened potential. This approximation was
examined in the case of an exciton [19] by comparing the electron-hole Coulomb integral ob-
tained using non–self-consistent wave functions with the result of a self-consistent calculation.
The difference was less than 5%. ii) The single-configuration approach used to diagonalize the
many-particle Hamiltonian of eq. (4) neglects correlation effects due to configuration mixing.
These effects were examined in ref. [18], and found to be small in strongly confined quantum
dots. iii) Surface-polarization effects, which exist if the dielectric constant of the dot is dif-
ferent from that of the surrounding material, are neglected. This appoximation is valid when
εout ∼ εin.

We consider here InAs, InP and Si spherical quantum dots having the Td point-group
symmetry. The surface dangling bonds are fully passivated. The single-particle energy levels
calculated using pseudopotentials [15–17] have the general pattern shown in fig. 1. Each
energy level in fig. 1 is doubly degenerate because of time reversal symmetry, and can be
occupied by two particles (either electrons or holes). In the case of InAs and InP dots the two
degenerate single-particle levels at the top of the valence band (h1 and h2) originate from the
bulk Γ8v states, and have an s-like envelope function. The next two degenerate hole levels
(h3 and h4) are also Γ8v-derived, but have p-like envelope functions. The electron level at
the bottom of the conduction band (e1) originates from the bulk Γ6c state and has an s-like
envelope function. In InAs dots the next three electron levels (e2, e3, and e4) derive from the
bulk Γ6c state and have a p-like envelope function [15] (e2 is split from e3 and e4 because of
spin-orbit coupling, as well as numerical approximations in the non-local pseudopotential); in
InP dots e2, e3, and e4 originate from the L6c bulk states and have s-like envelope function [16].
In the case of Si dots (where spin-orbit coupling is not included, and therefore only electron
states are considered) the six levels at the bottom of the conduction band originate from the
bulk conduction band minima located near the X points of the Brillouin zone and have an
s-like envelope function [20].
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Fig. 2 – Lowest-energy configurations of a system of N electrons (or N holes) in selected InAs, InP and
Si quantum dots. The header of each figure shows the single-particle energy levels grouped according
to their degeneracy. The number of unpaired electrons or holes in each configuration Nu is shown on
the left-hand side of each column. A solid square to the right of a configuration marks violation of
Hund’s rule, an asterisk denotes violation of the Aufbau principle, while a triangle indicates violation
of the single spin-flip rule.

Figure 2 shows the electron and hole occupation sequences of InAs, InP, and Si quantum
dots that give the lowest total energies in our single-configuration approach.

i) Hund’s rule: We find that when two or more energy levels are degenerate, double
occupation of one of them is generally avoided so as to maximize the exchange energy and
minimize the interelectronic Coulomb energy. For example, in the case of InAs and InP dots,
the two energy levels at the top of the valence band (h1 and h2) are degenerate, so if two
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holes are present in the quantum dot each of these two levels is occupied by one hole. In
the diagonal approximation of eq. (6), the energy difference between the Hund configuration
(h11 h12) and the non-Hund configuration (h

2
1 h02) is ∆E2 = E2(h11 h12) − E2(h21 h02) = Jh1,h2 −

Jh1,h1 − Kh1,h2. For a 30.3 Å diameter InAs dot we find ∆E2 = 166 − 172 − 6 = −12meV;
for a 36.5 Å diameter InAs dot ∆E2 = 137 − 141 − 4 = −8meV. Thus, only about half of
the stabilization of the Hund configuration comes from interelectronic exchange. The other
half comes from the reduction in the Coulomb repulsion achieved by placing the two holes
in different spatial orbitals. We find only one case where Hund’s rule is violated: When six
electrons are loaded into a 36.5 Å diameter quantum dot, two of them occupy the e3 level,
while the e4 level (degenerate with e3) is empty. This is due to the fact that the coupling
between the configurations (e21 e22 e23) and (e

2
1 e22 e24), which are degenerate at the single-particle

level, is sufficiently strong to overcome the exchange and Coulomb energies gained by placing
the electrons in the configuration (e21 e22 e13 e14).

ii) The Aufbau principle: We find several instances where the Aufbau principle is not
obeyed. For example, in InAs dots for Nholes = 3 · · · 7 the hole levels h3 and h4 are occupied
before the levels h1 and h2 are filled. For N = 3, the diagonal-energy difference between the
non-Aufbau configuration (h11 h12 h13) and the Aufbau configuration (h

2
1 h12) is ∆E3 = (εh2 −

εh3)+(Jh1,h3+Jh2,h3−Jh1,h1−Jh1,h2)−(Kh1,h2+Kh2,h3). In the case of the 36.5Å diameter
InAs dot we find ∆E3 = 23−22−14 = −13meV. Another example of violation of the Aufbau
principle is the 27.0Å diameter Si dot, where for Nelectron = 6 · · · 8 the shell consisting of the
electron levels e4, e5, and e6 is occupied before the level e3 is filled. For N = 6, the energy
difference between the non-Aufbau configuration (e21 e22 e13 e14) and the Aufbau configuration
(e21 e22 e23) is ∆E6 = (εe4 − εe3) + (2Je1,e4 + 2Je2,e4 − 2Je1,e3 − 2Je2,e3 + Je3,e4 − Je3,e3) −
(Ke1,e4 +Ke2,e4 +Ke3,e4 − Ke1,e3 − Ke2,e3) = 4− 6− 3 = −5meV. We see that the Aufbau
principle can be violated due to a delicate balance between promotion energies, Coulomb
repulsion, and exchange interaction.

iii) “Spin blockade”: The number of unpaired particles (electrons or holes) Nu usually
changes by one when a particle is added to the quantum dot: ∆Nu = ±1. This is the case
when upon addition of the N -th particle to the dot the configuration of the N − 1 particles
already residing in the dot remains unchanged. We find a few exceptions to this rule. In
the 28.0 Å diameter InP dot the addition of the 4-th hole to the dot causes the number of
unpaired holes to change from Nu = 1 to Nu = 4:

h21 h12 → h11 h12 h13 h14 . (8)

Similarly, when the 8-th electron is added to the 28.0 Å diameter InP dot the number of
unpaired electrons changes from Nu = 3 to Nu = 0:

e21 e22 e13 e14 e15 → e21 e22 e23 e24 . (9)

The energy difference between the configuration (e21 e22 e23 e24) and, for example, the configu-
ration (e21 e22 e23 e14 e15) is −2meV, which includes a −4meV single-particle energy difference, a
−8meV Coulomb energy difference and a +10meV exchange energy difference.

In conclusion, using a many-particle approach based on atomistic pseudopotential wave
functions, we have calculated the lowest-energy configuration of a system of N electrons or
N holes in small semiconductor quantum dots. We have discussed the validity of the “rules
of level occupation”, such as Hund’s rule, the Aufbau principle, and the single spin-flip rule.
While Hund’s rule is generally obeyed, we find several deviations from the Aufbau principle,
and a few cases where the single spin-flip rule is violated, leading to “spin blockade”.
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