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The electron and hole addition energies, the quasiparticle gap, and the optical gap of InAs, InP, and Si
guantum dots are calculated using microscopic pseudopotential wave functions. The effects of the dielectric
mismatch between the quantum dot and the surrounding material are included using a realistic profile for the
dielectric constang(r). We find that the addition energies and the quasiparticle gap depend strongly on the
dielectric constant of the environmesy,,, while the optical gap is rather insensitivedg,. We compare our
results with recent tunneling spectroscopy measurements for InAs nanocrystals, finding excellent agreement.
Our calculations for the addition energies and the quasiparticle gap of InP and Si nanocrystals serve as
predictions for future experiments.

. INTRODUCTION: THE PHYSICAL INTERPRETATION Ez[ei]: Eo+ 2861+Je1£1, ©)
OF ELECTRON AND HOLE CHARGING ENERGIES
whereJg, ¢, is the total Coulomb interaction between the two
Semiconductor quantum dots can be made with variouslectrons.J,, ¢; includes a direct electron-electron contribu-
dielectric coatings: Organic molecul&$other semiconduc- tion Jg[el (screened by the dielectric constant of the quan-
tors (e.g., self-assembled dotscore-shell nanocrystafs, tum dob, and a polarization contributiodfS', , which arises
lithographically etched dofs, strain-induced dof$, or  from the interaction of one electron with the image charge of
glasses. It has been realizéd that the dielectric environ- the other electron across the dielectric discontinuity at the
ment can profoundly affect the optical and transport propersurface of the dot.The charging energy., required to add
ties of semiconductor quantum dots. This can be seen bjhe second electron to the quantum dot is then
considering a quantum dot of dielectric constag} sur-
rounded by a material of dielectric constast;, subject to o= Ez[ef]— El[ei]=8e1+3e1,e1- (4)
the three processes described in Fig(al:electron addition,
(b) creation of an electron-hole pair, afc) optical excita- The energy of the quantum dot with two electrons in the
tion. single-particle levek; and one electron in the single-particle
(a) Electron addition.Figure Xa) depicts the process of levele; is
sequentially adding three electrons to an otherwise neutral
quantum dot. The initial configuration of the systéof en- Ejlee}]=Eq+2eq+ €er T Jere1t 2Je1e0— Kere2,
ergy Eg) consists of the neutral dot in the ground state and a 5)
Fermi reservoir at the reference energy;=0. The energy

of the quantum dot with one electron added to the conducvhere Key ¢, is the exchange energy between the parallel
tion levele, is spin electrons in the&l ande2 single-particle levels. The

charging energyus to add the third electron to the quantum
dot is then
Eilei1]=Eoteer. (1)

ol M3= ES[ eie%] - Ez[ei] =&t 2‘Jel,ez_ Kel,ez . (6)

The electron quasiparticle energyelzaglJrEgl can be
separated into a single-particle contributiagl, which de-
scribesquantum confinemerand a polarization contribution
3P which describegdielectric confinementThe single-
particle energysg1 is the energy of the added electron with
respect to the reference energy; in the absence of dielec- AlE) =

e . . —pur=J , 7
tric mismatch3P%' is the self-energy of the added electron in L= 27 1™ detel @

the electrostatic field generated by its own image charge dughile the addition energy for the third electron is

to the dielectric constant discontinuitg{,# €;,) at the sur-

face of the dof. The “charging energy"u, required to load A(Z%EM_Mzz(gez_8el)+(2361‘92_‘]e1‘e1)_ Ketez-
the first electron from the reservoir into the quantum dot is (8)
then

The electron “addition energiesA(Ne’),\‘+1 are defined as
the differences between the charging energigs For in-
stance, the addition energy for the second electron is

Similar expressions can be written for the addition energies
of the holesA ('), ; . For example, the addition energy of the
second hole in the single-particle leve] is

The energy of the quantum dot with two electrons in the "

single-particle levek, is Ajo=wm-1—p—2=Ihip1- 9

m1=Eq[e]-Ep=ge. (2
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FIG. 2. Schematic diagram of the conductance/voltage spectrum
Rb) Quasi - particle gap | of a semiconductor quantum dot. The charging energiggorre-
spond to the peaks in the conductance spectrum, while the addition
energiesAy v+, correspond to the spacings between the peaks.

has energyEi[e;]+E_4[h;], where E_;[h;]=Eq—ep,
z +3P%is the energy of the quantum dot with a hole in the
highest occupied orbitdl,. The quasiparticle gap is then

out

ol ol
+380+ 200

Eile1]+E_1[h1]-2E,= 8gap
(10)

gap

| (o) Optical gap

wheree ), =& —ep, is thesingle-particlegap. For an infi-
nitely large dot the polarization self-energies vanish, and the
quasiparticle gap approaches the bulk single-particle gap:
Egni— € gap The quasiparticle gap can be measured by tun-
neling spectroscopy experimetftsas the differences?

a

= u,— u_q1 between the energy required to load an e?e%tron
into the quantum dot and the energy required to remove an
electron from the quantum déFig. 2). We see that the qua-
siparticle gap depends, via the polarization self—enerﬁgk

FIG. 1. Part(a) illustrates the process of loading three electronsand 3%, on the dielectric environment.
into an otherwise neutral quantum dot. Réjtshows the process of (c) Creation of an interacting electron-hole pair via opti-
removing a single electron from a quantum dot and placing it intocal excitation.Figure Xc) describes the process of optically
an identical dot at infinite distance. P&ej describes the process of exciting an electron from the highest occupied orbitalto
optically exciting an electron-hole pair in a neutral quantum dot. the |owest unoccupied orbital; of a neutral quantum dot.

The energy required by this process is the optioal‘exci-

The electron and hole charging energigs and addition  tonic”) gaps°pt The optical gap differs from the quasipar-
energies Ay y+1 can be measured by charging spec-ticle gap by the total electron-hole interaction:
troscopies or tunneling spectroscopied Figure 2 shows a
schematic diagram of the conductance/voltage spectrum of a opt_ _ap _

; i €gap  €gap ‘Jhl,el- (11)

guantum dot. The charging energigg, correspond to the
peaks of the charging spectrum, while the addition energies
Ay n+1 correspond to the spacings between the peaks. sinceghe electron-hole Coulomb enerdy; 1 consists of a direct

di
the polarization energiesP®! andeo' depend strongly on the Coulomb contributiondi];, which does not depend on
dielectric constante,, of the surroundmg material, the

€out» and a polarization contributioﬂlﬁ‘{"el, which depends
charging energies.y, and the addition energiesy ., ; de-  Strongly oneqy. The polarization contributiodfy,; tends to
pend on the dielectric environment. ' cancel the self-energy contributidi$'+ 32" to the quasi-

(b) Creation of a noninteracting electron-hole paffig-  particle gap[see Eq.(10)]. As a result, the optical gap de-
ure 1(b) describes the process of removing an electron frompends weakly on the dielectric environment.
the highest-energy valence-band letiglof a neutral quan- The purpose of the present work is to clarify the depen-
tum dot and placing it into the lowest-energy conduction-dence of the three processes described in Fig. 4,Q@and to
band levele; of an identical dot located at infinite distance provide quantitative predictions for the addition energies and
from the first dot. The energy required by this process is théhe quasiparticle gap of InAs, InP, and Si quantum dots. We
difference between the ionization potential and the electromvill discuss in detail the effects of dielectric mismatch(@n
affinity of the dot and corresponds to the energy of a noninthe electron and hole addition energikg . 1, (b) the qua-
teracting electron-hole paftquasiparticle gap’). The initial ~ siparticle gapsgap, and(c) the optical ga@gg; We will also
configuration, consisting of the two neutral dots in thediscuss how to extract the single-particle gap from measure-

ground state, has energyeg, while the final configuration ments ofsggpor agg;. The practical significance of consider-
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ing different dielectric media stems from the fact that, due to

the long-range character of the Coulomb interaction and the En=Eo+ > (e)+3M)ni+ > (Ji,;—Kijpnin;, (12
exponential decay of the wave functions outside the quantum ' =

dot, dielectric confinement and quantum confinement can beh 0 th duction-band sinale-particl lev-
physically separated. In fact, by changing the dielectric en? erepil, are the conduction-band single-particie energy fev
vironmentfar away from the dot, while keeping the same els, % are the polarization self-energiek,; andK; | are
barrier material next to the dot, one can control and tailor théshpeec?il\?glt)r/on;ﬁ]lg(ritrogreciﬁlec:)moti:cir;)it%xnmsﬂr%%eergerogfletsﬁere_
electronic propertiegsuch asA and %) without af- o i . ;

fecting qu:ntLFl)m coﬁns;‘inememt.'\(‘e’rqftlhe singglaep)-particle ener- Conduction-band single-particle states;; =N). Equations

gies and wave functions (1)_, (3), a?d(S) 2are specizallcases of E_q.2) for the _configu-
rations 7), (e7), and (e7e5), respectively. A similar equa-
tion holds for the total energy of a systemdfholes in the
Il. PREVIOUS CALCULATIONS AND PRESENT valence band of the quantum dot:

OBJECTIVES

_There are two basic a_pproaches in the literature for calqu- E_y=Eq+ E (_8i0+§ipol)pi + 2 (Ji;—Ki)pip; -

lations of addition energies. The “standard model” of addi- [ 1<

tion spectra of quantum dots is the “constant capacitance” (13

model!* which assumes that the addition energlgy ; _

are constant and independent of the number of parbicle Herep;,p; are the hole occupation numbeis;p;=N), and

Ay nai1=€%/2C, whereC is the capacitance of the dot. This the_ single-particle energies are taken W|_th a minus sign indi-

simple model has been quite successful at describing Coating that the corresponding electronrésnovedfrom the

lomb blockade effects in large quantum dots, where the Coudot. The ground stat@, (of energyEy) corresponds to the

lomb energiege.g.,Je;¢1) are much larger that the single- configuration that minimizes the total energy . It need not

particle energy difference.g., »— ;). However, this ~ coincide with the configuration in which the single-particle

model fails to properly describe the addition spectrum oflevelse; are occupied in order of increasing energy.

smaller quantum dots, where the single-particle energy spac- The electron charging energyy is defined as the energy

ings become comparable with the Coulomb energies. required to add one electron to a quantum dot contaihing
A second class of modéfs?!treats the interplay between —1 electrons in the conduction band:

guantum confinement and Coulomb charging using the

effective-mass approximatiofEMA). However, the conse- un=ES—E%_;. (14)

guences of dielectric mismatch on the addition energies

Ay n+1 Were not discussed in these works. The effects oft js convenient to define the charging enegyy, of N holes

(882;) have been addressed by several auﬂﬂ?al’§7 USing ho|e) to a quantum dot Containing holes:

the EMA. The most widely studied problem has been the
dependence of the exciton energy on the dielectric constant
of the surrounding materidi?>~?6 The charging energy re-
quired to add two electrons to a quantum*fét®and the
binding energy of an impurity in a quantum &bhave also
been discussed in the EMA framework.

In the present work we advance a third approach to the
calculation of addition energies, based on pseudopotential Ag\ﬁ)NJrl:MNJrl_MN: (16)
single-particle energies and wave functions. Recent pseudo-
potential calculatiorf§ have demonstrated the importance of
using an atomistic description of the quantum dot electronic
structure for calculating the electron-hole Coulomb and ex- ) _
change energies. The pseudopotential approach provides an!n Eds.(12) and(13) we neglect(i) the coupling between
accurate description of the wave function decay outside théifferent Slater determinants.e., configuration-interaction
quantum dot and of the interband coupling due to quantun§ffects, and (i) the response of the single-particle wave
confinement, which are critical for a correct evaluation of thefunctions to the electrostatic field set up by the net charge

polarization and Coulomb energies in small nanocrystals. (i-€., self-consistent effedtsThese assumptions are suffi-
ciently accurate in small, three-dimensional quantum struc-

tures in the strong-confinement regif?e¢®?°In Ref. 28 we

[ll. METHOD OF CALCULATION compared the electron-hole Coulomb energies of quantum
dots calculated using unperturbed single-particle wave func-
tions with the results of a self-consistent Hartree calculation.

We approximate the many-particle wave functibg ofa  We found that the Coulomb energies change by less than 5%
system ofN electrons in the conduction band of a quantumwhen self-consistent effects are taken into account. Further-
dot by a single Slater determinant constructed from the wavenore, in Ref. 29 we showed that the main effect of configu-
functions{¢,,, n=1, ... N} of the N single-particle states ration interaction on the exciton energy levels is a nearly
occupied byN electrons. The corresponding total energy is uniform down shift of a few meV.

MfN:EgNH_EgN! (19

so that the charging energy of one holeus .
The electron and hole addition energies are then

AN 1= N1 - 17)

A. Single-configuration total energies and addition energies
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B. Single-particle energies and wave functions C. Direct and polarization interparticle Coulomb energies

The single-particle energies{ and wave functions The interparticle Coulomb energids; (screened by the
i(r,o) are obtained here from the solution of the Sehro macroscopiddielectric constantare given by
dinger equation:

[— V2V, () + Vo lii(r.0) =l (r.0).  (18) J=e f"”i“*")'z‘bi“)d“ @D

HereV,4(r) is the total pseudopotential of the systésot + where ®(r) is the electrostatic potential energy generated

surrounding material andV,, is a short-range operator that Py the charge distributiop;(r) =X, | lﬂi(_rv””z in a dielec-
accounts for the nonlocal part of the potential as well adrically inhomogeneous medium described by the position-
spin-orbit coupling. The local potentiad,(r) is calculated ~dependent dielectric constag(r). The electrostatic potential
from the superposition of screened atomic pseudopotential$®;(r) satisfies the Poisson equation:

V- e(r)Vd;(r)=—4mp;(r). (22)
vps(r>=2i Vo(T—=Ri4), (19)

The dielectric constané(r) changes smoothly frone;, to

€out at the interface between the dot and the barrier, with a
wherev ,(r—R; ,) is the atomic pseudopotential for an atom transition region of the order of the interatomic bond-length.
of type a located at the positioR; ,. The atomic pseudo- e use a cosinelike profile fas(r) in the interfacial region
potentialsv,, are fitted to reproduce the measured bulk tran-hetween the dot and the barrier. The dielectric constant of the
sition energies, deformation potentials, and effective masseguantum dot;, depends on the dot radits We use a modi-

as well as the bulk single-particle wave functions calculatedied Penn mod@&? to describe the size dependenceegf

using density-functional theory in the local-density The Poisson equatidiEq. (22)] is solved on a real-space
approximatiom The pseudopotentials used here are fromgrig using a finite-difference discretization of the gradient

Ref. 31(InAs), Ref. 32(InP), and Ref. 33Si). ~ operator. For a generic functidifr), the gradient of calcu-
Since only a few single-particle states in an energy win{ated at the grid point;=(xy,y;,z) is

dow around the band gap are required in the calculation of

the addition energies, we solve E(.8) using the folded f(Xit1,Yiz)—F(Xi—1,Yi,Z) ~

spectrum method**>which allows one to calculatselected VEi(xi.yi.z)= X x X

eigenstates of the Schiimger equation with a computational AR

cost that scales only linearly with the size of the system. In f(Xi,Yiv1.2) = F(X,Yi—1,Z) ~

this approach, Eq(18) is replaced by the folded-spectrum + Vii1—Y; )

equation e
f(Xi,Yi,Ziv ) = F(XiYi,Zi-1) A

[_V2+Vps(r)+VNL_8ref]Zi/fi(r,<T):(SP_Sref)zl//i(ra(Zg " Ziy1—Z 2 (23

The computational domain includes the quantum dot and a
whereg,; is anarbitrary reference energy. The lowest en- region of the surrounding material. The boundary conditions
ergy eigenstate of Eq20) coincides with the solution of the are obtained from a multipole expansion of the electrostatic
Schralinger equatioriEq. (18)] whose energy is closest to potential?® After discretization of the gradient operator, the
the reference energy,.;. Therefore, by choosing the refer- Poisson equation reduces to a linear system, which is solved
ence energy in the band gap, the band edge states can bging a conjugate-gradient minimization algorithm.
obtained by minimizing the functionalA[ ]=(|(H The total Coulomb energy; ; of Eq. (21) can be sepa-
—erer)?| ). rated into two physically distinct contributiong) the direct

The solution of Eq.(20) is performed by expanding the Coulomb energy
wave functionsy;(r,o) in a plane-wave basis set. To this

purpose, the total pseudopotenﬁbgs(r) is defined in a pe- — e? |¢i(r,o')|2|¢j(r’,a")|2 ,
riodically repeated superceld containing the quantum dot Ji,j:; 2, Ir—r'| drdr’,
and a portion of the surrounding material. The supeteit noo

sufficiently large to ensure that the solutions of E20) are 24
converged within 1 meV. The single-particle wave functionswhich corresponds to the interaction between two electrons
can then be expanded ag(r,o)=Z2sCi(G,0)exp(G-r),  (or two hole$ in the quantum dot as if the dielectric constant
where the sum runs over the reciprocal-lattice vec®ref  was uniform throughout the system, and identical to the mac-
the supercell). The energy cutoff of the plane-wave expan- roscopic dielectric constant of the quantum dgt and (ii)

sion is the same used to fit the bulk electronic structure, tehe polarization energy

ensure that the band-structure consistently approaches the

bulk limit for large quantum dots. The minimization of the Jrol=g, . —gdir, (25)
functional A[ ] is carried out in the plane-wave basis set o o

using a preconditioned conjugate-gradient algorithm. Morewnhich accounts for the effects of the dielectric mismatch at
details on the minimization procedure and the scaling withthe interface between the quantum dot and the surrounding
the system size can be found in Ref. 35. material and the ensuing surface polarization charge.
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InAs  Diameter = 36.5 A

FIG. 3. The electron polarization energies
309 and I, [part(a)] and the hole polarization
energies3 Y and JP3, [part (b)] of an InAs
quantum dot(diameterD=36.5 A), calculated
using pseudopotential wave functions, are shown
as a function of the dielectric constasy,;. Parts
(c) and(d) shows the difference between the po-
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The interparticle Coulomb energids; obtained from the ~ Screening radiusp., is the solution of the equation
solution of Egs.(21) and (22) are screened by themacro-  Sinh@p..)/(dp-)=€°(R), where eX°(R) is the electronic
scopic dielectric constant of the system. Theicroscopic ~ contribution to the macroscopic dielectric constant of the
dielectric functione(r,r’), however, tends to 1 wheri—r. quantum dot, which is obtained here using a modified Penn
As a result, the short-range interparticle interaction is essermodel?® As shown by Eq(28), the electronic dielectric con-
tially unscreened. Recent pseudopotential calculations havanteq(r,r’;R) approaches 1 whejr—r’|—0, and coin-
shown that for wave functions localized in a quantum dotcides with €9°(R) when|r—r'|=p. . Note thatp.. is typi-
this effect can significantly enhance the electron-hole intereally on the order of a few A. The ionic contribution
action. Therefore, we calculate the interparticle Coulomb ene,,(r,r’;R) is approximated following the polaronic model
ergiesJ; ; as of Haken?®' For an electron-hole pair:

Jij=I+3p9, (26) 1

whereJipf-" is the polarization contribution obtained from Eq. ¢, (r,r’;R)
(25 and Jﬁ'jr is the direct Coulomb energy calculated using

the microscopic dielectric function of the quantum dot: _{ 1 1
- dOt(R) dO[(R)
€ €,
Jr_g2 S ff|¢i(f,0)|2|l/fj(r',0')|2drdr, 27 ° / /
LT . , : exp(—|r—r’ +exp(—|r—r’
1] U‘U, ein(r,r ,R)|I’—r | X|:1— Xq | | ph)z XF( | | pe) . (29)

The dielectric functiore;,(r,r’;R) is decomposed into an 1o
electronic parte. and an ionic partei,, such that 1,  Here pne=(A/2mp cw o)™ wherem; . denotes the hole
=1/eg+1l€,,. The electronic contributiore(r,r’;R) is (h) and electror(e) effective mass and, g is the frequency

approximated following the Thomas-Fermi model proposecPf the bulk LO-phonon mode. The macroscopic dielectric
by Resta® constant e5°(R) = eX°(R) + A€, includes the electronic
contributione®((R) and the ionic contributiorh €ion, Which

1 we assume to be size-independ%’nAs the radius of the

guantum dot becomes small comparedptp and p,, the

€ell.rR) relative importance of ionic screening decreases.
. The polarization energiesd®® , and JP%., of a
o Y doi elel h1hl
[sinha(p-.—[r=r"D+alr—r' [/ €2 (R)ap.. 36.5-A-diameter InAs nanocrystals are shown in Figs) 3
= if [r—r'|<p. (28)  and 3b) as a function of the external dielectric constagy,.
VSR) if [r—1'[=p., We see thatf3),, and J%, depend strongly or,,, and

vanish wherey = €;,. Whene, = €, the polarization ener-
whereq=27"Y%(372ny) 3 is the Thomas-Fermi wave vec- gies become negative, thus acting to reduce the electron-
tor corresponding to the quantum dot charge densgjtyThe  electron (or hole-hol@ interaction. The pseudopotential-
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calculated polarization energies are compared in Figs. 3 IV. RESULTS
and 3d) with the results of an EMA calculation assumifiy

an infinite potential barrier at the surface of the quantum dot
and (i) a purelys-like envelope functiofl.We see that the
EMA calculation agrees well with the pseudopotential calcu
lation, the difference being less than 5 meV across the entir .
range of values ok,,;. This suggests that the polarization case of InP(Ref. 32 and Si(Ref, 33 nanocrystalsor a

— . o . large-gap barrier material in the case of InAs
energies)y; are rather insensitive to the details of the elec nanocrystai¥). The passivating potential effectively re-

tron and hole charge distributions. moves the dangling-bond states from the band gap. The elec-
tronic structure is rather insensitive to the details of the pas-
D. Polarization self-energies sivating potential, since the near-band-edge states are
localized in the interior of the nanocrystal. We assume that
the atoms in the dot are located at their ideal bulk positions.
. Recent ab initio total-energy calculatiof8 for small
pol_ < * ] ~120 atoms) hydrogen-passivated silicon nanocrystals
ol 2 EU: f Ui (ro)Vsns(roydr, (30 glave shown trzat tyhe S%-Si Fi)nteratomic bond length chz\nges
by less than 1% compared to the bulk equilibrium bond
where length.

We consider here InAs, InP, and Si spherical nanocrystals
of diameterD ranging from~27 to ~42 A. All the dots
have theTy point-group symmetry. The surface dangling
gonds are passivated using either ligandlike potenftialthe

The polarization seIf—energie%ipo' are given by

Vs(r) = lim [G(r,r") = Gpu(r.r')]. (31) A. Single-particle energy levels and symmetries

r'—r The near-band-edge single-particle energy levels are sum-
. ) ) . marized in Table I, together with the symmetry of the corre-

Here G(r,r’) is the Green’s function associated with the sponding wave functions. Figure 4 shows schematically the
Poisson equatiofEq. (22)], and Gyy(r.r') is the bulk  energy level diagrams of InAs, InP, and Si dots. Each energy
Green's function. We use the analytical expresSloaf  |evelin Table | and Fig. 4 is doubly degenerate because of
V(r) for a spherical quantum dot of dielectric constapt  time-reversal symmetry and can be occupied by two particles
embedded in a medium of dielectric constag: (electrons or holés We note the following(i) In the case of
InAs and InP dots the two degenerate single-particle levels at
the top of the valence bandh{ andh,) originate from the
bulk I'g, states and have aslike envelope function. The
next two degenerate hole levelhz(and h,) are alsol'g,

€in— €out

e o]
V()= 2R |=§:0 €ourt 1 (€int €ou)

(1+1)(r/R)? . derived, but havep-like envelope functions. The electron

e if r<R, level at the bottom of the conduction bane,) originates
" (320  from the bulkl's state and has aslike envelope function.

—I(r/R)~20+1) The next three single-particle electron leveds (e;, ande,)

if r>R. . A
T r=R have a different origin in InAs and InP quantum dots. In

InAs dotse,, ez, ande, derive from the buld’g. state and

Note thatVs(r) vanishes where.,=e,, and that ife,, have ap-like envelope functioft (e, is split frome; ande,
< €, the polarization potential is positive forx R and nega-  because of spin-orbit splitting, as well as numerical approxi-
tive for r>R. The singularity ofVg(r) at the surface of the mations in the nonlocal pseudopotentiabhile in InP dots
dot (r —R) is removed by applying a smoothing function 1 they originate from the_¢. bulk states and have asilike
—e~(=R? \Wherel is a broadening factor of the order of €nvelope fgnct_loﬁ.2 (ii) In the case of Si dotéwhere spin-
the interatomic bond length. orbit coupling is small, and thus is not included in the cal-

Figures 3a) and 3b) show the electron and hole polar- culationg the th_re.etz degenerate levels at the top of the
ization self-energie& 2 and3.P2 of a 36.5-A-diameter InAs  Valence band originate from the bulks, states and have an

1 1

nanocrystal as a function of the external dielectric constang!ik€ €nvelope function, while the six levels at the bottom of
€.t The pseudopotential result is compared in Fig&) 3 the conduction band originate from the bulk conduction-band
out-

and 3d) with an EMA calculation that assumes an infinite minima Iopated near thx poi_nts of the Brillouin zone and
potential barrier at the surface of the nanocry¥tane see have ans-like envelope functioff! These electron states can

that for e,<€;, the EMA polarization self-energies are sig- be classified according to their point-group symmetry,as

nificantly underestimated because the part of the wave fun@1: O &
tion localized outside the ddwhich is absent in the infinite-
barrier EMA calculatiopexperiences a negative polarization
potential. The electron and hole addition energigg v, are cal-
The electron and hole self-energies of small Si nanocryseulated using Eqs(16) and (17). In calculating them we
tals have been recently calculated from first principles usingnake the following approximationsi) The ground-state
the GW approximatiori® It was found that the GW electron configuration calculated foe,,= e, is also used for other
and hole self-energies are in excellent agreement with thealues of €,,,. Since the Coulomb energie} ; depend
results obtained from the classical electrostatic model of Eqweakly on ey, in a relatively wide range of values around
(32). €ou= €in (See Fig. 3, the ground-state configuration should

€out

B. Electron and hole addition energies
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TABLE |. Near-band-edge single particle states of passivated, spherical nanocrystals. The energies are
measured with respect to the highest occupied statg.(The point-group symmetry of the single-particle
wave functions of Si nanocrystals is indicated in parentheses. InAs results are from Ref. 31, InP from Ref. 32,
and Si from Ref. 33.

Valence level EnergyeV) Symmetry Conduction level  EnerdgV) Symmetry
InAs Diameter= 30.3 A
hl, h2 0.000 Iy, , slike el 1.706 e, slike
h3, h4 —0.038 g, , p-like e2 2.109 e, p-like
e3, ed 2.110 e, p-like
InAs Diameter= 36.5 A
hl, h2 0.000 Iy, , slike el 1.498 Ige, slike
h3, h4 -0.023 Ig,, p-like e2 1.890 e, p-like
e3, ed 1.902 I, p-like
InAs Diameter= 42.2 A
hl, h2 0.000 Iy, , slike el 1.310 Ige, slike
h3, h4 —0.014 Ig,, p-like e2 1.670 I'se, p-like
e3, ed 1.671 e, p-like
InP Diameter= 28.0 A
hl, h2 0.000 Iy, , slike el 2.404 e, slike
h3, h4 —0.089 g, , p-like e2 2.667 Lgc, Slike
e3, e4 2.725 Lgc, Slike
InP Diameter= 34.8 A
h1, h2 0.000 Ig, . slike el 2.124 Iec, slike
h3, h4 —0.053 Ig,, p-like e2, e3 2.432 Lgc, Slike
e4 2.442 Lec, slike
Si Diameter= 27.0 A
h1, h2, h3 0.000 I, , slike (ty) el, e2 2.117 Xic, slike (e)
e3 2.133 X1, Slike (a1)
e4, e5, eb 2.137 Xic, Slike (ty)
Si Diameter= 34.6 A
hl, h2, h3 0.000 Iy, slike (ty) el, e2,e3 1.814 Xic, Slike (ty)
e4 1.819 Xi¢, slike (ay)
eb, e6 1.822 Xic, Slike (e)
be unchanged in this range. For smaller valuesf (i.e., The addition energiesy v+ of a few representative dots

€our~1—4) the ground-state configuration may be differentare shown in Fig. 5 for a few values of the external dielectric

from the ground-state configuration &f,= €,,. However, constantey,. The following features can be noted) The

the difference in the addition energies will be of the order ofélectron and hole addition energies depend stronglygn

a few meV, i.e., only a few percent of the addition energiesTh'IS is due to the contribution of the polarization energies
P S po iti -

themselves(ii) We neglect the contribution of the exchange Ji,; (0 the addition energieay, ., [see, for example, Egs.

energiesk, ;, which are about an order of magnitude smaller(?) @nd(8)]. (i) The electron addition energies of InAs and
than the Céulomb energies InP quantum dots show a pronounced peakiNer2 (corre-
K

sponding taA$%). This peak is due to the filling of thelike
shell: adding a third electron to a quantum dot that already
InAs, InP Si contains two electrons in thelike shell requires occupying

a level of thep-like shell, which is about 0.3—-0.4 eV higher
in energy(see Table)l. The effects of single-particle gaps on

T ] e3 o4 — the addition spectrum are neglected in constant capacitance
T €5 b models.(iii ) A less pronounced peak appears in the electron
_ addition spectrum of InAs dots fdd=8. This peak corre-
ol el e2 e3 sponds to the filling of thep-like shell. (iv) Since the six

lowest-energy conduction levels of Si dots originate from the
bulk X;. valley and are very close in energgee Table),

b h2 _ the electron addition spectrum of Si dots appears featureless
— — h1 h2 h3 up to N=11. (v) The hole addition energies are relatively
__ | hs h4 I constant as a function dfl up to N=7. This is a conse-

quence of the fact that the hole single-particle energy levels
FIG. 4. Schematic diagram of the near-band-edge single-particlare closely spaced, so the addition energies are almost en-
energy levels of InAs, InP, and Si spherical quantum dots. tirely determined by the hole-hole Coulomb energies.
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FIG. 5. Electron and hole addition energies of InAs, InP, and Si nanocrystals for a few values of the dielectric egpstan
=1, 4, 20). For clarity purposes the hole addition energies are taken with a minus sign.

The addition energies of InAs nanocrystals have been rehe D=30.3 A InAs dot with the experimental valug{®)

cently measured by Baniet al1° using scanning tunneling =0.22 eV for the nearest size ddb &34 A), finding that
spectroscopy. In these experiments the dielectric constant of

th ; ; ) K it " €o= 6 gives a good fit. We then use this value & to
e environment &,,,) is an unknown quantity, as it corre- calculate the addition energies and the quasiparticle gap of
sponds to an average over the gold contact, the hexa

e . .
dithiol linking molecules, and the organic passivatitd.o q?(ﬁ]Sann?jnﬁggsézljitiafnae;u;c?on of S';?é Igﬁqczlrzlélai\;egielec—
compare our calculations with the experimental results Wé gl n+1 P 9.

first fit our calculated value of the addition energ)(f% for 5(a) with the experimental results of Bar)mst al. (¥Ve ;ee
' that we have a very good agreement MPZ andA7; using

a single value ok, ;. The calculated addition energy for the

InAs  dots third eIectron,A(f%, is somewhat smaller than the experi-
mental value. However, the nanocrystal size measured by

15 scanning-tunneling microscopy(STM) tends to be
o ' ' ' ' overestimated? and the actual size of the nanocrystals may
3 (®) _f_f_g'elasrrez be smaller. This would bring our results into even closer
a o8r 6.\9\6\3(;“ ated agreement with experiment.
'g, . + A(:)s
2 o4 <
: M A‘f"z C. Quasiparticle gap and optical gap
§ o0 I The quasiparticle gajulefined by Eq(10)] represents the
< 04 . , , 12 energy of anoninteractingelectron-hole pair in a quantum

' dot, while the optical gapdefined by Eq(11)] is the energy

22 ' ' ' ' of aninteractingelectron-hole pair in the quantum dot.
> ook (b) > Measured | | The quasiparticle gap of Si nanocrystals in vacuuag),(
= * * Calculated =1) was calculated by @iit, Chelikowsky, and Loui® us-
S 18l N 1 ing density-functional theory in the local-density approxima-
2 tion (LDA). They calculated the ground-state total energies
5§ er . 1 E;PA and EY5” of the charged nanocrystals as well as the
B 14l NS ground-state energgs°* of the neutral dot, and obtained
a 9ep the quasi-particle gap asgh,">"=E®A+E A —2E5".

1.2 30 35 20 e For a ~27-A-diameter Si nanocrystal the LDA-calculated

quasiparticle gap wasge,"**~2.5 eV. However, it is well
knowrf® that in the bulk limit the expressioB;°A+ELDA

FIG. 6. The electron and hole addition enerdipart (a)] and - 25" yields the LDA single-particle gap, which in the
the quasiparticle gafpart (b)] of InAs nanocrystals, calculated for CaSEZOf Siis about 0.68 eV lower than the bulk quasiparticle
€ou=6, are compared with the experimental data of Bagiiral. ~ gap-“ Therefore, the LDA-calculated quasi-particle gap of Si
(Ref. 10 as a function of size. The circle in pa@) denotes the Nnanocrystals must also be underestiméfelterestingly, if
addition energy used to fit the value &f,,. For clarity purposes, We estimate the LDA gap error in Si nanocrystals using the
the hole addition energy{"} is taken with a minus sign. bulk LDA gap error of 0.68 A, the quasiparticle gap be-

Dot diameter (A)
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FIG. 8. The optical gapggg of a 27.0-A-diameter Si nanocrys-
tal (solid line and filled circlesis compared withe J5; °“* calcu-

lated using Eq(35) (dashed line and empty circles

10 L L L L L L L L L

Since3 I+ 309= P2 (see Fig. 3 the last term in paren-
thesis in Eq.(33) is small, and the optical gap can be ap-
proximately written as

0 6 8 1012 14 16 18 20 & gar=Egap Iniets (34)
Dielectric constant &g
which does not depend o#,;. This successful approxima-
FIG. 7. Quasiparticle gap and optical gap of InAs, InP, and Sition has indeed been used in the literature for a long fime.
nanocrystals as a function of the dielectric constag. The  Theorists correct their calculated single-particle gaps by sub-
dashed lines denote the single-particle g@gp, which does not tracting the electron-hole Coulomb ener\@ﬂ{el to compare
depend oneo. with experiment. o
A different form for sggg was suggested by d@it, Che-

comes 2.3-0.68~3.2 eV, which is in good agreement with likowsky, and Loui€’” They proposed to calculate the opti-

our calculated value of 3.1 eV. cal gap as
The quasiparticle gap of InAs nanocrystals was measured
by Banin etal. using scanning-tunneling spectroscopy eggBOCngggp_Jgi{ ol (35

techniques? Figure 6b) compares the calculated quasipar-
ticle gap (using €,,=6) with the experimental results of ) _ ) o
Baninet al® As we can see the agreement is good, particuAS shown by Eq(33) this equation omits the polarization

larly if we take into account that the STM-measured size iscontributionJif,; , which is an integral part of the electron-

overestimated. hole interaction. As a result, the optical gap of Si nanocrys-
Figure 7 shows the quasi-particle gap and the optical gaf?!s in vacuum calculated bydit et al*? is overestimatetf
of a few representative nanocrystals as a function of the dicompared to conventional calculations based on(E8§). or
electric constant,,. Also shown is the single-particle gap (34). This is shown in Fig. 8, where the optical gaff;, of
£0a5= 01— £fy, Which is independent of,,.. We can see Eq.(33) is compared withs35; °“" calculated using E¢35).
that the quasiparticle gap depends stronglyegp, and de- We see that for small values ef,; Eq. (35 significantly
creases by almost 1 eV wha#n, changes from 1 to 20. overestimates the optical gap. The difference is as large as
This is a consequence of the fact that the polarization self=~1 eV for ,,=1.
energiesS PS' and =P, which enter the quasiparticle gap via ~ While eJ5 andegh, are measurable quantities, the single-
Eqg. (10), depend strongly om,,; (see Fig. 3. On the other particle gapegapis not, nor can it be derived from the knowl-
hand, the dependence of the optical gap e3p is rather  edge ofsgs, andsgggwithout theoretical intervention. Using
weak, as we can see from Fig. 7. This can be understood b¥q. (34) the single-particle gapgap can be extracted from
rewriting the optical gap of Eq(11), with the help of Eq.  the optical gapsJ%, by adding back the direct Coulomb en-
(10), as ergy Jii¢; - Banin et al’® attempted to extract the single-
particle gap from tunneling spectroscopy measurements by
subtracting from the measured quasiparticle g@ﬁ)f,ul
e (I e+ IRTer) ;("ef)*l [Eq. (1[2)] ;t%e] rgeasured eleﬁtron t?dgléf(;; tehr.1ergy
. = u,— u1 [EQ. (7)]. However, as shown by , this
=e0ap e T (SO SPI—IPT). (33 prldzcedure produces

opt _

€gap
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e~ A=l i (SPI+ 30— Jer o) #edey  (36) sitively on the dielectric constamb, of the surrounding ma-
_ _ terial via the self-energiesP® and the polarization energies
The error is EP+300—308 ) =39 o1~ —3% ;. Thus, JPS'. We compare the calculated addition energies of InAs

nanocrystals with recent spectroscopic restflfinding ex-
cellent agreement far, = 6. Our calculations for Si and InP
nanocrystals provide predictions for future single-electron
charging experiments.

el — A is smallerthane,,

equal toJy ;.

by an amount approximately

V. SUMMARY

In conclusion, we predict the effects of the dielectric en-
vironment on the electron and hole addition energies of
semiconductor quantum dots. Atomistic pseudopotential The authors acknowledge useful discussions with F. Re-
wave functions are used as input for the many-body exparboredo and A. Williamson. This work was supported by the
sion of the total energy of the charged dots. We find that théJ.S. DOE, OER-SC, Division of Materials Science, under
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