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Pseudopotential calculations of electron and hole addition spectra of InAs, InP,
and Si quantum dots

Alberto Franceschetti and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 5 November 1999!

The electron and hole addition energies, the quasiparticle gap, and the optical gap of InAs, InP, and Si
quantum dots are calculated using microscopic pseudopotential wave functions. The effects of the dielectric
mismatch between the quantum dot and the surrounding material are included using a realistic profile for the
dielectric constante(r ). We find that the addition energies and the quasiparticle gap depend strongly on the
dielectric constant of the environmenteout , while the optical gap is rather insensitive toeout . We compare our
results with recent tunneling spectroscopy measurements for InAs nanocrystals, finding excellent agreement.
Our calculations for the addition energies and the quasiparticle gap of InP and Si nanocrystals serve as
predictions for future experiments.
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I. INTRODUCTION: THE PHYSICAL INTERPRETATION
OF ELECTRON AND HOLE CHARGING ENERGIES

Semiconductor quantum dots can be made with vari
dielectric coatings: Organic molecules,1,2 other semiconduc-
tors ~e.g., self-assembled dots,3 core-shell nanocrystals,4

lithographically etched dots,5 strain-induced dots6!, or
glasses.7 It has been realized8,9 that the dielectric environ-
ment can profoundly affect the optical and transport prop
ties of semiconductor quantum dots. This can be seen
considering a quantum dot of dielectric constante in sur-
rounded by a material of dielectric constanteout, subject to
the three processes described in Fig. 1:~a! electron addition,
~b! creation of an electron-hole pair, and~c! optical excita-
tion.

(a) Electron addition.Figure 1~a! depicts the process o
sequentially adding three electrons to an otherwise neu
quantum dot. The initial configuration of the system~of en-
ergyE0! consists of the neutral dot in the ground state an
Fermi reservoir at the reference energy« ref[0. The energy
of the quantum dot with one electron added to the cond
tion level e1 is

E1@e1#5E01«e1 . ~1!

The electron quasiparticle energy«e15«e1
0 1Se1

pol can be
separated into a single-particle contribution«e1

0 , which de-
scribesquantum confinement, and a polarization contribution
Se1

pol , which describesdielectric confinement. The single-
particle energy«e1

0 is the energy of the added electron wi
respect to the reference energy« ref in the absence of dielec
tric mismatch.Se1

pol is the self-energy of the added electron
the electrostatic field generated by its own image charge
to the dielectric constant discontinuity (eoutÞe in) at the sur-
face of the dot.9 The ‘‘charging energy’’m1 required to load
the first electron from the reservoir into the quantum do
then

m1[E1@e1#2E05«e1 . ~2!

The energy of the quantum dot with two electrons in t
single-particle levele1 is
PRB 620163-1829/2000/62~4!/2614~10!/$15.00
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E2@e1
2#5E012«e11Je1,e1 , ~3!

whereJe1,e1 is the total Coulomb interaction between the tw
electrons.Je1,e1 includes a direct electron-electron contrib
tion Je1,e1

dir ~screened by the dielectric constant of the qua
tum dot!, and a polarization contributionJe1,e1

pol , which arises
from the interaction of one electron with the image charge
the other electron across the dielectric discontinuity at
surface of the dot.9 The charging energym2 required to add
the second electron to the quantum dot is then

m2[E2@e1
2#2E1@e1

1#5«e11Je1,e1 . ~4!

The energy of the quantum dot with two electrons in t
single-particle levele1 and one electron in the single-partic
level e2 is

E3@e1
2e2

1#5E012«e11«e21Je1,e112Je1,e22Ke1,e2 ,
~5!

where Ke1,e2 is the exchange energy between the para
spin electrons in thee1 and e2 single-particle levels. The
charging energym3 to add the third electron to the quantu
dot is then

m3[E3@e1
2e2

1#2E2@e1
2#5«e212Je1,e22Ke1,e2 . ~6!

The electron ‘‘addition energies’’DN,N11
(e) are defined as

the differences between the charging energiesmN . For in-
stance, the addition energy for the second electron is

D1,2
(e)[m22m15Je1,e1 , ~7!

while the addition energy for the third electron is

D2,3
(e)[m32m25~«e22«e1!1~2Je1,e22Je1,e1!2Ke1,e2 .

~8!

Similar expressions can be written for the addition energ
of the holesDN,N11

(h) . For example, the addition energy of th
second hole in the single-particle levelh1 is

D1,2
(h)[m212m225Jh1,h1 . ~9!
2614 ©2000 The American Physical Society
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The electron and hole charging energiesmN and addition
energies DN,N11 can be measured by charging spe
troscopies or tunneling spectroscopies.5,10 Figure 2 shows a
schematic diagram of the conductance/voltage spectrum
quantum dot. The charging energiesmN correspond to the
peaks of the charging spectrum, while the addition energ
DN,N11 correspond to the spacings between the peaks. S
the polarization energiesS i

pol andJi , j
pol depend strongly on the

dielectric constanteout of the surrounding material, th
charging energiesmN and the addition energiesDN,N11 de-
pend on the dielectric environment.

(b) Creation of a noninteracting electron-hole pair.Fig-
ure 1~b! describes the process of removing an electron fr
the highest-energy valence-band levelh1 of a neutral quan-
tum dot and placing it into the lowest-energy conductio
band levele1 of an identical dot located at infinite distanc
from the first dot. The energy required by this process is
difference between the ionization potential and the elect
affinity of the dot and corresponds to the energy of a non
teracting electron-hole pair~‘‘quasiparticle gap’’!. The initial
configuration, consisting of the two neutral dots in t
ground state, has energy 2E0, while the final configuration

FIG. 1. Part~a! illustrates the process of loading three electro
into an otherwise neutral quantum dot. Part~b! shows the process o
removing a single electron from a quantum dot and placing it i
an identical dot at infinite distance. Part~c! describes the process o
optically exciting an electron-hole pair in a neutral quantum do
-
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has energyE1@e1#1E21@h1#, where E21@h1#5E02«h1
0

1Sh1
pol is the energy of the quantum dot with a hole in t

highest occupied orbitalh1. The quasiparticle gap is then

«gap
qp 5E1@e1#1E21@h1#22 E05«gap

0 1Se1
pol1Sh1

pol,
~10!

where«gap
0 [«e1

0 2«h1
0 is thesingle-particlegap. For an infi-

nitely large dot the polarization self-energies vanish, and
quasiparticle gap approaches the bulk single-particle g
«gap

qp →«gap
0 . The quasiparticle gap can be measured by t

neling spectroscopy experiments10 as the difference«gap
qp

5m12m21 between the energy required to load an elect
into the quantum dot and the energy required to remove
electron from the quantum dot~Fig. 2!. We see that the qua
siparticle gap depends, via the polarization self-energiesSe1

pol

andSh1
pol , on the dielectric environment.

(c) Creation of an interacting electron-hole pair via opt
cal excitation.Figure 1~c! describes the process of optical
exciting an electron from the highest occupied orbitalh1 to
the lowest unoccupied orbitale1 of a neutral quantum dot
The energy required by this process is the optical~or ‘‘exci-
tonic’’ ! gap«gap

opt . The optical gap differs from the quasipa
ticle gap by the total electron-hole interaction:

«gap
opt5«gap

qp 2Jh1,e1 . ~11!

The electron-hole Coulomb energyJh1,e1 consists of a direct
Coulomb contributionJh1,e1

dir , which does not depend o
eout, and a polarization contributionJh1,e1

pol , which depends
strongly oneout. The polarization contributionJh1,e1

pol tends to
cancel the self-energy contributionSh1

pol1Se1
pol to the quasi-

particle gap@see Eq.~10!#. As a result, the optical gap de
pends weakly on the dielectric environment.

The purpose of the present work is to clarify the depe
dence of the three processes described in Fig. 1 oneout and to
provide quantitative predictions for the addition energies a
the quasiparticle gap of InAs, InP, and Si quantum dots.
will discuss in detail the effects of dielectric mismatch on~a!
the electron and hole addition energiesDN,N11, ~b! the qua-
siparticle gap«gap

qp , and~c! the optical gap«gap
opt . We will also

discuss how to extract the single-particle gap from meas
ments of«gap

qp or «gap
opt . The practical significance of conside

s

o

FIG. 2. Schematic diagram of the conductance/voltage spect
of a semiconductor quantum dot. The charging energiesmN corre-
spond to the peaks in the conductance spectrum, while the add
energiesDN,N11 correspond to the spacings between the peaks
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ing different dielectric media stems from the fact that, due
the long-range character of the Coulomb interaction and
exponential decay of the wave functions outside the quan
dot, dielectric confinement and quantum confinement can
physically separated. In fact, by changing the dielectric
vironment far away from the dot, while keeping the sam
barrier material next to the dot, one can control and tailor
electronic properties~such asDN,N11 and «gap

qp ) without af-
fecting quantum confinement~i.e., the single-particle ener
gies and wave functions!.

II. PREVIOUS CALCULATIONS AND PRESENT
OBJECTIVES

There are two basic approaches in the literature for ca
lations of addition energies. The ‘‘standard model’’ of add
tion spectra of quantum dots is the ‘‘constant capacitan
model,11 which assumes that the addition energiesDN,N11
are constant and independent of the number of particleN:
DN,N115e2/2C, whereC is the capacitance of the dot. Th
simple model has been quite successful at describing C
lomb blockade effects in large quantum dots, where the C
lomb energies~e.g.,Je1,e1) are much larger that the single
particle energy differences~e.g., «e22«e1). However, this
model fails to properly describe the addition spectrum
smaller quantum dots, where the single-particle energy s
ings become comparable with the Coulomb energies.

A second class of models12–21treats the interplay betwee
quantum confinement and Coulomb charging using
effective-mass approximation~EMA!. However, the conse
quences of dielectric mismatch on the addition energ
DN,N11 were not discussed in these works. The effects
dielectric mismatch on theoptical gap of quantum dots
(«gap

opt) have been addressed by several authors9,22–27 using
the EMA. The most widely studied problem has been
dependence of the exciton energy on the dielectric cons
of the surrounding material.9,23–26 The charging energy re
quired to add two electrons to a quantum dot9,22,25 and the
binding energy of an impurity in a quantum dot25 have also
been discussed in the EMA framework.

In the present work we advance a third approach to
calculation of addition energies, based on pseudopote
single-particle energies and wave functions. Recent pse
potential calculations28 have demonstrated the importance
using an atomistic description of the quantum dot electro
structure for calculating the electron-hole Coulomb and
change energies. The pseudopotential approach provide
accurate description of the wave function decay outside
quantum dot and of the interband coupling due to quan
confinement, which are critical for a correct evaluation of t
polarization and Coulomb energies in small nanocrystals

III. METHOD OF CALCULATION

A. Single-configuration total energies and addition energies

We approximate the many-particle wave functionCN of a
system ofN electrons in the conduction band of a quantu
dot by a single Slater determinant constructed from the w
functions$cn , n51, . . . ,N% of the N single-particle states
occupied byN electrons. The corresponding total energy
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EN5E01(
i

~« i
01S i

pol!ni1(
i , j

~Ji , j2Ki , j !ninj , ~12!

where« i
0 are the conduction-band single-particle energy le

els, S i
pol are the polarization self-energies,Ji , j and Ki , j are

the electron-electron Coulomb and exchange energies,
spectively, andni are the occupation numbers of th
conduction-band single-particle states (( ini5N). Equations
~1!, ~3!, and~5! are special cases of Eq.~12! for the configu-
rations (e1

1), (e1
2), and (e1

2e2
1), respectively. A similar equa

tion holds for the total energy of a system ofN holes in the
valence band of the quantum dot:

E2N5E01(
i

~2« i
01S i

pol!pi1(
i , j

~Ji , j2Ki , j !pipj .

~13!

Herepi ,pj are the hole occupation numbers (( i pi5N), and
the single-particle energies are taken with a minus sign in
cating that the corresponding electron isremovedfrom the
dot. The ground stateCN

0 ~of energyEN
0 ) corresponds to the

configuration that minimizes the total energyEN . It need not
coincide with the configuration in which the single-partic
levelsei are occupied in order of increasing energy.

The electron charging energymN is defined as the energ
required to add one electron to a quantum dot containingN
21 electrons in the conduction band:

mN5EN
0 2EN21

0 . ~14!

It is convenient to define the charging energym2N of N holes
as the energy required to add one electron~i.e., remove one
hole! to a quantum dot containingN holes:

m2N5E2N11
0 2E2N

0 , ~15!

so that the charging energy of one hole ism21.
The electron and hole addition energies are then

DN,N11
(e) 5mN112mN , ~16!

DN,N11
(h) 5m2N112m2N . ~17!

In Eqs.~12! and~13! we neglect~i! the coupling between
different Slater determinants~i.e., configuration-interaction
effects!, and ~ii ! the response of the single-particle wa
functions to the electrostatic field set up by the net cha
~i.e., self-consistent effects!. These assumptions are suffi
ciently accurate in small, three-dimensional quantum str
tures in the strong-confinement regime.20,28,29In Ref. 28 we
compared the electron-hole Coulomb energies of quan
dots calculated using unperturbed single-particle wave fu
tions with the results of a self-consistent Hartree calculati
We found that the Coulomb energies change by less than
when self-consistent effects are taken into account. Furt
more, in Ref. 29 we showed that the main effect of config
ration interaction on the exciton energy levels is a nea
uniform down shift of a few meV.
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B. Single-particle energies and wave functions

The single-particle energies« i
0 and wave functions

c i(r ,s) are obtained here from the solution of the Sch¨-
dinger equation:

@2¹21Vps~r !1V̂nl#c i~r ,s!5« i
0c i~r ,s!. ~18!

HereVps(r ) is the total pseudopotential of the system~dot 1

surrounding material!, andV̂nl is a short-range operator tha
accounts for the nonlocal part of the potential as well
spin-orbit coupling. The local potentialVps(r ) is calculated
from the superposition of screened atomic pseudopotent

Vps~r !5(
i

va~r2Ri ,a!, ~19!

whereva(r2Ri ,a) is the atomic pseudopotential for an ato
of type a located at the positionRi ,a . The atomic pseudo
potentialsva are fitted to reproduce the measured bulk tra
sition energies, deformation potentials, and effective mas
as well as the bulk single-particle wave functions calcula
using density-functional theory in the local-dens
approximation.30 The pseudopotentials used here are fr
Ref. 31~InAs!, Ref. 32~InP!, and Ref. 33~Si!.

Since only a few single-particle states in an energy w
dow around the band gap are required in the calculation
the addition energies, we solve Eq.~18! using the folded
spectrum method,34,35which allows one to calculateselected
eigenstates of the Schro¨dinger equation with a computationa
cost that scales only linearly with the size of the system
this approach, Eq.~18! is replaced by the folded-spectru
equation

@2¹21Vps~r !1V̂NL2« re f#
2c i~r ,s!5~« i

02« re f!
2c i~r ,s!,

~20!

where« re f is anarbitrary reference energy. The lowest e
ergy eigenstate of Eq.~20! coincides with the solution of the
Schrödinger equation@Eq. ~18!# whose energy is closest t
the reference energy« re f . Therefore, by choosing the refe
ence energy in the band gap, the band edge states ca
obtained by minimizing the functionalA@c#5^cu(Ĥ
2« re f)

2uc&.
The solution of Eq.~20! is performed by expanding th

wave functionsc i(r ,s) in a plane-wave basis set. To th
purpose, the total pseudopotentialVps(r ) is defined in a pe-
riodically repeated supercellV containing the quantum do
and a portion of the surrounding material. The supercellV is
sufficiently large to ensure that the solutions of Eq.~20! are
converged within 1 meV. The single-particle wave functio
can then be expanded asc i(r ,s)5(Gci(G,s)exp(iG•r ),
where the sum runs over the reciprocal-lattice vectorsG of
the supercellV. The energy cutoff of the plane-wave expa
sion is the same used to fit the bulk electronic structure
ensure that the band-structure consistently approaches
bulk limit for large quantum dots. The minimization of th
functional A@c# is carried out in the plane-wave basis s
using a preconditioned conjugate-gradient algorithm. M
details on the minimization procedure and the scaling w
the system size can be found in Ref. 35.
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C. Direct and polarization interparticle Coulomb energies

The interparticle Coulomb energiesJ̄i , j ~screened by the
macroscopicdielectric constant! are given by

J̄i , j5e(
s

E uc i~r ,s!u2F j~r !dr , ~21!

whereF j (r ) is the electrostatic potential energy genera
by the charge distributionr j (r )5e(suc j (r ,s)u2 in a dielec-
trically inhomogeneous medium described by the positi
dependent dielectric constante(r ). The electrostatic potentia
F j (r ) satisfies the Poisson equation:

“•e~r !“F j~r !524p r j~r !. ~22!

The dielectric constante(r ) changes smoothly frome in to
eout at the interface between the dot and the barrier, wit
transition region of the order of the interatomic bond-leng
We use a cosinelike profile fore(r ) in the interfacial region
between the dot and the barrier. The dielectric constant of
quantum dote in depends on the dot radiusR. We use a modi-
fied Penn model29 to describe the size dependence ofe in .

The Poisson equation@Eq. ~22!# is solved on a real-spac
grid using a finite-difference discretization of the gradie
operator. For a generic functionf (r ), the gradient off calcu-
lated at the grid pointr i[(x1 ,yi ,zi) is

“ f ~xi ,yi ,zi !5
f ~xi 11 ,yi ,zi !2 f ~xi 21 ,yi ,zi !

xi 112xi 21
x̂

1
f ~xi ,yi 11 ,zi !2 f ~xi ,yi 21 ,zi !

yi 112yi 21
ŷ

1
f ~xi ,yi ,zi 11!2 f ~xi ,yi ,zi 21!

zi 112zi 21
ẑ. ~23!

The computational domain includes the quantum dot an
region of the surrounding material. The boundary conditio
are obtained from a multipole expansion of the electrost
potential.28 After discretization of the gradient operator, th
Poisson equation reduces to a linear system, which is so
using a conjugate-gradient minimization algorithm.

The total Coulomb energyJ̄i , j of Eq. ~21! can be sepa-
rated into two physically distinct contributions:~i! the direct
Coulomb energy

J̄i , j
dir5

e2

« in
(
s,s8

E E uc i~r ,s!u2uc j~r 8,s8!u2

ur2r 8u
dr dr 8,

~24!

which corresponds to the interaction between two electr
~or two holes! in the quantum dot as if the dielectric consta
was uniform throughout the system, and identical to the m
roscopic dielectric constant of the quantum dot« in; and ~ii !
the polarization energy

Ji , j
pol5 J̄i , j2 J̄i , j

dir , ~25!

which accounts for the effects of the dielectric mismatch
the interface between the quantum dot and the surroun
material and the ensuing surface polarization charge.
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FIG. 3. The electron polarization energie
Se1

pol andJe1,e1
pol @part ~a!# and the hole polarization

energiesSh1
pol and Jh1,h1

pol @part ~b!# of an InAs
quantum dot~diameterD536.5 Å), calculated
using pseudopotential wave functions, are sho
as a function of the dielectric constanteout . Parts
~c! and ~d! shows the difference between the p
larization energies calculated using pseudopot
tial ~PS! and effective-mass~EMA! wave func-
tions. Vertical arrows indicate the valueeout

5e in .
e
a
o

te
en

q.
ng

e

-

he
enn
-

n
l

ric

ron-
l-
The interparticle Coulomb energiesJ̄i , j obtained from the
solution of Eqs.~21! and ~22! are screened by themacro-
scopic dielectric constant of the system. Themicroscopic
dielectric functione(r ,r 8), however, tends to 1 whenr 8→r .
As a result, the short-range interparticle interaction is ess
tially unscreened. Recent pseudopotential calculations h
shown that for wave functions localized in a quantum d
this effect can significantly enhance the electron-hole in
action. Therefore, we calculate the interparticle Coulomb
ergiesJi , j as

Ji , j5Ji , j
dir1Ji , j

pol , ~26!

whereJi , j
pol is the polarization contribution obtained from E

~25! and Ji , j
dir is the direct Coulomb energy calculated usi

the microscopic dielectric function of the quantum dot:

Ji , j
dir5e2 (

s,s8
E E uc i~r ,s!u2uc j~r 8,s8!u2

e in~r ,r 8;R!ur2r 8u
dr dr 8. ~27!

The dielectric functione in(r ,r 8;R) is decomposed into an
electronic parteel and an ionic parte ion , such that 1/e in
51/eel11/e ion . The electronic contributioneel(r ,r 8;R) is
approximated following the Thomas-Fermi model propos
by Resta:36

1

eel~r ,r 8;R!

5H @sinhq~r`2ur2r 8u!1qur2r 8u#/e`
dot~R!qr`

if ur2r 8u<r`

1/e`
dot~R! if ur2r 8u>r` ,

~28!

whereq52p21/2(3p2n0)1/3 is the Thomas-Fermi wave vec
tor corresponding to the quantum dot charge densityn0. The
n-
ve
t
r-
-

d

screening radiusr` is the solution of the equation
sinh(qr`)/(qr`)5e`

dot(R), where e`
dot(R) is the electronic

contribution to the macroscopic dielectric constant of t
quantum dot, which is obtained here using a modified P
model.29 As shown by Eq.~28!, the electronic dielectric con
stanteel(r ,r 8;R) approaches 1 whenur2r 8u→0, and coin-
cides withe`

dot(R) when ur2r 8u>r` . Note thatr` is typi-
cally on the order of a few Å. The ionic contributio
e ion(r ,r 8;R) is approximated following the polaronic mode
of Haken.37 For an electron-hole pair:

1

e ion~r ,r 8;R!

5F 1

e0
dot~R!

2
1

e`
dot~R!

G
3F12

exp~2ur2r 8u/rh!1exp~2ur2r 8u/re!

2 G . ~29!

Here rh,e5(\/2mh,evLO)1/2, where mh,e denotes the hole
~h! and electron~e! effective mass andvLO is the frequency
of the bulk LO-phonon mode. The macroscopic dielect
constant e0

dot(R)5e`
dot(R)1De ion includes the electronic

contributione`
dot(R) and the ionic contributionDe ion , which

we assume to be size-independent.29 As the radius of the
quantum dot becomes small compared torh and re , the
relative importance of ionic screening decreases.

The polarization energiesJe1,e1
pol and Jh1,h1

pol of a
36.5-Å-diameter InAs nanocrystals are shown in Figs. 3~a!
and 3~b! as a function of the external dielectric constanteout.
We see thatJh1,h1

pol and Je1,e1
pol depend strongly oneout, and

vanish wheneout5e in . Wheneout.e in the polarization ener-
gies become negative, thus acting to reduce the elect
electron ~or hole-hole! interaction. The pseudopotentia
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calculated polarization energies are compared in Figs.~c!
and 3~d! with the results of an EMA calculation assuming~i!
an infinite potential barrier at the surface of the quantum d
and ~ii ! a purelys-like envelope function.9 We see that the
EMA calculation agrees well with the pseudopotential cal
lation, the difference being less than 5 meV across the en
range of values ofeout. This suggests that the polarizatio
energiesJi , j

pol are rather insensitive to the details of the ele
tron and hole charge distributions.

D. Polarization self-energies

The polarization self-energiesS i
pol are given by

S i
pol5

e

2 (
s

E c i* ~r ,s!VS~r !c i~r ,s!dr , ~30!

where

VS~r !5 lim
r8→r

@G~r ,r 8!2Gbulk~r ,r 8!#. ~31!

Here G(r ,r 8) is the Green’s function associated with th
Poisson equation@Eq. ~22!#, and Gbulk(r ,r 8) is the bulk
Green’s function. We use the analytical expression23 of
VS(r ) for a spherical quantum dot of dielectric constante in
embedded in a medium of dielectric constanteout:

VS~r !5
e

2R (
l 50

`
e in2eout

eout1 l ~e in1eout!

3H ~ l 11!~r /R!2l

e in
if r ,R,

2 l ~r /R!22(l 11)

eout
if r .R.

~32!

Note that VS(r ) vanishes wheneout5e in , and that if eout
,e in the polarization potential is positive forr ,R and nega-
tive for r .R. The singularity ofVS(r ) at the surface of the
dot (r→R) is removed by applying a smoothing function
2e2(r 2R)2/l2

, wherel is a broadening factor of the order o
the interatomic bond length.

Figures 3~a! and 3~b! show the electron and hole pola
ization self-energiesSe1

pol andSh1
pol of a 36.5-Å-diameter InAs

nanocrystal as a function of the external dielectric cons
eout. The pseudopotential result is compared in Figs. 3~c!
and 3~d! with an EMA calculation that assumes an infini
potential barrier at the surface of the nanocrystal.38 We see
that for eout!e in the EMA polarization self-energies are si
nificantly underestimated because the part of the wave fu
tion localized outside the dot~which is absent in the infinite
barrier EMA calculation! experiences a negative polarizatio
potential.

The electron and hole self-energies of small Si nanoc
tals have been recently calculated from first principles us
the GW approximation.39 It was found that the GW electro
and hole self-energies are in excellent agreement with
results obtained from the classical electrostatic model of
~32!.
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IV. RESULTS

We consider here InAs, InP, and Si spherical nanocrys
of diameterD ranging from;27 to ;42 Å. All the dots
have theTd point-group symmetry. The surface danglin
bonds are passivated using either ligandlike potentials@in the
case of InP~Ref. 32! and Si ~Ref, 33! nanocrystals# or a
large-gap barrier material ~in the case of InAs
nanocrystals31!. The passivating potential effectively re
moves the dangling-bond states from the band gap. The e
tronic structure is rather insensitive to the details of the p
sivating potential, since the near-band-edge states
localized in the interior of the nanocrystal. We assume t
the atoms in the dot are located at their ideal bulk positio
Recent ab initio total-energy calculations40 for small
(;120 atoms) hydrogen-passivated silicon nanocrys
have shown that the Si-Si interatomic bond length chan
by less than 1% compared to the bulk equilibrium bo
length.

A. Single-particle energy levels and symmetries

The near-band-edge single-particle energy levels are s
marized in Table I, together with the symmetry of the cor
sponding wave functions. Figure 4 shows schematically
energy level diagrams of InAs, InP, and Si dots. Each ene
level in Table I and Fig. 4 is doubly degenerate because
time-reversal symmetry and can be occupied by two partic
~electrons or holes!. We note the following.~i! In the case of
InAs and InP dots the two degenerate single-particle level
the top of the valence band (h1 and h2) originate from the
bulk G8v states and have ans-like envelope function. The
next two degenerate hole levels (h3 and h4) are alsoG8v
derived, but havep-like envelope functions. The electro
level at the bottom of the conduction band (e1) originates
from the bulkG6c state and has ans-like envelope function.
The next three single-particle electron levels (e2 , e3, ande4)
have a different origin in InAs and InP quantum dots.
InAs dotse2 , e3, ande4 derive from the bulkG6c state and
have ap-like envelope function31 (e2 is split frome3 ande4
because of spin-orbit splitting, as well as numerical appro
mations in the nonlocal pseudopotential!, while in InP dots
they originate from theL6c bulk states and have ans-like
envelope function.32 ~ii ! In the case of Si dots~where spin-
orbit coupling is small, and thus is not included in the c
culations! the threet2 degenerate levels at the top of th
valence band originate from the bulkG15v states and have a
s-like envelope function, while the six levels at the bottom
the conduction band originate from the bulk conduction-ba
minima located near theX points of the Brillouin zone and
have ans-like envelope function.41 These electron states ca
be classified according to their point-group symmetry ast2 ,
a1, or e.

B. Electron and hole addition energies

The electron and hole addition energiesDN,N11 are cal-
culated using Eqs.~16! and ~17!. In calculating them we
make the following approximations:~i! The ground-state
configuration calculated foreout5e in is also used for other
values of eout . Since the Coulomb energiesJi , j depend
weakly oneout in a relatively wide range of values aroun
eout5e in ~see Fig. 3!, the ground-state configuration shou
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TABLE I. Near-band-edge single particle states of passivated, spherical nanocrystals. The energ
measured with respect to the highest occupied state (h1). The point-group symmetry of the single-partic
wave functions of Si nanocrystals is indicated in parentheses. InAs results are from Ref. 31, InP from R
and Si from Ref. 33.

Valence level Energy~eV! Symmetry Conduction level Energy~eV! Symmetry

InAs Diameter5 30.3 Å
h1, h2 0.000 G8v , s-like e1 1.706 G6c , s-like
h3, h4 20.038 G8v , p-like e2 2.109 G6c , p-like

e3, e4 2.110 G6c , p-like
InAs Diameter5 36.5 Å

h1, h2 0.000 G8v , s-like e1 1.498 G6c , s-like
h3, h4 20.023 G8v , p-like e2 1.890 G6c , p-like

e3, e4 1.902 G6c , p-like
InAs Diameter5 42.2 Å

h1, h2 0.000 G8v , s-like e1 1.310 G6c , s-like
h3, h4 20.014 G8v , p-like e2 1.670 G6c , p-like

e3, e4 1.671 G6c , p-like
InP Diameter5 28.0 Å

h1, h2 0.000 G8v , s-like e1 2.404 G6c , s-like
h3, h4 20.089 G8v , p-like e2 2.667 L6c , s-like

e3, e4 2.725 L6c , s-like
InP Diameter5 34.8 Å

h1, h2 0.000 G8v , s-like e1 2.124 G6c , s-like
h3, h4 20.053 G8v , p-like e2, e3 2.432 L6c , s-like

e4 2.442 L6c , s-like
Si Diameter5 27.0 Å

h1, h2, h3 0.000 G15v , s-like (t2) e1, e2 2.117 X1c , s-like ~e!

e3 2.133 X1c , s-like (a1)
e4, e5, e6 2.137 X1c , s-like (t2)

Si Diameter5 34.6 Å
h1, h2, h3 0.000 G15v , s-like (t2) e1, e2, e3 1.814 X1c , s-like (t2)

e4 1.819 X1c , s-like (a1)
e5, e6 1.822 X1c , s-like ~e!
n
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be unchanged in this range. For smaller values ofeout ~i.e.,
eout;124) the ground-state configuration may be differe
from the ground-state configuration ateout5e in . However,
the difference in the addition energies will be of the order
a few meV, i.e., only a few percent of the addition energ
themselves.~ii ! We neglect the contribution of the exchan
energiesKi , j , which are about an order of magnitude smal
than the Coulomb energiesJi , j .

FIG. 4. Schematic diagram of the near-band-edge single-par
energy levels of InAs, InP, and Si spherical quantum dots.
t

f
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The addition energiesDN,N11 of a few representative dot
are shown in Fig. 5 for a few values of the external dielect
constanteout. The following features can be noted:~i! The
electron and hole addition energies depend strongly oneout.
This is due to the contribution of the polarization energ
Ji , j

pol to the addition energiesDN,N11 @see, for example, Eqs
~7! and ~8!#. ~ii ! The electron addition energies of InAs an
InP quantum dots show a pronounced peak forN52 ~corre-
sponding toD2,3

(e)). This peak is due to the filling of thes-like
shell: adding a third electron to a quantum dot that alrea
contains two electrons in thes-like shell requires occupying
a level of thep-like shell, which is about 0.3–0.4 eV highe
in energy~see Table I!. The effects of single-particle gaps o
the addition spectrum are neglected in constant capacita
models.~iii ! A less pronounced peak appears in the elect
addition spectrum of InAs dots forN58. This peak corre-
sponds to the filling of thep-like shell. ~iv! Since the six
lowest-energy conduction levels of Si dots originate from
bulk X1c valley and are very close in energy~see Table I!,
the electron addition spectrum of Si dots appears feature
up to N511. ~v! The hole addition energies are relative
constant as a function ofN up to N57. This is a conse-
quence of the fact that the hole single-particle energy lev
are closely spaced, so the addition energies are almos
tirely determined by the hole-hole Coulomb energies.
le
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FIG. 5. Electron and hole addition energies of InAs, InP, and Si nanocrystals for a few values of the dielectric constanteout (eout

51, 4, 20). For clarity purposes the hole addition energies are taken with a minus sign.
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The addition energies of InAs nanocrystals have been
cently measured by Baninet al.10 using scanning tunneling
spectroscopy. In these experiments the dielectric consta
the environment (eout) is an unknown quantity, as it corre
sponds to an average over the gold contact, the hex
dithiol linking molecules, and the organic passivants.10 To
compare our calculations with the experimental results
first fit our calculated value of the addition energyD1,2

(e) for

FIG. 6. The electron and hole addition energies@part ~a!# and
the quasiparticle gap@part ~b!# of InAs nanocrystals, calculated fo
eout56, are compared with the experimental data of Baninet al.
~Ref. 10! as a function of size. The circle in part~a! denotes the
addition energy used to fit the value ofeout . For clarity purposes,
the hole addition energyD1,2

(h) is taken with a minus sign.
e-

of

ne

e

the D530.3 Å InAs dot with the experimental valueD1,2
(e)

50.22 eV for the nearest size dot (D534 Å), finding that
eout56 gives a good fit. We then use this value ofeout to
calculate the addition energies and the quasiparticle ga
InAs nanocrystals as a function of size. The calculated e
tron and hole addition energiesDN,N11 are compared in Fig.
6~a! with the experimental results of Baninet al.10 We see
that we have a very good agreement forD1,2

(h) andD1,2
(e) using

a single value ofeout. The calculated addition energy for th
third electron,D2,3

(e) , is somewhat smaller than the expe
mental value. However, the nanocrystal size measured
scanning-tunneling microscopy~STM! tends to be
overestimated,10 and the actual size of the nanocrystals m
be smaller. This would bring our results into even clos
agreement with experiment.

C. Quasiparticle gap and optical gap

The quasiparticle gap@defined by Eq.~10!# represents the
energy of anoninteractingelectron-hole pair in a quantum
dot, while the optical gap@defined by Eq.~11!# is the energy
of an interactingelectron-hole pair in the quantum dot.

The quasiparticle gap of Si nanocrystals in vacuum (eout
51) was calculated by O¨ ğüt, Chelikowsky, and Louie42 us-
ing density-functional theory in the local-density approxim
tion ~LDA !. They calculated the ground-state total energ
E1

LDA and E21
LDA of the charged nanocrystals as well as t

ground-state energyE0
LDA of the neutral dot, and obtaine

the quasi-particle gap as«gap
qp, LDA5E1

LDA1E21
LDA22E0

LDA .
For a ;27-Å-diameter Si nanocrystal the LDA-calculate
quasiparticle gap was«gap

qp, LDA;2.5 eV. However, it is well
known43 that in the bulk limit the expressionE1

LDA1E21
LDA

22E0
LDA yields the LDA single-particle gap, which in th

case of Si is about 0.68 eV lower than the bulk quasipart
gap.42 Therefore, the LDA-calculated quasi-particle gap of
nanocrystals must also be underestimated.43 Interestingly, if
we estimate the LDA gap error in Si nanocrystals using
bulk LDA gap error of 0.68 Å, the quasiparticle gap b
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comes 2.510.68;3.2 eV, which is in good agreement wit
our calculated value of 3.1 eV.

The quasiparticle gap of InAs nanocrystals was measu
by Banin et al. using scanning-tunneling spectrosco
techniques.10 Figure 6~b! compares the calculated quasipa
ticle gap ~using eout56) with the experimental results o
Banin et al.10 As we can see the agreement is good, parti
larly if we take into account that the STM-measured size
overestimated.

Figure 7 shows the quasi-particle gap and the optical
of a few representative nanocrystals as a function of the
electric constanteout. Also shown is the single-particle ga
«gap

0 5«e1
0 2«h1

0 , which is independent ofeout. We can see
that the quasiparticle gap depends strongly oneout, and de-
creases by almost 1 eV wheneout changes from 1 to 20
This is a consequence of the fact that the polarization s
energiesSh1

pol andSe1
pol , which enter the quasiparticle gap v

Eq. ~10!, depend strongly oneout ~see Fig. 3!. On the other
hand, the dependence of the optical gap oneout is rather
weak, as we can see from Fig. 7. This can be understoo
rewriting the optical gap of Eq.~11!, with the help of Eq.
~10!, as

«gap
opt5«gap

qp 2~Jh1,e1
dir 1Jh1,e1

pol !

5«gap
0 2Jh1,e1

dir 1~Se1
pol1Sh1

pol2Jh1,e1
pol !. ~33!

FIG. 7. Quasiparticle gap and optical gap of InAs, InP, and
nanocrystals as a function of the dielectric constanteout . The
dashed lines denote the single-particle gap«gap

0 , which does not
depend oneout .
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SinceSh1
pol1Se1

pol.Jh1,e1
pol ~see Fig. 3!, the last term in paren-

thesis in Eq.~33! is small, and the optical gap can be a
proximately written as

«gap
opt.«gap

0 2Jh1,e1
dir , ~34!

which does not depend oneout. This successful approxima
tion has indeed been used in the literature for a long tim9

Theorists correct their calculated single-particle gaps by s
tracting the electron-hole Coulomb energyJh1,e1

dir to compare
with experiment.9

A different form for «gap
opt was suggested by O¨ ğüt, Che-

likowsky, and Louie.42 They proposed to calculate the opt
cal gap as

«gap
opt,OCL5«gap

qp 2Jh1,e1
dir . ~35!

As shown by Eq.~33! this equation omits the polarizatio
contributionJh1,e1

pol , which is an integral part of the electron
hole interaction. As a result, the optical gap of Si nanocr
tals in vacuum calculated by O¨ ğüt et al.42 is overestimated44

compared to conventional calculations based on Eq.~33! or
~34!. This is shown in Fig. 8, where the optical gap«gap

opt of
Eq. ~33! is compared with«gap

opt, OCL calculated using Eq.~35!.
We see that for small values ofeout Eq. ~35! significantly
overestimates the optical gap. The difference is as large
;1 eV for eout51.

While «gap
qp and«gap

opt are measurable quantities, the sing
particle gap«gap

0 is not, nor can it be derived from the know
edge of«gap

qp and«gap
opt without theoretical intervention. Using

Eq. ~34! the single-particle gap«gap
0 can be extracted from

the optical gap«gap
opt by adding back the direct Coulomb en

ergy Jh1,e1
dir . Banin et al.10 attempted to extract the single

particle gap from tunneling spectroscopy measurements
subtracting from the measured quasiparticle gap«gap

qp 5m1

2m21 @Eq. ~10!# the measured electron addition ener
D1,2

(e)5m22m1 @Eq. ~7!#. However, as shown by Eq.~10!, this
procedure produces

i

FIG. 8. The optical gap«gap
opt of a 27.0-Å-diameter Si nanocrys

tal ~solid line and filled circles! is compared with«gap
opt, OCL calcu-

lated using Eq.~35! ~dashed line and empty circles!.
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«gap
qp 2D1,2

(e)5«gap
0 1~Sh1

pol1Se1
pol2Je1,e1!Þ«gap

0 . ~36!

The error is (Sh1
pol1Se1

pol2Je1,e1
pol )2Je1,e1

dir ;2Je1,e1
dir . Thus,

«gap
qp 2D1,2

(e) is smaller than«gap
0 by an amount approximatel

equal toJe1,e1
dir .

V. SUMMARY

In conclusion, we predict the effects of the dielectric e
vironment on the electron and hole addition energies
semiconductor quantum dots. Atomistic pseudopoten
wave functions are used as input for the many-body exp
sion of the total energy of the charged dots. We find that
the addition energies and the quasiparticle gap depend
c

P.

an

L.

et
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en-

sitively on the dielectric constanteout of the surrounding ma-
terial via the self-energiesS i

pol and the polarization energie
Ji , j

pol . We compare the calculated addition energies of In
nanocrystals with recent spectroscopic results,10 finding ex-
cellent agreement foreout56. Our calculations for Si and InP
nanocrystals provide predictions for future single-electr
charging experiments.
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