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Addition Spectra of Quantum Dots: the Role of Dielectric Mismatch
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Using atomistic pseudopotential wave functions, we calculate the electron and hole addition energies and the
quasi-particle gap of InAs quantum dots. We find that the addition energies and the quasi-particle gap depend
strongly on the dielectric constaag,; of the surrounding material, and that whey is much smaller than

the dielectric constant of the dot the electrarlectron and holehole interactions are dominated by surface
polarization effects. We predict the addition energies and the quasi-particle gap as a function of sige and

and compare our results with recent single-dot tunneling spectroscopy experiments.

Recently developed single-dot tunneling spectroscopy tech-
niqgues have allowed for the first time the observation of
atomiclike electronic states in strongly-confined semiconductor
quantum dots. In these experiments, a scanning tunneling
microscopy (STM) tip is positioned above a specific quantum
dot, and the tunneling currentoltage spectrum is acquired by
applying a bias/ between the STM tip and the substrate. The
tunneling conductancd @V shows, as a function of, a series
of sharp peaks which correspond (possibly via a scaling factor)
to the electron and hole charging energigs It has been
realized for some tin?e that the addition spectrum of semi-
conductor quantum dots is profoundly affected by the dielectric
environment. Indeed, semiconductor quantum dots can now be
made with various dielectric coatings: organic molectlether
semiconductors (e.g., self-assembled datsye—shell nano-
crystals? lithographically-etched dofsstrain-induced do, or
glasse$.In this paper, we will quantitatively predict how the
addition spectra of quantum dots depend on the dielectric

environment and explain the results of ref 1 in terms of Figure 1. (a) Process of loading three electrons into an otherwise
microscopic quantities. neutral quantum dot. (b) Process of removing a single electron from a

Consider the two processes described in Figure 1, where ad°t and placing it into another dot.

g?ggﬁgg&%g;;’:&cméiCﬁpstla:gf ﬁ:rgbtﬁzdigéggn;?;réﬂ ization contributionJgi"el arising from the interaction of one
three electrons to anuct;thgrwise neu?ral quan?um dot. The init?al electron Wlth the image chargg of the othgr electrginally,

; . . : the charging energy for the third electron is
configuration of the system, of energy, consists of a neutral
dot in the ground state and a Fermi reservoir at the reference P — pol _
energyeret = 0. The “charging energyi; required to load the Hy=Ey— By =€ept Zep + 21 0~ Keg oo 3)
first electron into the dot is

whereKe; ¢2iS the exchange energy between two electrons with
parallel spins in the el and e2 single-particle levels. The
“addition energies” for the second and the third electrons are
respectively

=B —Ey=eyt Zg(lﬂ 1)

where E; is the total energy of the dot with one additional
electron,ee; is the energy of the single-particle level el with
respect to the reference energy, anng‘f' is the self-energy
of the additional electron interacting with its own image charge . _ + (sPol _ spoh 4

created by the dielectric mismatch at the surface of the® dot. Apz=it3 =ty = (€~ €e1) T (Zez — Zep)

The charging energy for the second electron is (2Je162~ Jered — Kere2 (5)

A=ty =ty = Jege1 4)

u,=E,—E =¢,+ 22‘;' +Joy o1 2) Sincex andJi‘ij' depend strongly on the dielectric constant of
’ the surrounding material, the addition energies of a quantum
where Je1e1 is the Coulomb interaction between the two dot depend on its dielectric environment.

electrons. It includes a direct contributiafl; ., and a polar- Figure 1b describes the process of removing an electron from
the highest occupied orbital of a neutral quantum dot and placing
* Corresponding author. it into the lowest unoccupied orbital of an identical dot (located
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at infinite distance from the first dot). The energy required by
this process (“quasi-particle gap”) is the difference between the
ionization potential and the electron affinity of the dot. The
initial configuration, consisting of the two neutral dots in the
ground state, has energ¥z while the final configuration has
energyE; + E_;, whereE_; is the energy of the quantum dot
with a hole in the highest occupied orbital h1. The quasi-particle
gap is then

ol
1

ap —

€gap

E,+E; — 26, = egpp+ 300 + 3F (6)

whereegap = €e1 — €n is the single-particle (HOMOGLUMO)
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[V + VDl (r.0) = €y(r,0) (8)

The pseudopotential of the quantum §gYr) is obtained from
the superposition of screened atomic potentials, which are
fitted! to the bulk experimental optical transition energies and
effective masses, as well as the surface work function.-Spin
orbit coupling is fully included in the solution of the Schinger
equation.

The interelectronic energiel; are given by

3y =€y [1v(r.0)Pe(r) dr ©

gap. We see that the quasi-particle gap depends, via the

polarization self-energiesP? and =%, on the dielectric envi-
ronment.

The effects of dielectric confinement on the excitonic gap

and the charging energies of quantum dots have been addressed

in the past1®-13 using the effective-mass approximation. Recent
pseudopotential calculatiolsl>have demonstrated the impor-
tance of using an atomistic description of the quantum dot
electronic structure for calculating the single-particle energy
levels and the electrerhole Coulomb energies. In fact, the

pseudopotential approach provides an accurate description ofg1

the wave function decay outside the quantum dot and of the
interband coupling due to quantum confinement, which are
required for a correct evaluation of Coulomb energies in small
nanocrystals. Using pseudopotential wave functions, we discus
here the dependence of (i) the electron and hole charging
energiesuny = Eny — En-1, (i) the addition energieAnnt+1 =

un+1 — un, and (iii) the quasi-particle band gaﬁgp =u1 —

u—1 of InAs nanocrystals on the dielectric constagt; of the
surrounding material. We find that feg, = 6 our results are

in good agreement with the experimental data of Banin €t al.,
and interpret the electron and hole addition energies in terms
of Coulomb and polarization contributions (eqs€).

The many-particle wave functio®y of a system ofN
electrons in the conduction band of a quantum dot can be
approximated by a single Slater determinant constructed from
the wave functiong v, i = 1, ...,N} of the N single-particle
states occupied by thH electrons. The corresponding total
energy is

Z(‘Ji,j — Kijnn

1<)

En=E+ Z(Ei +3P%)n + Q)

wheree; are the conduction-band single-particle energy levels,
ZFO' are the polarization self-energiel;, Ki; are the electron
electron Coulomb and exchange energies, respectivelynand
are the occupation numbergi(i = N). The ground state wave
function WY, corresponds to the configuration that minimizes
the total energ¥n. In eq 7 we neglect (i) the coupling between
different Slater determinants (i.e., configuration-interaction
effects), and (ii) the response of the single-particle wave
functionsy; to the electrostatic field (i.e., self-consistent effects).
In other words, we calculatEi"°', Jij, andK;; using the single-
particle wave functions of a neutral dot in the ground state. This

S,

where®(r) is the electrostatic potential energy due to a charge
distribution pj(r) = €3 4|v;(r,0)|2 in a dielectrically inhomoge-
neous medium®;(r) satisfies the Poisson equation:
Vee(r)VO,(r) = —4mp;(r) (20)
wheree(r) is the (position-dependent) macroscopic dielectric
constant of the system. The Poisson equation is solved on a
real-space grid using a finite-difference discretization of the
radient operator. The boundary conditions are obtained from

multipole expansion of the electrostatic potenitfallhe
dielectric constané(r) changes smoothly from, to equ, With
a transition region of the order of the interatomic bond length.
The interelectronic energyl;; can be separated into two
contributions: (a) the direct Coulomb energ}?}r, which
corresponds to the interaction between two electrons in the
guantum dot as if the dielectric constant was uniform throughout
the system, and identical to the macroscopic dielectric constant
of the quantum dot; and (b) the polarization eneﬂg%'/which
accounts for the effects of the dielectric mismatch at the interface
between the dot and the surrounding material, and the ensuing
surface polarization charge.

The polarization self-energie® are given by

$=5 [UitoNOurod @)

whereVg(r) = limy— [G(r,r'") — Goui(r,r')]. HereG(r,r') is the
Green'’s function associated with the Poisson equationGang
(r,r") is the bulk Green’s function. We use the analytical
expression ol(r) for a spherical quantum dgtof radiusR
and dielectric constar, embedded in a medium of dielectric
constant,,. Because of the discontinuity efr) at the surface
of the dot,Vs(r) has a nonintegrable singularity fo= R, which
is removed by applying a smoothing function-1e~(—R?o?
whereo is a broadening factor of the order of the bond length.
We consider here InAs spherical nanocrystals of dianiter
= 30.3 and 42.2 A. The surface dangling bonds are passivated
using a large-gap barrier matertdlOur analysis of the envelope
functions extracted from the pseudopotential wave functions
shows that the first electron level (el) is predominantly s-like,
while the next three electron levels (e2, €3, and e4) are
predominantly p-like. The first two hole levels (h1 and h2) have
an s-like envelope function, while the next two hole levels (h3

perturbative approach has been tested in the case of excitonand h4) have a p-like envelope function. Each single-patrticle

both versus self-consistent calculatithand versus configu-
ration-interaction calculatior’$.It was found that perturbation
theory is sufficiently accurate for zero-dimensional structures
in the strong-confinement reginie:1”

The single-particle energiesand wave functiongi(r,o) are
given by the solution of the Schdinger equation:

energy level is doubly degenerate because of time-reversal
symmetry.

The self-energie&", the polarization energi ]°' and the
direct Coulomb energiesf|" of the 30.3 A diameter InAs
nanocrystal are shown in Figure 2 as a function of the external

dielectric constant,,;, for a few single-particle statesandj.
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Figure 2. Self-energiessP and =% (a) and polarization energies
Jhs and B2, (b) of an InAs quantum dot (diamet& = 30.3 A)
shown as a function of the outside dielectric constant Also shown
in (b) are the direct Coulomb energlﬁhland.lel ot The insets show
the differencessh® — 32 and J2% — Jp"' as a function ofeow. The
vertical arrows |nd|cate the valugm €in.

We see that (i) botfE!® and 3" depend strongly oR: and
vanish wheneyy = € (vertical arrows in Figure 2); (ii) when
€out > €in the polarization energieﬁf' become negative, thus
acting to diminish the electrorelectron interaction; (iii) the
dependence at" ande]‘" on the identity of the orbitalsand

j (e.g., s or p) is rather weak, as shown in the insets in Figure energies];;
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2; (iv) there is a critical value ofyy; (ecr.t.cm 4) such that for
€out < €Ecriical the polarization energ|e3,p] dominate over the
direct Coulomb energied}".

The charging energigsy = Ey — En-1, calculated from the
total energiegy given by eq 7, are shown in the central panel
of Figure 3 as a function af,,+ The vertical arrow at the bottom
of the figure denotes the valug, = €, which divides the
behavior into two domains: (i) In the weak screening regime
(eout < €in) the charging energies are widely spaced, and their
value depends strongly @g,: (ii) In the strong screening regime
(eout = €in) the charging energies are closely spaced and do not
depend significantly ome,. The calculated charging spectrum
is shown in Figure 3 fotoy: = 1 (left-hand side) and,,: = 20
(right-hand side), illustrating these two limiting behaviors.

The electron and hole addition energidgn+1 (Spacings
between peaks in the charging spectra of Figure 3), the quasi-
particle gapegy, and the optical gapggg are summarized in
Table 1 for a few values ofout.

Electron Addition Energies. We see from Table 1 that the
addition energy of the third electrak) is significantly larger
than the addition energy of the second electﬁiﬂ This can
be explained by noting from eqs 4 and 5 that Whﬂé“'
measures only the interelectronic repulsmée) includes also
the single-particle gap.» — €1 between the s-like state el and
the p-like states e2, €3, and e4. We fingd — €1 = 400 meV
for the 30.3 A diameter nanocrystal and 360 meV for the 42.2
A diameter nanocrystal. The addition energies of the remaining
electrons (up toN = 8) are approximately constant, as a
consequence of the fact that the p-like states e2, e3, and e4 are
nearly degenerate. The addition energy of the ninth electron,
Ag% is slightly larger, and reflects the single-particle gap
between the p-like shell and the next (d-like) shell.

Hole Addition Energies. The addition energies of the holes
are approximately constant. This is due to the fact that the energy
difference between the hl, h2 and the h3, h4 single-particle
states is relatively small (38 meV in the 30.3 A diameter
nanocrystal and 14 meV in the 42.2 A diameter nanocrystal)
and is comparable with the variations of the direct Coulomb
4" hetween different hole states. Banin et &und
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Figure 3. (middle panel) Dependence of the electron and hole charging energies on the outside dielectric cgn3tamivertical arrow indicates
the valueeo,t = €in. The side panels show the calculated charging spectrum in thegasel (left-hand panel) ané,.« = 20 (right-hand panel).
The zero of the energy scale corresponds to the highest-energy valence state.
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TABLE 1: Addition Energies Ann+1, Quasi-Particle Gap

P and Optical Gap €, of InAs Nanocrystals (in eV) for
Dql erent Values of thegllflelectrlc Constanteqy

D=303Acup=171eV D=422Acgp=131leV
€out= 1 6 10 20 1 6 10 20
Electrons
A(f)z 096 022 016 0.11 069 0.15 0.10 0.07
A(ze% 145 064 057 053 105 051 046 043
A(;i 098 024 017 0.13 0.70 0.15 0.10 0.07
AEF,?—, 099 024 018 013 069 0.15 0.10 0.07
Ag% 098 024 017 0.13 0.67 014 0.09 0.06
Ag?; 098 0.23 017 013 0.71 0.16 0.11 0.08
Age% 099 024 018 0.13 0.68 014 0.10 0.07
Ag‘?}, 1.03 0.28 0.21 0.17
Agf)m 1.00 025 0.19 0.4
Holes
A(lh; 098 023 017 0.13 0.73 0.18 0.13 0.10
A(Zh% 1.04 026 019 0.14 068 0.15 0.10 0.07
Ag‘l 097 022 016 0.11 0.73 0.17 0.13 0.09
Af{% 091 021 015 011 068 0.15 0.11 0.07
Ag% 1.03 024 0.17 0.212 073 0.17 0.12 0.09
Gaps
Eggp 237 178 172 165 184 138 132 127
£OoPt 156 155 154 122 121 1.20

gap

two distinct multiplets in the hole addition spectrum, which they

denoted as\k and 2. They attributed the \ multiplet to
tunneling of holes into the 2% valence-band level. We find
that the &3, level is significantly lower in energy than the h1

h4 levels, so we do not consider hole injection into thg,2S

level. Our calculations show that charging of the-thi4 levels
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(0.20), A9} = 0.26 (0.22) AT} = 0.64 (0.71), and\§) = 0.24
(0.23). Using the same vaIue ef., our predictions foD =
42.2 A (experimental data in parenthesesfor 44 A) are:
ek =138 (1. 38)A ¢ =0.18 (0.20) AT} = 0.15 (0.17) A
= 0.15 (0.14) AY) = 0.51 (0.52), and\§, = 0.15 (0.14). We

see that we can achieve a very good agreement with experiment
using a single value of the parametgi.

Our theory can be further used to decompose the experimen-
tally measured quantities into distinct physical contributions.
For example, foD = 30.3 A the quasi-particle gags, = 1.78
eV includes [eq 6] the single-particle gagp — en1 = 1.71 eV
and the polarization self-energy contributia@i® + =% =
0.07 eV. The addition energy for the third electmﬁ 0.64
eV includes [eq 5] the single-particle contributies — €o1 =
0.40 eV, the direct Coulomb contribution)% ., — 3% ., =
0.17 eV, the polarization contributiont®',, — 9, = 0.07
eV, and a negligible self-energy contributi@fg — . The
exchange contributioie; ¢2is smaller than 0.02 eV, and can
be neglected.

In conclusion, we predict the effects of the dielectric
environment on the electron and hole charging energies and on
the addition spectrum of semiconductor quantum dots. We find
that the charging energies and the addition energies depend
sensitively on the dielectric constaad,: of the surrounding
material via the seIf-energi&’OI and the polarization energies
Jp°' Our calculations for InAs nanocrystals are in excellent
agreement with recent spectroscopic reduftis e, = 6, and
provide a quantitative prediction of how single-electron tun-
neling in quantum dots can be tuned by changing the dielectric
environment.

This work was supported by the U.S. DOE, Office of Science,
Division of Materials Science, under Grant No. DE-AC36-98-

produces a rather featureless spectrum, and that the first multipleizo10337.

in the hole addition spectrum @) consists of at least eight
nearly equally spaced peaks. The fact that Banin &dal.not

observe such a high multiplicity suggests that some of the hole

charging peaks may be missing.

Quasi-Particle and Optical Gap As shown in Table 1, the
quasi-particle gapggap depends strongly orou, while the
optical gapegh, = eqn,

opt

pol pol pol
terms er + Eel) andJi; ¢, tend to cancel, seg,, ~ (€e1 —
€n1) — Jnier

Table 1 provides clear predictions for the addition energies
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