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Using atomistic pseudopotential wave functions, we calculate the electron and hole addition energies and the
quasi-particle gap of InAs quantum dots. We find that the addition energies and the quasi-particle gap depend
strongly on the dielectric constantεout of the surrounding material, and that whenεout is much smaller than
the dielectric constant of the dot the electron-electron and hole-hole interactions are dominated by surface
polarization effects. We predict the addition energies and the quasi-particle gap as a function of size andεout,
and compare our results with recent single-dot tunneling spectroscopy experiments.

Recently developed single-dot tunneling spectroscopy tech-
niques1 have allowed for the first time the observation of
atomiclike electronic states in strongly-confined semiconductor
quantum dots. In these experiments, a scanning tunneling
microscopy (STM) tip is positioned above a specific quantum
dot, and the tunneling current-voltage spectrum is acquired by
applying a biasV between the STM tip and the substrate. The
tunneling conductance dI/dV shows, as a function ofV, a series
of sharp peaks which correspond (possibly via a scaling factor)
to the electron and hole charging energiesµN. It has been
realized for some time2,3 that the addition spectrum of semi-
conductor quantum dots is profoundly affected by the dielectric
environment. Indeed, semiconductor quantum dots can now be
made with various dielectric coatings: organic molecules,4 other
semiconductors (e.g., self-assembled dots,5 core-shell nano-
crystals,6 lithographically-etched dots,7 strain-induced dots8), or
glasses.9 In this paper, we will quantitatively predict how the
addition spectra of quantum dots depend on the dielectric
environment and explain the results of ref 1 in terms of
microscopic quantities.

Consider the two processes described in Figure 1, where a
quantum dot of dielectric constantεin is embedded in a material
of dielectric constantεout. Figure 1a depicts the process of adding
three electrons to an otherwise neutral quantum dot. The initial
configuration of the system, of energyE0, consists of a neutral
dot in the ground state and a Fermi reservoir at the reference
energyεref ) 0. The “charging energy”µ1 required to load the
first electron into the dot is

where E1 is the total energy of the dot with one additional
electron,εe1 is the energy of the single-particle level e1 with
respect to the reference energyεref, andΣe1

pol is the self-energy
of the additional electron interacting with its own image charge
created by the dielectric mismatch at the surface of the dot.3

The charging energy for the second electron is

where Je1,e1 is the Coulomb interaction between the two
electrons. It includes a direct contributionJe1,e1

dir and a polar-

ization contributionJe1,e1
pol arising from the interaction of one

electron with the image charge of the other electron.3 Finally,
the charging energy for the third electron is

whereKe1,e2is the exchange energy between two electrons with
parallel spins in the e1 and e2 single-particle levels. The
“addition energies” for the second and the third electrons are
respectively

SinceΣi
pol andJi,j

pol depend strongly on the dielectric constant of
the surrounding material, the addition energies of a quantum
dot depend on its dielectric environment.

Figure 1b describes the process of removing an electron from
the highest occupied orbital of a neutral quantum dot and placing
it into the lowest unoccupied orbital of an identical dot (located* Corresponding author.

µ1 ≡ E1 - E0 ) εe1 + Σe1
pol (1)

µ2 ≡ E2 - E1 ) εe1 + Σe1
pol + Je1,e1 (2)

Figure 1. (a) Process of loading three electrons into an otherwise
neutral quantum dot. (b) Process of removing a single electron from a
dot and placing it into another dot.

µ3 ≡ E3 - E2 ) εe2 + Σe2
pol + 2Je1,e2- Ke1,e2 (3)

∆1,2 ≡ µ2 - µ1 ) Je1,e1 (4)

∆2,3 ≡ µ3 - µ2 ) (εe2 - εe1) + (Σe2
pol - Σe1

pol) +
(2Je1,e2- Je1,e1) - Ke1,e2 (5)
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at infinite distance from the first dot). The energy required by
this process (“quasi-particle gap”) is the difference between the
ionization potential and the electron affinity of the dot. The
initial configuration, consisting of the two neutral dots in the
ground state, has energy 2E0, while the final configuration has
energyE1 + E-1, whereE-1 is the energy of the quantum dot
with a hole in the highest occupied orbital h1. The quasi-particle
gap is then

whereεgap ≡ εe1 - εh1 is the single-particle (HOMO-LUMO)
gap. We see that the quasi-particle gap depends, via the
polarization self-energiesΣe1

pol andΣh1
pol, on the dielectric envi-

ronment.
The effects of dielectric confinement on the excitonic gap

and the charging energies of quantum dots have been addressed
in the past3,10-13 using the effective-mass approximation. Recent
pseudopotential calculations14,15have demonstrated the impor-
tance of using an atomistic description of the quantum dot
electronic structure for calculating the single-particle energy
levels and the electron-hole Coulomb energies. In fact, the
pseudopotential approach provides an accurate description of
the wave function decay outside the quantum dot and of the
interband coupling due to quantum confinement, which are
required for a correct evaluation of Coulomb energies in small
nanocrystals. Using pseudopotential wave functions, we discuss
here the dependence of (i) the electron and hole charging
energiesµN ) EN - EN-1, (ii) the addition energies∆N,N+1 )
µN+1 - µN, and (iii) the quasi-particle band gapεgap

qp ) µ1 -
µ-1 of InAs nanocrystals on the dielectric constantεout of the
surrounding material. We find that forεout ) 6 our results are
in good agreement with the experimental data of Banin et al.,1

and interpret the electron and hole addition energies in terms
of Coulomb and polarization contributions (eqs 1-6).

The many-particle wave functionΨN of a system ofN
electrons in the conduction band of a quantum dot can be
approximated by a single Slater determinant constructed from
the wave functions{ψi, i ) 1, ..., N} of the N single-particle
states occupied by theN electrons. The corresponding total
energy is

whereεi are the conduction-band single-particle energy levels,
Σi

pol are the polarization self-energies,Ji,j, Ki,j are the electron-
electron Coulomb and exchange energies, respectively, andni

are the occupation numbers (∑ini ) N). The ground state wave
function ΨN

0 corresponds to the configuration that minimizes
the total energyEN. In eq 7 we neglect (i) the coupling between
different Slater determinants (i.e., configuration-interaction
effects), and (ii) the response of the single-particle wave
functionsψi to the electrostatic field (i.e., self-consistent effects).
In other words, we calculateΣi

pol, Ji,j, andKi,j using the single-
particle wave functions of a neutral dot in the ground state. This
perturbative approach has been tested in the case of excitons
both versus self-consistent calculations15 and versus configu-
ration-interaction calculations.16 It was found that perturbation
theory is sufficiently accurate for zero-dimensional structures
in the strong-confinement regime.15-17

The single-particle energiesεi and wave functionsψi(r ,σ) are
given by the solution of the Schro¨dinger equation:

The pseudopotential of the quantum dotVps(r ) is obtained from
the superposition of screened atomic potentials, which are
fitted14 to the bulk experimental optical transition energies and
effective masses, as well as the surface work function. Spin-
orbit coupling is fully included in the solution of the Schro¨dinger
equation.

The interelectronic energiesJi,j are given by

whereΦj(r ) is the electrostatic potential energy due to a charge
distributionFj(r ) ) e∑σ|ψj(r ,σ)|2 in a dielectrically inhomoge-
neous medium.Φj(r ) satisfies the Poisson equation:

whereε(r ) is the (position-dependent) macroscopic dielectric
constant of the system. The Poisson equation is solved on a
real-space grid using a finite-difference discretization of the
gradient operator. The boundary conditions are obtained from
a multipole expansion of the electrostatic potential.15 The
dielectric constantε(r ) changes smoothly fromεin to εout, with
a transition region of the order of the interatomic bond length.
The interelectronic energyJi,j can be separated into two
contributions: (a) the direct Coulomb energyJi,j

dir, which
corresponds to the interaction between two electrons in the
quantum dot as if the dielectric constant was uniform throughout
the system, and identical to the macroscopic dielectric constant
of the quantum dot; and (b) the polarization energyJi,j

pol which
accounts for the effects of the dielectric mismatch at the interface
between the dot and the surrounding material, and the ensuing
surface polarization charge.

The polarization self-energiesΣi
pol are given by

whereVS(r ) ) limr ′fr[G(r ,r ′) - Gbulk(r ,r ′)]. HereG(r ,r ′) is the
Green’s function associated with the Poisson equation, andGbulk-
(r ,r ′) is the bulk Green’s function. We use the analytical
expression ofVS(r ) for a spherical quantum dot11 of radiusR
and dielectric constantε̆in embedded in a medium of dielectric
constantεout. Because of the discontinuity ofε(r ) at the surface
of the dot,VS(r ) has a nonintegrable singularity forr ) R, which
is removed by applying a smoothing function 1- e-(r-R)2/σ2,
whereσ is a broadening factor of the order of the bond length.

We consider here InAs spherical nanocrystals of diameterD
) 30.3 and 42.2 Å. The surface dangling bonds are passivated
using a large-gap barrier material.14 Our analysis of the envelope
functions extracted from the pseudopotential wave functions
shows that the first electron level (e1) is predominantly s-like,
while the next three electron levels (e2, e3, and e4) are
predominantly p-like. The first two hole levels (h1 and h2) have
an s-like envelope function, while the next two hole levels (h3
and h4) have a p-like envelope function. Each single-particle
energy level is doubly degenerate because of time-reversal
symmetry.

The self-energiesΣi
pol, the polarization energiesJi,j

pol, and the
direct Coulomb energiesJi,j

dir of the 30.3 Å diameter InAs
nanocrystal are shown in Figure 2 as a function of the external
dielectric constantεout, for a few single-particle statesi and j.

[-∇2 + Vps(r )]ψi(r ,σ) ) εiψi(r ,σ) (8)

Ji,j ) e∑
σ
∫|ψi(r ,σ)|2Φj(r ) dr (9)

∇‚ε(r )∇Φj(r ) ) -4πFj(r ) (10)

Σi
pol )

e

2
∑

σ
∫ψi

/(r ,σ)VS(r )ψi(r ,σ) dr (11)

εgap
qp ) E1 + E-1 - 2E0 ) εgap+ Σe1

pol + Σh1
pol (6)

EN ) E0 + ∑
i

(εi + Σi
pol)ni + ∑

i<j

(Ji,j - Ki,j)ninj (7)
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We see that (i) bothΣi
pol andJi,j

pol depend strongly onεout and
vanish whenεout ) εin (vertical arrows in Figure 2); (ii) when
εout > εin the polarization energiesJi,j

pol become negative, thus
acting to diminish the electron-electron interaction; (iii) the
dependence ofΣi

pol andJi,j
pol on the identity of the orbitalsi and

j (e.g., s or p) is rather weak, as shown in the insets in Figure

2; (iv) there is a critical value ofεout (εcritical ∼ 4) such that for
εout < εcritical the polarization energiesJi,j

pol dominate over the
direct Coulomb energiesJi,j

dir.
The charging energiesµN ) EN - EN-1, calculated from the

total energiesEN given by eq 7, are shown in the central panel
of Figure 3 as a function ofεout. The vertical arrow at the bottom
of the figure denotes the valueεout ) εin, which divides the
behavior into two domains: (i) In the weak screening regime
(εout , εin) the charging energies are widely spaced, and their
value depends strongly onεout. (ii) In the strong screening regime
(εout g εin) the charging energies are closely spaced and do not
depend significantly onεout. The calculated charging spectrum
is shown in Figure 3 forεout ) 1 (left-hand side) andεout ) 20
(right-hand side), illustrating these two limiting behaviors.

The electron and hole addition energies∆N,N+1 (spacings
between peaks in the charging spectra of Figure 3), the quasi-
particle gapεgap

qp , and the optical gapεgap
opt are summarized in

Table 1 for a few values ofεout.
Electron Addition Energies. We see from Table 1 that the

addition energy of the third electron∆2,3
(e) is significantly larger

than the addition energy of the second electron∆1,2
(e). This can

be explained by noting from eqs 4 and 5 that while∆1,2
(e)

measures only the interelectronic repulsion,∆2,3
(e) includes also

the single-particle gapεe2 - εe1 between the s-like state e1 and
the p-like states e2, e3, and e4. We findεe2 - εe1 ) 400 meV
for the 30.3 Å diameter nanocrystal and 360 meV for the 42.2
Å diameter nanocrystal. The addition energies of the remaining
electrons (up toN ) 8) are approximately constant, as a
consequence of the fact that the p-like states e2, e3, and e4 are
nearly degenerate. The addition energy of the ninth electron,
∆8,9

(e), is slightly larger, and reflects the single-particle gap
between the p-like shell and the next (d-like) shell.

Hole Addition Energies. The addition energies of the holes
are approximately constant. This is due to the fact that the energy
difference between the h1, h2 and the h3, h4 single-particle
states is relatively small (38 meV in the 30.3 Å diameter
nanocrystal and 14 meV in the 42.2 Å diameter nanocrystal)
and is comparable with the variations of the direct Coulomb
energiesJi,j

dir between different hole states. Banin et al.1 found

Figure 2. Self-energiesΣh1
pol and Σe1

pol (a) and polarization energies
Jh1,h1

pol and Je1,e1
pol (b) of an InAs quantum dot (diameterD ) 30.3 Å)

shown as a function of the outside dielectric constantεout. Also shown
in (b) are the direct Coulomb energiesJh1,h1

dir andJe1,e1
dir . The insets show

the differencesΣp
pol - Σs

pol and Js,p
pol - Js,s

pol as a function ofεout. The
vertical arrows indicate the valueεout ) εin.

Figure 3. (middle panel) Dependence of the electron and hole charging energies on the outside dielectric constantεout. The vertical arrow indicates
the valueεout ) εin. The side panels show the calculated charging spectrum in the caseεout ) 1 (left-hand panel) andεout ) 20 (right-hand panel).
The zero of the energy scale corresponds to the highest-energy valence state.
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two distinct multiplets in the hole addition spectrum, which they
denoted as 1VB and 2VB. They attributed the 2VB multiplet to
tunneling of holes into the 2S3/2 valence-band level. We find
that the 2S3/2 level is significantly lower in energy than the h1-
h4 levels, so we do not consider hole injection into the 2S3/2

level. Our calculations show that charging of the h1-h4 levels
produces a rather featureless spectrum, and that the first multiplet
in the hole addition spectrum (1VB) consists of at least eight
nearly equally spaced peaks. The fact that Banin et al.1 do not
observe such a high multiplicity suggests that some of the hole
charging peaks may be missing.

Quasi-Particle and Optical Gap. As shown in Table 1, the
quasi-particle gapεgap

qp depends strongly onεout, while the
optical gapεgap

opt ) εgap
qp - Jh1,e1does not. This is so because the

terms (Σh1
pol + Σe1

pol) andJh1,e1
pol tend to cancel, soεgap

opt ∼ (εe1 -
εh1) - Jh1,e1

dir .
Table 1 provides clear predictions for the addition energies

and the quasi-particle gap of InAs nanocrystals. To compare
with the experimental measurements of Banin et al. (ref 1), in
which εout is an unknown quantity, we first fit our calculated
∆1,2

(e) for the smaller dot with the experimental value∆1,2
(e) )

0.22 eV, finding thatεout ) 6 gives a good fit (Table 1). This
value of εout should be viewed as the “effective” dielectric
constant of the environment, which accounts for the presence
of metal electrodes as well as organic ligands. Usingεout ) 6,
we then predict forD ) 30.3 Å (experimental data in
parentheses forD ) 34 Å) εgap

qp ) 1.78 (1.75),∆1,2
(h) ) 0.23

(0.20),∆2,3
(h) ) 0.26 (0.22),∆2,3

(e) ) 0.64 (0.71), and∆3,4
(e) ) 0.24

(0.23). Using the same value ofεout, our predictions forD )
42.2 Å (experimental data in parentheses forD ) 44 Å) are:
εgap

qp ) 1.38 (1.38),∆1,2
(h) ) 0.18 (0.20),∆2,3

(h) ) 0.15 (0.17),∆1,2
(e)

) 0.15 (0.14),∆2,3
(e) ) 0.51 (0.52), and∆3,4

(e) ) 0.15 (0.14). We
see that we can achieve a very good agreement with experiment
using a single value of the parameterεout.

Our theory can be further used to decompose the experimen-
tally measured quantities into distinct physical contributions.
For example, forD ) 30.3 Å the quasi-particle gapεgap

qp ) 1.78
eV includes [eq 6] the single-particle gapεe1 - εh1 ) 1.71 eV
and the polarization self-energy contributionΣh1

pol + Σe1
pol )

0.07 eV. The addition energy for the third electron∆2,3
(e) ) 0.64

eV includes [eq 5] the single-particle contributionεe2 - εe1 )
0.40 eV, the direct Coulomb contribution 2Je1,e2

dir - Je1,e1
dir )

0.17 eV, the polarization contribution 2Je1,e2
pol - Je1,e1

pol ) 0.07
eV, and a negligible self-energy contributionΣe2

pol - Σe1
pol. The

exchange contributionKe1,e2 is smaller than 0.02 eV, and can
be neglected.

In conclusion, we predict the effects of the dielectric
environment on the electron and hole charging energies and on
the addition spectrum of semiconductor quantum dots. We find
that the charging energies and the addition energies depend
sensitively on the dielectric constantεout of the surrounding
material via the self-energiesΣi

pol and the polarization energies
Ji,j

pol. Our calculations for InAs nanocrystals are in excellent
agreement with recent spectroscopic results1 for εout ) 6, and
provide a quantitative prediction of how single-electron tun-
neling in quantum dots can be tuned by changing the dielectric
environment.

This work was supported by the U.S. DOE, Office of Science,
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TABLE 1: Addition Energies ∆N,N+1, Quasi-Particle Gap
Egap

qp , and Optical Gap Egap
opt of InAs Nanocrystals (in eV) for

Different Values of the Dielectric ConstantEout

D ) 30.3 Å,εgap) 1.71 eV D ) 42.2 Å,εgap) 1.31 eV

εout ) 1 6 10 20 1 6 10 20

Electrons
∆1,2

(e) 0.96 0.22 0.16 0.11 0.69 0.15 0.10 0.07

∆2,3
(e) 1.45 0.64 0.57 0.53 1.05 0.51 0.46 0.43

∆3,4
(e) 0.98 0.24 0.17 0.13 0.70 0.15 0.10 0.07

∆4,5
(e) 0.99 0.24 0.18 0.13 0.69 0.15 0.10 0.07

∆5,6
(e) 0.98 0.24 0.17 0.13 0.67 0.14 0.09 0.06

∆6,7
(e) 0.98 0.23 0.17 0.13 0.71 0.16 0.11 0.08

∆7,8
(e) 0.99 0.24 0.18 0.13 0.68 0.14 0.10 0.07

∆8,9
(e) 1.03 0.28 0.21 0.17

∆9,10
(e) 1.00 0.25 0.19 0.14

Holes
∆1,2

(h) 0.98 0.23 0.17 0.13 0.73 0.18 0.13 0.10

∆2,3
(h) 1.04 0.26 0.19 0.14 0.68 0.15 0.10 0.07

∆3,4
(h) 0.97 0.22 0.16 0.11 0.73 0.17 0.13 0.09

∆4,5
(h) 0.91 0.21 0.15 0.11 0.68 0.15 0.11 0.07

∆5,6
(h) 1.03 0.24 0.17 0.12 0.73 0.17 0.12 0.09

Gaps
εgap

qp 2.37 1.78 1.72 1.65 1.84 1.38 1.32 1.27

εgap
opt 1.56 1.55 1.54 1.22 1.21 1.20
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