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Abstract. The short-range order (SRO) present in disordered solid solutions is classified
according to three characteristic system-dependent energies: (1) formation enthalpies of ordered
compounds, (2) enthalpies of mixing of disordered alloys, and (3) the energy of coherent phase
separation (the composition-weighted energy of the constituents each constrained to maintain a
common lattice constant along an A/B interface). These energies are all compared against a
common reference, the energy of incoherent phase separation (the composition-weighted energy
of the constituents each at their own equilibrium volumes). Unlike long-range order (LRO), short-
range order is determined by energetic competition between phases at a fixed composition, and
hence only coherent phase-separated states are of relevance for SRO. We find five distinct SRO
types, and give examples showing each of these five types, including Cu–Au, Al–Mg, GaP–InP,
Ni–Au, and Cu–Ag. The SRO is calculated from first principles using the mixed-space cluster
expansion approach combined with Monte Carlo simulations. Additionally, we examine the effect
of inclusion of coherency strain in the calculation of SRO, and specifically examine the appropriate
functional form for accurate SRO calculations.

1. Introduction: short-range order and coherent phase stability

The equilibrium regions involved in solid-state binary alloy phase diagrams are ordered phases,
two-phase regions, and disordered solid solutions. The latter form at elevated temperatures,
and consist of an A1−xBx phase in which the A and B atoms of the alloy are distributed in a
disordered fashion on the sites of a single, underlying lattice (often a Bravais lattice, e.g., fcc).
In the disordered phase, the atomic-scale occupation of sites of the lattice by A and B atoms
does not occur perfectly randomly, nor does it occur with any long-range atomic ordering.
Instead, local ordering or local clustering takes place in this solid solution, and is collectively
referred to as short-range order (SRO). The degree and type of SRO in a solid solution can be
quantified by specifying the Warren–Cowley SRO parameters, αlmn, for a given composition
(x) and temperature (T ):

αlmn(x, T ) = 1 − P
A(B)
lmn (x, T )

x
. (1)

Here, PA(B)
lmn (x, T ) is the conditional probability that given an A atom at the origin, there is a B

atom at shell (lmn). This probability is necessarily dependent on composition and temperature,
thus giving an x- and T -dependence to α. If the lattice sites are occupied completely at random,
the conditional probability P(x, T ) is equal to x, and thus α = 0. Therefore, the departure
of α from zero indicates the extent to which atom–atom correlations exist within disordered
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alloys. Ordering-type correlations (the predominance of A–B bonds) manifest themselves as
α < 0 while clustering-type correlations (the predominance of A–A and B–B bonds) manifest
themselves as α > 0.

In diffraction experiments, short-range order does not give rise to superstructure reflections
(as in the case of long-range order), and hence one must look ‘under’ or ‘between’ the Bragg
diffraction peaks to observe SRO. The SRO gives rise to modulations in the monotonic
Laue background, and using diffuse scattering techniques (e.g., see references [1–7]) one
can examine these modulations between the Bragg peaks. By analysing the diffuse scattered
intensity, one can extract the portion, I SRO

diffuse, of the diffuse scattering due to SRO, which is
proportional to the lattice Fourier transform of the Warren–Cowley parameters:

I SRO
diffuse ∝ α(x,k) =

nR∑
lmn

αlmn(x)e
ik·Rlmn . (2)

The connection between high-temperature SRO in the disordered phase and the low-
temperature structures is fascinating [3,8,9]. As one cools the disordered phase, it eventually
gives way to long-range order (LRO), either in the form of ordered compounds or phase
separation. Are the SRO fluctuations of the high-temperature disordered phase simply
‘precursors’ or ‘remnants’ of the underlying LRO in the low-temperature phase, or can there be
a competition between local ordering/clustering versus long-range ordering/clustering? This
question can be phrased more quantitatively as follows. The maximum of equation (2) indicates
the dominant wavevector kSRO

0 for SRO fluctuations in the disordered phase. Long-range order
at low T is often similarly characterized by an ordered structure composed of a dominant
composition wave, kLRO

0 [10,11]. The question is then: What is the relationship between kSRO
0

and kLRO
0 ? Although in many cases kSRO

0 = kLRO
0 , there are many examples [3, 8, 9] where

the dominant wavevectors of SRO and LRO do not coincide†. Some of these cases of distinct
wavevectors can be explained [8] by noting that whereas SRO is determined by the energetic
competition between all possible phases at a fixed composition, LRO stability is determined
by the energy relative to all possible mixtures of phases, even those at different compositions.

2. Qualitative understanding of LRO versus SRO

To understand the distinction between fixed-composition and global stability, and the
concomitant differences between SRO and LRO, we define three characteristic energies:

(a) The formation enthalpy of an ordered (O) structure is the (zero-pressure) total energy
EO(σ, aσ ) of the ordered phase σ with lattice constant aσ , taken with respect to equivalent
amounts of the A and B constituents, each at their ‘natural’, equilibrium lattice constants
aA and aB, respectively:

�HO = EO(σ, aσ ) − [(1 − x)EA(aA) + xEB(aB)]. (3)

(b) The mixing enthalpy of a random (R) alloy is the analogous energy difference for the
random alloy:

�HR = ER(R, aσ ) − [(1 − x)EA(aA) + xEB(aB)] (4)

Notice that in both equations (3) and (4) the reference energies are those of A at its
lattice constant aA and B at aB. For alloys with lattice-mismatched constituents (aA �= aB),

† We note that the distinction between coherent and incoherent phase stability only accounts for some of the cases
for which long- and short-range order do not coincide. Other cases illustrating the distinction between long-range
order and short-range order have been found, where contributions to the free energy such as configurational entropy,
geometric frustration or electron–hole free energy can differentiate energetics at low temperature (LRO) and at high
temperature (SRO).
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incoherent mixtures of phases with different volumes often contain misfit dislocations at
the interfaces between the two phases to relieve strain. Thus, the reference energies of
equations (3) and (4) involve a state of phase separation (A + B) which is incoherent.
Thus, we define the incoherent phase-separated (IPS) state as

EIPS = [(1 − x)EA(aA) + xEB(aB)] (5)

and this is simply chosen as the zero reference energy for our comparisons. In contrast,
coherent two-phase mixtures contain no such misfit dislocations, and thus both phases are
somewhat strained due to this constraint of coherency. This leads to:

(c) The coherent phase-separated state or coherency strain (CS), which involves strain in the
plane of the interface and relaxation of the atoms perpendicular to the interface. Thus,
the strain energy necessary to maintain coherency at an interface between A and B (called
the ‘coherency strain’) is necessarily dependent on the orientation of the interface k̂.
�ECS(k̂, x), the coherency strain energy, is defined as the energy change when the bulk
solids A and B are deformed from their equilibrium cubic lattice constants aA and aB to a
common lattice constant a⊥ in the direction perpendicular to k̂, while they are relaxed in
the direction parallel to k̂†:

�ECS(k̂, x) = min
a⊥

[
(1 − x)�E

epi
A (k̂, a⊥) + x �E

epi
B (k̂, a⊥)

]
(6)

where�E
epi
A (k̂, a⊥) is the energy required to deform A biaxially toa⊥. Each of the energies

�E
epi
A and �E

epi
B is positive definite and, hence, the coherency strain of equation (6) is

positive definite. Of particular importance is the lowest attainable coherency strain

�Emin
CS (x) = min

k̂

�ECS(k̂, x) (7)

where the minimization is performed over all directions k̂. �Emin
CS (x) then gives the

formation enthalpy of the energetically most favourable coherently phase-separated state.

Using the definitions of equations (3)–(6), we can now note that:

(1) Long-range order is determined by incoherent phase stability: for a long-range-ordered
compound to be a ground state (a zero-temperature stable phase), it must be lower in
energy than any other compound at that composition, as well as lower in energy than
any incoherent two-phase mixture of phases at other compositions, including a mixture
of the constituent elements. Thus, a necessary condition for a ground-state structure is
that �HO < 0. The formation energy �HO of equation (3) demonstrates clearly that the
long-range order, and hence the equilibrium phase diagram behaviour, is determined by
incoherent phase stability.

(2) Short-range order is determined by coherent phase stability: the short-range order involves
a single-phase field (disordered solid solution) of the phase diagram, and thus does not
pertain to incoherent two-phase mixtures. Some of these cases of distinct wavevectors can
be explained [8] by noting that whereas SRO is determined by the energetic competition
between all possible phases at a fixed composition, LRO stability is determined by the
energy relative to all possible mixtures of phases, even those at different compositions.
In fact, two crucial quantities for determining the types of fluctuation which develop in
disordered alloys are the ‘ordering energy’

δEord = �HO − �HR (8)

† In the general case of a low-symmetry (e.g., high-Miller-index) interface, there are three independent plane strain
components instead of just the uniform plane strain described by a⊥ (see reference [22]). Equation (6) is exact for
interfaces possessing high-symmetry axes, such as (100) and (111) in fcc-based systems.
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and the ‘coherent phase-separation energy’

δECPS = �Emin
CS − �HR. (9)

δEord (δECPS) represents the energy required to form the ordered (coherent phase-
separated) state, starting from the random alloy of the same composition. Both δEord

and δECPS are fixed-composition energy differences and are independent of the energy of
incoherent phase separation.

Figure 1 illustrates five possible relative orders of the energies �HO, �HR, and �ECS of
equations (3)–(6). The ordered structures ‘O’ in figure 1 are representative of the lowest-energy
coherent configurations, i.e., structures with dominant composition waves at the Brillouin zone
boundary (e.g., the L10, L11, or L12 structures). It should be noted that in cases (e.g., Al–
Cu) where the lowest-energy coherent configurations correspond to ordered compounds which
have a large degree of ‘clustering’, one can obtain clustering-type SRO even in a ‘type I’ alloy
(see reference [12]). In this paper, we study these types I–V of LRO/SRO behaviour in real
alloy systems using a first-principles total-energy technique for calculating �HO and �ECS,
and a cluster expansion method for calculating �HR and SRO.

Type I Type II Type IVType III Type V

Coherent 
Phase 

Separation
A(as) + B(as)

Incoherent 
Phase 

Separation
A(aA) + B(aB)

CS CS

CS CS CS

R

O

R

O

R

O

R

O

R

O

LRO
SRO

Examples

O
O

O
O

PS
O

PS
O/PS

PS
PS

Cu-Au Al-Mg GaP-InP Ni-Au Cu-Ag

0.0 0.0

0.0 0.0 0.0

Figure 1. A schematic illustration of the classification of alloy types in terms of energies of
ordered (O) compounds, random (R) alloys, and coherent phase separation, or coherency strain
(CS) minimized with respect to orientation. Note that the O → R and CS → R energy differences
give the ordering energy and the coherent phase-separation energy, δEord and δECPS, respectively.
Energies are shown relative to the reference state of incoherent phase separation (IPS) A + B, labelled
as ‘0.0’ to indicate the zero of energy. The ordered structures ‘O’ are meant to be representative
of the lowest-energy structures with dominant composition waves at the Brillouin zone boundary
(e.g., the L10, L11, or L12 structures). It should be noted that in cases (e.g., Al–Cu) where the
lowest-energy coherent configurations correspond to ordered compounds which have a large degree
of ‘clustering’, one can obtain clustering-type SRO even in a ‘type I’ alloy (see reference [12]).

The salient features of the SRO are decided by the quantities δEord and δECPS, so we
examine the qualitative possibilities for these two quantities, defining the five alloy types of
figure 1:
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type I: δEord < 0 < δECPS (e.g., Cu–Au)
type II: δEord < 0 ∼ δECPS (e.g., Al–Mg)
type III: δEord < δECPS < 0 (e.g., GaP–InP)
type IV: δEord ∼ δECPS < 0 (e.g., Ni–Au)
type V: δECPS < δEord < 0 (e.g., Cu–Ag).

The arrows in figure 1 show schematically the fluctuations in the random alloy which are
energetically most favourable. In ‘type I’, ‘type II’, and ‘type III’ alloys, the ordered alloy is
lower in energy than both the random alloy (δEord < 0) and the coherent phase-separated state
(δEord < δECPS). Therefore, energetic fluctuations of the random alloy are expected to be of
ordering type, depicted as R → O in figure 1. Thus, the SRO of solid solutions of types I, II,
and III alloys are all ordering type (kSRO �= 0), even though the LRO is ordering only in types
I and II, but phase separating (incoherently) in type III. On the other hand, a ‘type V’ alloy is
a prototypical ‘clustering’ alloy, where the coherent phase-separated state is lower in energy
than both the random alloy (δECPS < 0) and the ordered alloy (δECPS < δEord). Hence, the
SRO is expected to be of clustering type (kSRO = 0), represented by R → CS in figure 1.
Since phase separation is the lowest-energy incoherent state in a ‘type V’ alloy, the LRO of this
alloy is also phase separation. ‘Type IV’ alloys are intermediate between ‘type III’ and ‘type
V’. In type IV, there is strong competition between ordering and coherent phase separation
(δEord ∼ δECPS), and, thus, it is difficult to predict even the qualitative behaviour of the SRO
for this case, since there are expected to be competitive energetic fluctuations simultaneously
towards ordering and phase separation in these alloys (illustrated by both R → O and R → CS
arrows in figure 1). As shown below, the SRO of the ‘type IV’ alloy, Ni–Au, is intermediate
between that of a strongly ordering alloy (types I, II, and III) and that of a strongly clustering
alloy (type V).

3. The mixed-space cluster expansion—a description of atomically relaxed, coherent
alloy energetics

3.1. General formalism

Calculating the equilibrium SRO in solid solutions from an energetic approach requires, in
principle, a statistical sampling of all configurations σ . Even a binary alloy system with
a modest number of sites N possesses 2N possible configurations, and hence the number
of configurations for which we need to know the energy quickly becomes impractically
large. Hence, one method used to obtain finite-T thermodynamics is to perform statistical
calculations by means of a Monte Carlo algorithm using an energy functional which describes
the alloy in question. The Monte Carlo calculations efficiently sample the energy in regions
of configuration space where the energy is close to its thermal average. Still, Monte Carlo
calculations require the alloy energy functional to be sufficiently computationally inexpensive
that it is easily evaluated for very large unit cells and for many different configurations. Hence,
we wish to use a method whereby one maps first-principles alloy energetics onto an energy
functional which is sufficiently simple that Monte Carlo simulations become possible, but
also sufficiently accurate as to reflect the atomically relaxed energetics of a wide variety
of alloy configurations. Such a method, the mixed-space cluster expansion (CE), has been
developed [13,14] and applied to several alloy systems [15–19]. The CE method relies on (i) a
separation of formation enthalpy into strain and chemical contributions, and (ii) a mapping
of the chemical term onto a generalized Ising-like model: one selects a single, underlying
parent lattice (in the case of this paper, fcc) and defines a configuration, σ , by specifying the
occupations of each of the N lattice sites by an A atom or a B atom. For each configuration,
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one assigns the spin-occupation variables, Ŝi = ±1, to each of the N sites. Within the Ising-
like description of the mixed-space CE, the positional degrees of freedom are integrated out,
leaving an energy functional of spin variables only, Ŝi , which reproduces for each configuration
σ the energy of the atomically relaxed structure, with atomic positions at their equilibrium
(zero-force, zero-stress) values.

The details of construction of this energy functional within the LDA are discussed
elsewhere [13,18], and thus we give here only the salient points. We have used full-potential,
fully relaxed, linearized augmented plane-wave method [20] (LAPW) total energies in the
construction of the mixed-space cluster expansions. (In the case of GaP–InP, LAPW energies
were used to fit a ternary valence-force-field functional, which was in turn used to construct
the mixed-space cluster expansion [21].) Details of the LAPW method typically used in these
calculations, as well as the number and types of alloy structures used in the CE fit are described
in reference [18].

The expression used for the formation enthalpy of any configuration σ in the mixed-space
CE is

�H(σ) =
∑

k

J (k)|S(k, σ )|2 +
∑
f

Df Jf�f (σ ) +
1

4x(1 − x)

∑
k

�ECS(k̂, x)|S(k, σ )|2.

(10)

J (k) is the Fourier transform of the pair interaction energies, S(k, σ ) is the structure factor for
σ , f is a symmetry-distinct figure comprised of several lattice sites (pairs, triplets, etc), Df is
the number of figures per lattice site, Jf is the Ising-like interaction for the figure f , and the
‘lattice-averaged product’ �f is defined as a product of the variables Ŝi over all sites of the
figure f with the overbar denoting an average over all symmetry-equivalent figures of lattice
sites. Our approach is based on the fact that for simple configurations σ we know the left-hand
side of equation (10) quite accurately from first-principles LDA total energies, so we can solve
for the interaction energies {Jf } and J (k). Thus, we incorporate, at the outset, a detailed
quantum mechanical picture (LDA) for interactions, and hence for SRO. Also, we note that
the total energy includes eigenvalue (or one-electron), electrostatic, and exchange–correlation
terms.

The mixed-space CE of equation (10) is separated into three parts:

(i) The first summation includes all pair figures corresponding to pair interactions with
arbitrary separation. These pair interactions are conveniently summed using the
reciprocal-space concentration-wave formalism [10,11]. J (k) and S(k, σ ) are the lattice
Fourier transforms of the real-space pair interactions and spin-occupation variables, Jij

and Ŝi , respectively.
(ii) The second summation includes only non-pair figures. The real-space summation of

equation (10) is over f , the symmetry-distinct non-pair figures (points, triplets, etc).
(iii) The third summation involves �ECS(k̂, x), the coherency strain energy, defined above.

3.2. The attenuated coherency strain term

A �ECS term is included in equation (10) to describe the elastic strain effects between lattice-
mismatched phases brought into contact and strained as a result of coherency. To understand
the need for this term in the cluster expansion, consider a subset of coherent two-phase
configurations: long-period n → ∞ superlattices An/Bn with layer orientation along k̂. These
long-period structures possess small (k → 0) dominant wavevectors, but their strain energy
depends on the layer orientation, and thus the direction of k, as seen in equation (6). However,
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the cluster expansion of equation (10) without �ECS and with finite-ranged interactions will
give [22] �H(n) ∼ 1/n as n → ∞, independent of k̂. Thus, one must include a �ECS

term in equation (10) since this introduces the orientation dependence in coherently strained
two-phase configurations, which cannot be described by short-ranged real-space interactions
J (R). Further, because long-period superlattices possess k → 0 dominant wavevectors, but
the strain energy is dependent on the direction of k̂, there is a k → 0 non-analyticity in the
reciprocal-space description of the coherency strain. Thus, the coherency strain cannot be
described everywhere by reciprocal-space interactions J (k) which are analytic.

Laks et al [13] formulated �ECS by ensuring that it retained the correct n → ∞ super-
lattice limit:

�ECS(σ ) = 1

4x(1 − x)

∑
k

�ECS(k̂, x)|S(k, σ )|2. (11)

Laks et al demonstrated that this form gives the correct orientation and composition dependence
in the long-period limit of the coherency strain [13]. Furthermore, it was shown that this form
is uniquely defined for short-period superlattices and non-superlattices. However, this form
treats short-period superlattices (k → 2π/n) the same way that long-period superlattices
(k → ∞) are treated. To generalize equation (11), we note that the k → 0 non-analyticity
could still be satisfied if we were to multiply ECS by a function F(k):

�ECS(σ ) = 1

4x(1 − x)

∑
k

�ECS(k̂, x)|S(k, σ )|2F(k) (12)

so long as F(k) → 1 as k → 0 for all directions. However, the introduction of F(k) enables
different treatments of short- versus long-period systems. So, the question is: Which F(k) is
best?

We exploit the inherent flexibility in the choice of the form of F(k) to improve the
convergence of the cluster expansion. Intuitively, one might expect that �ECS of equation (12)
should be related to the strain energy inherent in the structure, and thus related to the relaxation
energy

δErel = Erelaxed
LDA − Eunrelaxed

LDA . (13)

Indeed, consider the following decomposition of the formation enthalpy of any configuration
σ (either ordered or random):

�H(σ) = �EVD(σ ) + δEUR
chem(σ ) + δErel(σ ). (14)

The first term on the right-hand side is the ‘volume deformation energy’, i.e., the energy required
to deform the alloy constituents hydrostatically from their equilibrium lattice constants to that
of the alloy structure σ . The second term is the ‘chemical energy’, i.e., the energy difference
between the unrelaxed (UR) structure (with all atoms at ideal lattice sites) and �EVD, so
�EVD + δEUR

chem = δEUR
LDA. The third term, the ‘relaxation energy’, is the energy gained upon

atomic and cell-shape distortions.
In systems where δErel is small, the CE is rapidly convergent [18]. However, large

relaxations lead to long-ranged pair and multibody interactions. For an AmBn long-period
superlattice,

δErel(AmBn, k̂) = �ECS(k̂, x) − �EVD(x). (15)

Substituting equation (15) into equation (14), we find that

�H(AmBn, k̂) = �ECS(k̂, x) + �EUR
chem (16)

in accordance with equation (10). Equation (15) holds for infinite superlattices only, but we
want a form which gives a reasonable relaxation energy for short-period ordered structures and



2756 C Wolverton et al

disordered alloys as well, i.e., we want to introduce a wavevector dependence into equation (15).
Within a second-order expansion of the elastic energy, δErel can be written as [10, 11]

δErel(σ ) = −
∑

k

Vrel(k)|S(k, σ )|2 (17)

where Vrel(k) can be related to the lattice Fourier transforms of the Kanzaki forces and
dynamical matrix [10, 11]. We will retain the form of equation (17), but we will generalize
Vrel(k) to accommodate some of the shortcomings of the second-order expansion derivation.

To gain insight into the wavevector dependence of the relaxation energy, consider the
following breakdown of the relaxation energy:

δErel(σ ) = δEint
rel (σ ) + δEext

rel (σ ). (18)

The cell-internal relaxation δEint
rel is the energy gained when atomic positions within the unit

cell are relaxed, but the unit-cell vectors maintain their ideal angles and lengths, whereas the
cell-external relaxation δEext

rel is the energy gained when the unit-cell vectors are allowed
to relax. For some high-symmetry structures, δEint

rel = 0 by symmetry: structures with
dominant composition wavevectors at the Brillouin zone boundary often possess only cell-
external degrees of freedom. For example, the A1B1 superlattice along (001) is tetragonal,
composed of k = (001) waves, and possesses only the tetragonality ratio c/a as a symmetry-
allowed degree of freedom. However, the A2B2 (001) superlattice is composed of k = 1

2 (001)
waves, and, in addition to the c/a ratio, also possess a cell-internal degree of freedom.

It is interesting to know the extent to which cell-internal and cell-external relaxations
are energetically important in various alloy systems. Table 1 shows the LAPW calculated
relaxation energy for A2B2 and A1B1 (001) superlattice structures for a variety of size-
mismatched noble-metal and aluminium alloy systems: Ni–Au, Cu–Au, Cu–Ag, Ni–Al,
Cu–Al, and Al–Mg. The relaxation energy is decomposed into cell-internal and cell-external
pieces. Table 1 demonstrates that (i) when symmetry does not prohibit cell-internal relaxation,

Table 1. LAPW calculated relaxation energies (equation (13)) in a variety of noble-metal and
aluminium alloys. Shown are the relaxation energies for A2B2 (001) and A1B1 (001) superlattices.
The former possesses both cell-internal and cell-external degrees of freedom, and the latter possesses
only a cell-external degree of freedom. The fraction of the relaxation energy which comes from
the cell-internal relaxation is shown, and to give some idea of the scale of the relaxation energy,
the ratio between the relaxation energy and the formation enthalpy of the structure is also given.

A2B2 (001) superlattice
Superlattice δErel δEint

rel/δErel |δErel/�H(A2B2)|
Ni2Au2 −216.5 0.88 3.08
Cu2Au2 −143.1 0.84 21.36
Cu2Ag2 −96.7 0.90 1.24
Ni2Al2 −303.9 0.50 0.69
Cu2Al2 −88.2 0.80 1.19
Al2Mg2 −34.6 1.00 2.52

A1B1 (001) superlattice
Superlattice δErel δEint

rel/δErel |δErel/�H(A1B1)|
Ni1Au1 −22.0 0.0 0.29
Cu1Au1 −12.1 0.0 0.25
Cu1Ag1 −7.1 0.0 0.07
Ni1Al1 −141.7 0.0 0.21
Cu1Al1 −115.9 0.0 0.71
Al1Mg1 ∼ 0 — ∼ 0
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this mode of relaxation is dominant (e.g., 100% in Al2Mg2). Yet, (ii) cell-external relaxation
is not negligible: it is 100% (by symmetry) for A1B1 along (001) or (111); it is ∼50% for
(001) Cu2Al2, and ∼10–15% for Ni2Au2 and Cu2Au2. (iii) The A2B2 structure has much
larger (mostly cell-internal) relaxation than the A1B1 structure. Similar studies [13] on longer-
period AnBn superlattices confirm that δErel increases withn. Thus, the cell-internal relaxation
decays as the dominant wavevector k ∼ 1/n increases towards the Brillouin zone boundary
(small-period superlattices). However, cell-external relaxation does not. In the second-order
expansion approaches, it can be shown [10] that the relaxation energy decays precisely to
zero at the Brillouin zone boundary. Thus, these types of approach do not account for energy
lowering due to cell-external relaxations. For some systems (Al–Mg), this is probably an
adequate assumption, while for others (Ni–Al, Cu–Al) it is not. It is possible to introduce
macroscopic elastic strain into the first-principles linear response approaches [23]; however,
to our knowledge this approach has not been applied to studies of bulk alloy systems. In this
vein, we also note that linear response and alchemical calculations have been extended to third
order [24, 25]. However, to our knowledge, none of these third-order approaches treats the
effects of macroscopic elastic strain, required to describe cell-external relaxations. To obtain
a non-zero relaxation energy at the Brillouin zone boundary, Vrel(k) will be given by

Ṽrel(k) = �EVD(x) − �ECS(x, k̂)

4x(1 − x)
F (k) (19)

where F(k) is chosen such that the relaxation energy from equation (19) matches the first-
principles values obtained from equation (13). We have selected [26]

F(k) = e−(|k|/kc)2
(20)

with kc being an adjustable parameter. We find that

δErel(σ ) = −1

2

∑
k

�EVD(x) − �ECS(x, k̂)

4x(1 − x)
|S(σ,k)|2e−(|k|/kc)2

(21)

with kc ∼ 0.6(2π/a0) matches the LDA relaxation energies (e.g., table 1) of many compounds
very well; hence we will use

�ECS(σ ) = 1

4x(1 − x)

∑
k

�ECS(k̂, x)|S(k, σ )|2e−(|k|/kc)2
(22)

in our cluster expansion instead of equation (11) for ECS(σ ). The resulting mixed-space cluster
expansion then is

�H(σ) =
∑

k

J (k)|S(k, σ )|2 +
∑
f

Df Jf�f (σ )

+
1

4x(1 − x)

∑
k

�ECS(k̂, x)|S(k, σ )|2e−(|k|/kc)2
. (23)

We refer to equation (22) as the ‘attenuated coherency strain’. It differs from previous calc-
ulations in the choice of F(k) of equation (20) rather than F(k) = 1.

To summarize this section, we find that equation (23) improves the conventional cluster
expansion since the effect of strain for large-k (small-period) structures is attenuated. This
will turn out to be important when anharmonic strain is large and when the relaxation energy
of short-period k → π/n structures is particularly small relative to that of long-period k → 0
structures, so treating them equally (as is the case ifF(k) = 1) is unbalanced. Since attenuation
does not affect k → 0 energetics, it is unimportant for phase-separating systems where the
SRO peaks near k = 0.
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We next discuss the F(k) = 1 form of the coherency strain energy (equation (11)) used
in the mixed-space CE of equation (23) and show how it can fail for some short-period
superlattices in systems which possess strongly anharmonic strain. The failures include
prediction of spurious ground-state structures, and incorrect short-range-order patterns (when
compared with measured patterns). Attenuating the form of the coherency strain energy via
equation (20) is shown to rectify these problems.

3.3. Attenuating the coherency strain for short-period superlattices

The problems which can arise with the unattenuated form of the CS are most easily explained
with an example: Cu-rich Cu–Au alloys. This system has a very large lattice constant mismatch
(12%), and thus anharmonic strain effects are significant. First-principles calculations of the
coherency strain in Cu–Au alloys [18] have shown that the strong anharmonic strain of Au
results in a low CS for the (201) direction in Cu-rich alloys. This simply means that (201)
long-period superlattices (small k) will be lower in energy than differently oriented long-period
superlattices. However, this energetic preference for (201) structures does not necessarily
hold for short-period superlattices (large k), due to the first two terms of equation (10) which
describe interfacial energies of atoms near the Cu/Au interfaces. But the unattenuated form
of the coherency strain energy given in equation (11) will give a large energy lowering to
any Cu-rich structure which possesses composition waves lying along the (210) direction,
regardless of the magnitude of the wave (the superlattice period). Thus, the short-period
Cu4Au1 superlattice along (210), which is a structure composed of composition waves at the
origin and k = 2

5 (210) (a rather large k, 80% of the way to the Brillouin zone boundary)
will be given a low energy by equation (11) due to the low energy of the small-k long-period
(210) superlattices†. This is illustrated in figure 2 which shows the unattenuated (F = 1) and
attenuated cluster expansion predictions for the formation enthalpy of this Cu4Au1 structure
as well as the directly calculated LAPW formation enthalpy. The SRO of Cu0.9Au0.1 is shown
in figure 3 as calculated from the unattenuated and attenuated CE, as well as as obtained from
diffuse scattering measurements [27]. The F = 1 unattenuated CE has the following features:

(1) The Cu4Au1 (210) superlattice is artificially low in energy due to the low (210) CS energy
(figure 2).

(2) The F = 1 cluster expansion incorrectly predicts this structure’s energy to lie below the
tie line connecting Cu3Au (L12) and Cu, in disagreement with both experiment and direct
LAPW calculations.

(3) As we see from figure 3, the unattenuated F = 1 cluster expansion predicts (210)-type
SRO in the solid solution for Cu-rich alloys. The predicted SRO along the (210) direction
is due to the low (210) long-period superlattice energy for Cu-rich alloys. However, the
measured SRO pattern [27] shows peaks at the (100) points.

The effects of attenuating the CS are significant:

(1) The form ofF(k)of equation (20) progressively attenuates the CS for structures with larger
wavevectors. Thus, in our example, the energy of the short-period Cu4Au1 superlattice
is not given an artificially large relaxation energy due to the large relaxation energy of
the long-period (210) superlattices. Consequently, its energy is raised significantly, in
excellent agreement with direct LAPW calculations (figure 2), despite the fact that this
energy was not used in fitting either the attenuated or unattenuated CE.

† It is important to note that the anharmonic CS is correct near the origin of reciprocal space, or for long-period
Cu/Au superlattices (i.e., within LDA, 201 is really the softest elastic direction for highly distorted Au); the use of the
soft 201 direction for wavevectors away from the origin is where the problems of the unattenuated CE arise.



Short-range-order types in binary alloys 2759

Cu-Au Formation Enthalpies

Cu composition

0.00 0.05 0.10 0.15 0.20 0.25 0.30

∆H
 (

m
eV

/a
to

m
)

-80

-70

-60

-50

-40

-30

-20

-10

0

Cu3Au

Unattenuated CS

Cu4Au

LAPW

CE

Attenuated CS

Figure 2. Energetics of the Cu4Au1 (210) superlattice relative to Cu3Au (L12) and Cu.

(2) The energy of Cu4Au1 is brought above the tie line connecting Cu3Au + Cu; thus,
attenuating the CS solves the problem of false ground states due to low-energy long-
period strain energies.

(3) Figure 3 shows that the SRO pattern is brought into quantitative agreement with experiment
by the attenuation. Calculated peaks in the SRO move from the (210) direction to the (100)
direction upon attenuation of the CS.

Thus, we see that the form of the attenuated coherency strain is most likely to be crucial
in ordering systems (where wavevectors away from the origin are important) which possess
highly anharmonic strain energies (where the soft elastic direction can shift as a function of
composition).

Next, we discuss the short-range-order behaviour for a series of alloys classified accord-
ing to their energetics as in figure 1. We show that the Al–Mg system represents a type II
alloy, which has not previously been discussed. We specifically point out the strong effect of
attenuating the CS for the Cu–Au and Ni–Au systems, and show that the attenuated strain leads
to SRO in Cu-rich Cu–Au alloys in agreement with experiment and significantly changes the
predicted SRO in Ni-rich Ni–Au, for which there are currently no measurements.

4. Short-range-order types

We now investigate the SRO/LRO types of figure 1. The calculations for some of these
alloy systems (Cu–Au, Ni–Au, and Cu–Ag) have been discussed previously [15] using the
unattenuated F = 1 form of the coherency strain. Thus, for these alloys, we do not provide
a detailed account of the experimental and theoretical literature on the SRO of these solid
solutions. Rather, we discuss the effects of attenuating the coherency strain on the SRO, and
compare with experimental diffuse scattering measurements where appropriate.
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Figure 3. The calculated and measured [27] SRO patterns α(k) in Cu0.90Au0.10. Shown are the
calculated results for both (a) non-attenuated coherency strain and (b) attenuated coherency strain
and (c) the experimentally measured pattern extracted from diffuse x-ray scattering. SRO is shown
in the (hk0) plane, and peak contours are shaded black.

4.1. Type I alloy, Cu–Au: δEord < 0 < δECPS

Cu–Au is the prototypical ordering alloy system. Its compounds exhibit negative formation
and mixing enthalpies, �HO < 0, �HR < 0 (see reference [18] for a recent compilation
of the mixing and formation enthalpies in this system). The ordering energies are negative,
δEord < 0, as is the coherent phase-separation energy δECPS < 0, placing this alloy into ‘type
I’ of figure 1†. Figure 3 shows the calculated SROα(k) for Cu0.9Au0.1. The SRO of this system
has recently been measured [27] by means of diffuse x-ray scattering, and the measured results
are also shown in figure 3 for comparison. As expected for a ‘type I’ alloy, the SRO shows
ordering-type fluctuations (peaks in the SRO off the - point) consistent with the R → O arrow
schematically illustrated in figure 1. The calculated SRO pattern with attenuated SRO is in
quantitative agreement with the measured result [27], which also shows (100)-type SRO.

4.2. Type II alloy, Al–Mg: δEord < 0 ∼ δECPS

The Al–Mg phase diagram shows a series of complex ordered compounds. Calculations for
ordered Al–Mg compounds show [28, 29] that the low-energy fcc-based compounds have a
negative formation enthalpy, �HO < 0, whereas the mixing enthalpy of the solid-solution

† We have classified Cu–Au as ‘type I’ according to figure 1. However, it should be noted that the mixing energy
of the completely random alloy in Cu–Au is nearly zero; only when the energetic effect of SRO is included does the
mixing energy of the disordered solid solution become negative (see reference [18]).
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phase is positive, �HR > 0, both from experiment [30] and theory [29]. First-principles
calculations of the heat of solution of Mg impurities in Al also show a positive formation
enthalpy [31]. Thus, the ordering energy is negative, and because the coherency strain energy
is comparable to the mixing energy δECPS ∼ 0; thus Al–Mg is a type II alloy. The calculated
SRO of an Al0.85Mg0.15 solid solution is shown in figure 4. Table 1 shows that the cell-
external relaxation energy of ordered Al–Mg compounds is nearly zero and that the relaxation
is almost completely due to cell-internal relaxations. But, for structures with wavevectors
near the Brillouin zone boundary such as an Al1Mg1 (001) superlattice, there are no cell-
internal degrees of freedom, and thus the total relaxation energy is nearly zero (despite the
fact that this cell is tetragonal). Hence, the relaxation tendencies in this system follow the
attenuated form of equation (20), and thus we have performed the calculations for this system
using the attenuated CS. The calculated SRO shows a clear ordering tendency with peaks
at 〈100〉, despite the fact that �HR > 0. These (100) fluctuations in the solid solution are
interesting since aged Al–Mg alloys show the existence of an ordered Al3Mg (L12) phase in

T=350K
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(200)

(000)
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0.0

5.0

(020)

Short-Range Order of Al0.85Mg0.15

Figure 4. The calculated SRO patterns α(k) in Al0.85Mg0.15. SRO is shown in the (hk0) plane,
and peak contours are shaded black.
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the precipitation sequence [29, 32], with this structure being composed of (100) composition
waves. The metastable L12 phase does not appear in the Al–Mg phase diagram because the
equilibrium phases are incoherent with the fcc Al matrix; however, in view of the existence of
the L12 phase in coherent precipitation experiments, one might expect the metastable coherent
phase diagram to contain this phase. Thus, the (100)-type fluctuations in the SRO are a
reflection of the underlying coherent phase stability of the (100)-type Al3Mg phase. Note that
the calculated SRO fluctuations follow the R → O schematic diagram of figure 1. To our
knowledge, there have been no measurements (diffuse scattering or otherwise) of the SRO in
Al–Mg solid solutions.

4.3. Type III alloy, GaP–InP: δEord < δECPS < 0

The GaP–InP alloy system possesses positive formation enthalpies for all bulk structures,
�HO > 0,�HR > 0, but a negative ordering energy, δEord < 0 [8, 16, 21]. In other words,
the formation enthalpy of low-energy ordered compounds is below that of the random alloy
(δEord < 0) as is the coherency strain energy (δECPS < 0). (Surface ordering [22,33] is another
effect whereby �H bulk

O > 0 in bulk but the constraint of coherent epitaxy (epi) changes the

sign of �H
epi
O < 0 near the surface.) Further, Lu et al [16] have shown that the SRO in this

system is ordering, thus making it a type III alloy. Another previous study [34] suggests that
Ti–V might be a type III alloy. Figure 5 shows the SRO calculated for Ga0.5In0.5P using the
cluster expansion of reference [21]. The calculations of figure 5 were obtained from a cluster
expansion constructed from a ‘ternary’ valence-force-field model which was carefully fitted
to a large database of LAPW formation enthalpies [21]. In contrast, the cluster expansion of
reference [16] was directly fitted to LAPW energetics, with no force field as an intermediate
step. Other than the GaP–InP cluster expansion used in figure 5, all other cluster expansions in
this paper were constructed directly from first-principles total energies. The SRO of Ga0.5In0.5P
clearly shows an ordering tendency, with peaks at the (1 1

2 0) positions, as found by Lu et al [16]
The lowest-energy coherent ordered structures in the GaP–InP system correspond to (210)-
type short-period superlattices, as these structures possess the optimal geometry for relaxation
of tetrahedrally coordinated systems. The calculated SRO is a manifestation of these low-
energy (210) structures, and corresponds to the R → O fluctuations, schematically illustrated
in figure 1 for ‘type III’ alloys.

4.4. Type IV alloy, Ni–Au: δEord ∼ δECPS < 0

Ni–Au alloys show positive formation enthalpies �HO > 0, positive mixing enthalpies
�HR > 0, a miscibility gap in the phase diagram, and yet both measurements [4] and
calculations [8, 15, 35] of the SRO of Ni0.4Au0.6 show peaks off the - point, just like for
GaP–InP. However, in contrast with the case for GaP–InP, the CS energy in Ni–Au is slightly
lower than that of the lowest-energy ordered phase. Thus, as illustrated in figure 1, there will be
energetically favourable fluctuations in the random alloy towards both ordering (R → O) and
coherent phase separation (R → CS). The competition between these two types of fluctuation
distinguishes ‘type IV’ Ni–Au from ‘type III’ GaP–InP. In GaP–InP, only R → O fluctuations
are energetically favourable, as the CS energy is much higher than that of the lowest-energy
ordered phase.

Using an unattenuated form for the CS, we previously [15] calculated the SRO of Ni–Au
alloys for the Ni0.4Au0.6 composition (where we could compare with experiment) as well as
for other compositions where there are currently no measurements. Like that of the Cu–Au
system, the CS energy of Ni–Au shows strong anharmonic effects, and the soft elastic direction
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Figure 5. The calculated SRO patterns α(k) in Ga0.50In0.50P. SRO is shown in the (hk0) plane,
and peak contours are shaded black.

for Ni-rich alloys is (210) due to the elastic response of Au under compression. Thus, just
like in figure 3 for Cu–Au, we found the unattenuated SRO calculation for Ni-rich Ni–Au
alloys produced SRO peaks along the 〈ξ ξ

2 0〉 direction. Because we have found this SRO to
be incorrect for the Cu–Au alloys, we also want to re-examine the SRO for Ni-rich (and Au-
rich) alloys and evaluate the effects of attenuating the CS for these alloys. Figure 6 shows
the calculated SRO for Ni0.75Au0.25 both for unattenuated and attenuated CS. The SRO peaks
change position when the more correct, attenuated form of the CS is used. The SRO shows
peaks along the (ξ00) line, in accordance with the measured (and calculated) SRO peaks for
Ni0.40Au0.60. Thus, the SRO in figure 6 with attenuated CS is a more accurate prediction of
the SRO for Ni-rich Ni–Au alloys than our previous calculations [15]. However, the previous
calculations of the SRO in Au-rich Ni0.40Au0.60 were in qualitative agreement with experiment.
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Figure 6. The calculated SRO patterns α(k) in Ni0.75Au0.25. Shown are the calculated results for
both (a) non-attenuated coherency strain and (b) attenuated coherency strain. SRO is shown in the
(hk0) plane, and peak contours are shaded black.

Thus, it is important to see that attenuating the CS does not change the SRO peak position
for Au-rich alloys. Figure 7 shows the calculated SRO for Ni0.40Au0.60. Clearly, for Au-rich
alloys, the attenuation of the CS does not affect the SRO in a qualitative way, and leaves the
calculated SRO in agreement with diffuse scattering measurements [4].

4.5. Type V alloy, Cu–Ag: δECPS < δEord < 0

Cu–Ag is a prototypical ‘phase-separating’ alloy, which exhibits positive formation enthalpies
�HO > 0, positive mixing enthalpies �HR > 0, a miscibility gap, and a coherent phase-
separated state that is lower in energy than both that of the random alloy and those of ordered
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Figure 7. The calculated SRO patterns α(k) in Ni0.40Au0.60. Shown are the calculated results for
both (a) non-attenuated coherency strain and (b) attenuated coherency strain. SRO is shown in the
(hk0) plane, and peak contours are shaded black.

compounds. This latter fact distinguishes Cu–Ag from GaP–InP and Ni–Au. In GaP–InP,
the CS energy is above that of ordered compounds, and in Ni–Au the CS energy is slightly
below, but very close in energy to that of ordered compounds. The calculations of SRO in
Cu–Ag have been discussed previously and the SRO was shown to be clustering (with peaks
at -) [15]. In figure 8 we show the SRO for a Cu0.95Ag0.05 alloy at T = 480 K. Although this
is a different composition and temperature than the calculations of reference [15], the SRO
still shows clustering-type peaks at (000). The effect of attenuating the CS is not likely to
have a significant effect since the attenuation does not affect the energetics near the - point,
where the SRO shows peaks. Thus, for clustering alloys, the attenuated CS is likely to be
unimportant.
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Figure 8. The calculated SRO pattern α(k) in Cu0.95Ag0.05. SRO is shown in the (hk0) plane, and
peak contours are shaded black.

5. Summary

Short-range order reflects an energetic competition between perfectly random and imperfectly
random alloys at the same composition. In contrast, long-range order reflects not only this
iso-compositional competition, but also an energetic competition between a compound at
composition x, and its constituents at compositions x = 0 and x = 1 (and, more generally,
between two-phase mixtures of compounds at any compositions). This simple picture enables
us to divide SRO versus LRO behaviour of alloys into five generic groups:

(i) Type I (most compound-forming systems, e.g., Cu–Au), where �HO < 0 (i.e., ordering-
type LRO) and where �HO < �HR, so the random alloy can lower its energy by
developing ordering-type SRO (figure 3). Thus, the dominant wavevectors kLRO and
kSRO are both ordering type (k �= 0).

(ii) Type II (e.g., Al–Mg), where �HO < 0 (i.e., ordering-type LRO) but �HR > 0 (unstable
random alloy). Here too, the random alloy can lower its energy by developing ordering-
type SRO patterns, even though �HR > 0 (figure 4). Again, both kLRO and kSRO are of
ordering type.
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(iii) Type III (e.g., most semiconductor alloys and perhaps Ti–V), where �HO > 0 (i.e., phase-
separating LRO) and �HR > 0 (unstable random alloy), but �HO < �HR. Here, the
random alloy can lower its energy by adopting ordering-type SRO (kSRO �= 0) even though
the LRO is phase separating (kLRO = 0). Thus, kLRO �= kSRO.

(iv) Type IV (e.g., Ni–Au), where �HO > 0 (i.e., phase-separating LRO) and �HR > 0 (i.e.,
unstable random alloy), but �HO < �HR (as in type III) and �ECS < �HR. Here, the
random alloy can lower its energy in two channels: by developing fluctuations akin to
those of the ordered phase (kSRO �= 0) or fluctuations corresponding to phase separation
(kSRO = 0).

(v) Type V (most phase-separating materials, e.g., Cu–Ag), where �HO > 0 (i.e., phase-
separating LRO), �HR > 0 (unstable random alloy) and �ECS � �HO. Here, the
random alloy can lower its energy only by developing phase-separating fluctuations, so
both kLRO and kSRO are of clustering type.

This classification scheme (figure 1) enables one to guess the qualitative SRO behaviour
of an alloy given the measured or calculated enthalpies of ordered and random systems. It
introduces three unusual cases (types II, III, and IV), in addition to the usual ordering (type
I) and phase-separating (type V) cases. By noting that SRO reflects a constant-composition
energy balance between two phases, one recognizes the possibilities of having ordering SRO
coexisting with phase-separating LRO (type III).

To accurately calculate the short-range-order profile we utilize the first-principles mixed-
bases cluster expansion (equation (10)), where the coherency strain energy is first separated
out from the total energy, and the remainder (‘chemical energy’) which reflects the constant-
composition term is expanded in (a momentum-space series of ) pair interactions and in (a
real-space series of ) many-body interactions. We found here that in those alloy systems where
the long-period structures (corresponding to k → 0) have relaxation energies for some ordering
directions very different to those of the short-period structures (corresponding to k → π/n),
a wavevector-dependent term F(|k|) must be introduced into the coherency strain to produce
a balanced description. Examples include structures with very large size mismatch such as
Cu–Au and Ni–Au, where anharmonic effects lead to large relaxation energies for a particular
ordering direction in long-period structures, while short-period structures do not have such a
large relaxation. F(|k|) then attenuates the k → π/n relaxation energy with respect to that
of k → 0. For phase-separating systems, where the SRO occurs near k = 0, the function
F(|k|) makes no change. Similarly, at the compositions where anharmonic effects are weak
(Au-rich Ni–Au or Cu–Au), the F(|k|) function makes no changes even for size-mismatched
alloys. We find that this new, attenuated form of the coherency strain, when combined with our
first-principles cluster expansion, produces SRO patterns in excellent agreement with those
from diffuse scattering experiments.
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