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Dark excitons due to direct Coulomb interactions in silicon quantum dots

F. A. Reboredo, A. Franceschetti, and A. Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 4 May 1999!

Electron-hole exchange interactions can lead to spin-forbidden ‘‘dark’’ excitons in direct-gap quantum dots.
Here, we explore an alternative mechanism for creating optically forbidden excitons. In a large spherical
quantum dot made of a diamond-structure semiconductor, the symmetry of the valence band maximum~VBM !
is t2. The symmetry of the conduction band minimum~CBM! in direct-gap material isa1, but for indirect-gap
systems the symmetry could be~depending on size! a1 , e, or t2. In the latter cases, the resulting manifold of
excitonic states contains several symmetries derived from the symmetries of the VBM and CBM~e.g., t2

3t25A11E1T11T2 or t23e5T11T2). Only the T2 exciton is optically active or ‘‘bright,’’ while the
others A1 , E, and T1 are ‘‘dark.’’ The question is which is lower in energy, thedark or bright. Using
pseudopotential calculations of the single-particle states of Si quantum dots and a direct evaluation of the
screened electron-hole Coulomb interaction, we find that, when the CBM symmetry ist2 , the direct electron-
hole Coulomb interaction lowers the energy of thedark excitons relative to thebright T2 exciton. Thus, the
lowest energy exciton is forbidden, even without an electron-hole exchange interaction. We find that our
dark-brightexcitonic splitting agrees well with experimental data of Calcottet al., Kovalevet al., and Brong-
ersmaet al. Our excitonic transition energies agree well with the recent experiment of Wolkinet al. In
addition, and contradicting simplified models, we find that Coulomb correlations are more important for small
dots than for intermediate sized ones. We describe the full excitonic spectrum of Si quantum dots by using a
many-body expansion that includes both Coulomb and exchange electron hole terms. We present the predicted
excitonic spectra.
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I. INTRODUCTION

Much of the interest in semiconductor quantum d
~QD’s! centers around the ability to tune their emission e
ergy and intensity via their quantum size. For that purpos
is desirable to haveallowed excitonic transitions at thresh
old. However, it is possible that quantum size effects w
make the lowest excitonic transitionsforbidden ~‘‘dark’’ !.
The first such case is due to electron-hole exchange effec
dots made of a direct-gap zinc-blende material.1–5 In this
case, the valence band maximum~VBM ! has t2 symmetry
~derived from the bulkG15 state!, whereas the conductio
band minimum~CBM! is a1 ~derived from the bulkG1
state!. Consequently, in the absence of the electron-hole
teraction, the exciton has the symmetryt23a15T2, and the
corresponding transition is optically allowed. The electro
hole exchange interaction can splitT2 into a lower-energy
triplet and a higher-energy singlet. Whereas the spin-o
interaction can mix singlets and triplets, the lowest state
still forbidden. Indeed, for direct-gap QD’s, the only mech
nism to have a forbidden, ‘‘dark exciton’’ is through suc
exchange interaction. The second case explored here is w
the bulk material from which the QD is made is a multivall
semiconductor~Si, Ge, AlAs, GaP!, or when the QD be-
comes indirect because of quantum confinement~e.g., small
GaAs dots are predicted to have an indirect gap6!. Then, the
CBM electron state need not havea1 symmetry, but can also
be t2 or e.7–9 In Table I, we give the symmetries of th
possible excitons~capital letters! based on the symmetries o
the single-particle hole and electron wave functions~lower-
case letters!. For example, if both the hole and the electr
havet2 symmetry, one can gett23t25T11T21E1A1 ex-
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citons. In the absence of electron-hole Coulomb attract
all four states are degenerate. However, onlyT2 is allowed
while the T1 , E, and A are dark. In direct-gap materials
Coulomb interactions tend to shift states, but not to s
them. Here we ask whether in indirect-gap dots the electr
hole Coulomb interaction~not the exchange! can split the
energy of a dark exciton (T1 , E, or A1) below the energy of
the ‘‘bright’’ T2 exciton. We address this question for
quantum dots. To answer this question we must know~1! the
symmetries and energies of the near-edge single-par
electron and hole states,~2! the matrix elements of the
electron-hole direct Coulomb and exchange interactions
tween them, and~3! the screening function. All of these
quantities can depend on the size and shape of the dot.

Silicon dots can be prepared via electrochemi
etching,10 reactive sputtering,11 embedding in sol-gel
matrices,12 implantation in a SiO2 layer,13 self-assembly,14,15

TABLE I. Possible symmetries of the excitons as a result of
symmetry of the electron and hole wave functions. An asterisk
notes allowed~bright! excitons.

Case Hole Electron Possible excitons

I

II 5
a
b
c
d
e
f

t2

t2

t2

t1

t1

t1

t2

a1

e
t2

a1

e

T11T2* 1E1A1

T2*

T11T2*

T11T2* 1E1A2

T1*

T11T2*
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inverse micelles synthesis,16 and thermal vaporization.17 The
most popular experiments that probe QD’s are opti
measurements,10,11,17 in which an electron-hole pair~an ex-
citon! is generated in the QD by the incoming photons. T
physics of the experiment is dominated by the electron
hole energy levels, the electron-hole Coulomb interacti
and the response or screening of the rest of the electron
the valence band.

The classical theoretical approach to the problem is
effective mass approximation~EMA!, which predicts that the
shift in the single-particle energy gap scales as 1/R2 with the
radiusR of a quantum dot. The EMA and a size-independ
screening assumption predict that the Coulomb energy sc
as 1/R in the limit R→0. However, recent microscopi
calculations,7,8,18–22show that the single-particle energy ga
dependence onR is less strong. This is due mainly to ban
mixing and nonparabolicity effects. In addition, the Coulom
binding energies are expected to increase faster thanR
because the dielectric screening becomes less efficient
in the bulk.23–25

In the past, the calculation of energy levels of QD’s w
also performed using EMA,26 empirical tight binding,7,18–20

empirical pseudopotential methods,1,3,22 and local density
approximation.8,24 The symmetry of the band-edge wav
functions has been discussed in detail by Ren7,9 and Delley
et al.8 However, the symmetry of the exciton was not d
cussed. The excitonic spectra of spherical Si QD have b
studied in the frame of the EMA~Ref. 26! and empirical
tight binding.18,19 But, the exciton in Si has not been calc
lated in a configuration interaction pseudopotential frame

In this paper, we first calculate the single-particle sta
using a pseudopotential approach. In agreement with pr
ous calculations,7,8 we find that the symmetry of the CBM
can bea1 , e, or t2, depending on the QD radius, whereas t
symmetry of the VBM is in generalt2 ~but could bet1 for a
sufficiently small QD!. We next calculate the electron-ho
interaction matrix elements using microscopic pseudopo
tial wave functions and find that the excitonic gap is in e
cellent agreement with recent experimental results.10 We also
find that ~1! the symmetry of the lowest excitonic transitio
is determined by the symmetry of the single-particle sta
and not by the size of the dot.~2! If the CBM is t2, the direct
Coulomb interaction alone can split the exciton manifo
T11T21E1A1 into lower-energy dark states and highe
energy bright states. At low temperatures, only the lowe
energy~dark! excitons are populated, so emission is we
and long-lived. At higher temperatures, all excitons a
populated but only theT2 emit. ~3! On the other hand, if the
CBM is a1 or e symmetric, then the lower-energy excito
hasT2 symmetry, which is optically allowed.~4! Even if the
VBM is t1 and the CBM ist2, the lowest exciton can still be
dark because the Coulomb interaction lowers a non-T2 state
below T2. ~5! Simple EMA models suggest that the singl
particle gap scales with size as«g;R22, whereas for a size
independent screening, the electron-hole Coulomb inte
tion is expected to scale asJeh;R21. We find, in contrast
with this simple expectation,«g;R21.2 and Jeh;R21.5.
Thus, in contradiction to simple theories, we find that wh
the dot size is much smaller than the bulk-exciton Bohr
dius, the Coulomb interactions are more important th
the single-particle splittings. Therefore, configuratio
l
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interactions can produce reorderings in the symmetries of
excitonic states in smaller dots with respect to the unco
lated states.~6! Our configuration-interaction calculations in
cluding both Coulomb and exchange interactions provide
prediction for the excitonic manifold in spherical Si dots.

II. METHOD OF CALCULATION

A. Calculation and classification of single-particle energies
and wave functions

We consider approximately spherical silicon crystallit
centered around a Si atom. All Si atoms are assumed to
located at their ideal bulk positions. The dots are genera
by discarding all the Si atoms that are outside a sphere
given radius. We eliminate surface atoms that have m
than two dangling bonds, while the remaining dangli
bonds are passivated with hydrogen atoms, as describe
Ref. 27. All the dots generated by this procedure haveTd
symmetry. The passivated dots are then surrounded
vacuum and placed in a large supercell, which is repea
periodically. The closest distance between two neighbor
dots is always larger than 10 Å. Having created an~artificial!
periodic structure, we can calculate its electronic struct
via ordinary ‘‘band structure’’ methods applied to the sup
cell. We consider dots with radii ranging from 7.5 to 27.25
and containing 87 to 4235 Si atoms~shown in the first two
columns of Table II!.

The single-particle energy levels and wave functions
obtained by solving the Schro¨dinger equation

H c i5« i c i , ~1!

where the Hamiltonian is given by22

H52
\2

2m
¹21(

RSi

vSi~r2RSi!1(
RH

vH~r2RH!. ~2!

Here m is the bare electron mass, andvSi and vH are the
atomic local empirical pseudopotentials22 of Si and H, which
are taken from Refs. 22 and 27.

We expand the wave functionsc(r ) in a plane wave basis
set. The energy cutoff must be compatible with the cut
used in generating the pseudopotentials22,27 vSi and vH ,
which were designed for 4.5 Ry cutoff. We solve Eq.~1!
using the folded-spectrum method22 to obtain the states nea
the band edges. Thus, our method is not self-consist
However, the use of screened pseudopotentials makes i
propriate for large dots.

Because the dot hasTd symmetry, its single-particle state
must belong to the irreducible representationsa1 , a2 , e, t1,
or t2. The single-particle states that belong to the repres
tationsa1 or a2 of the Td group are in general nondegene
ate, whereas those that belong toe, t1, andt2 are degenerate
The symmetry of any solutionc(r ) of Eq. ~1! can be found
by using an operatorP(m) that projects any function into the
subspace of the representationm:28

P(m)5
nm

g (
Q

xQ
(m)* ÔQ , ~3!
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TABLE II. CBM and VBM energies and symmetries for different Si QD radius.

Radius Si atoms CBM VBM Band gap
~Å! Energy~eV! Symmetry Energy~eV! Symmetry ~eV!

7.46 87 22.65 a1 25.97 t2 3.32

8.37 123 22.91 e 25.92 t1 3.00

8.89 147 22.87 t2 25.80 t1 2.93

10.03 211 23.06 t2 25.75 t1 2.69

12.70 429 23.28 t2 25.51 t2 2.22

13.48 513 23.32 e 25.44 t2 2.12

15.07 717 23.41 a1 25.40 t2 1.99

16.21 891 23.46 a1 25.35 t2 1.89

16.72 979 23.46 t2 25.33 t2 1.87

17.32 1087 23.49 t2 25.30 t2 1.81

17.51 1123 23.49 t2 25.30 t2 1.81

17.93 1207 23.50 a1 25.30 t2 1.79

18.75 1379 23.53 e 25.27 t2 1.74

19.38 1551 23.54 e 25.25 t2 1.71

20.27 1743 23.56 a1 25.22 t2 1.66

20.72 1863 23.57 t2 25.21 t2 1.64

21.64 2121 23.59 a1 25.20 t2 1.61

23.14 2593 23.61 t2 25.17 t2 1.56

24.42 3049 23.63 e 25.16 t2 1.52

27.25 4235 23.66 a1 25.12 t2 1.46
en
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wherenm is the dimension of the subspace of the repres
tation m, g is the total number of operationsQ in the sym-
metry group,xQ

(m) is the character corresponding to the o

erationQ in the representationm, andÔQ is an operator tha
applies the transformationQ of the group to the wave func
tion c(r ). Then we calculate the matrix element

p~c,m!5
^cuP(m)uc&

^cuc&
. ~4!

BecauseP(m) is a projector,28 p(c,m) is only going to be
equal to 1 ifc belongs to the representationm of the group.

B. The many-body expansion

From the solutions of Eq.~1! we construct a set of single
substitution Slater determinants$Fe,h%, obtained from the
ground-state Slater determinantF0 by promoting an electron
from the ~occupied! valence statech of energy«h to the
~unoccupied! conduction statece of energy«e :

F0~r1 ,s1 , . . . ,rN ,sN!

5A@c1~r1 ,s1!•••ch~r i ,s i !•••cN~rN ,sN!#

~5!

Fh,e~r1 ,s1 , . . . ,rN ,sN!

5A@c1~r1 ,s1!•••ce~r i ,s i !•••cN~rN ,sN!#.

~6!
-

-

Here, N is the total number of electrons in the system,s
5↑,↓ is the spin variable, andA is the antisymmetrizing
operator. The Slater determinantFh,e represents an electron
hole pair. Two Slater determinantsFh1 ,e1

andFh2 ,e2
belong

to the same ‘‘configuration’’ if the single-particle hole stat
ch1

and ch2
are degenerate («h1

5«h2
), and the single-

particle electron statesce1
and ce2

are degenerate («e1

5«e2
).

The exciton wave functionsC (a) are expanded in term
of this determinantal basis set1,29

C (a)5 (
e51

Ne

(
h51

Nh

Ch,e
(a) Fh,e , ~7!

where Nh and Ne denote the number of hole and electro
states included in the expansion of the exciton wave fu
tions. In this notation, the hole states are numbered from
Nh in order of decreasingenergy starting from the VBM,
whereas the electron states are numbered from 1 toNe in
order of increasingenergy starting from the CBM.

The matrix elements of the many-particle HamiltonianH
in the basis set$Fh,e% are calculated as

Hhe, h8e8[^FheuHuFh8e8&5~«e2«h! dh,h8 de,e82Jhe, h8e8

1Khe, h8e8 ~8!

whereJ andK are the electron-hole Coulomb and exchan
integrals, respectively
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Jhe,h8e85e2 (
s1 ,s2

E E ch8
* ~r1 ,s1!ce* ~r2 ,s2!ch~r1 ,s1!ce8~r2 ,s2!

ē~ ur12r2u,R!ur12r2u
dr1 dr2 , ~9!

Khe,h8e85e2 (
s1 ,s2

E E ch8
* ~r1 ,s1!ce* ~r2 ,s2!ce8~r1 ,s1!ch~r2 ,s2!

ē~ ur12r2u,R!ur12r2u
dr1 dr2 . ~10!
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The excitonic states of the quantum dot are obtained by s
ing the secular equation:

(
h851

Nv

(
e851

Nc

Hhe,h8e8 Ch8,e8
(a)

5E(a) Ch,e
(a) . ~11!

The Hamiltonian matrix of Eq.~11! is shown schematically
in Fig. 1. The diagonal blocks~shaded areas! correspond to
matrix elementsHhe, h8e8 between Slater determinants b
longing to thesameconfiguration. Each block corresponds
a row in Table I. For example, if the hole state ist2 and the
electron state isa1, the t23a1 block is ~including spin! 12
312. In a similar way, thet23t2 block is 36336. The off-
diagonal blocks~unshaded areas! describe the coupling be
tween different configurations~i.e., correlation effects!.

In order to obtain an insight about the origin of the c
culated excitation energies, we will first solve the single co
figuration problem by including only the diagonal blocks
Fig. 1 in the many-body Hamiltonian@Eq. ~11!#. This will be
done in two steps:~1! retaining only the direct Coulomb
interactionJ, and then~2! including both CoulombJ and
exchangeK interactions. We will then introduce configura
tion mixing ~correlations! by including the off-diagonal
blocks in Fig. 1.

C. The model screening dielectric function

In Eqs. ~9! and ~10! we have screened the electron ho
interaction by a dielectric functionē(ur12r2u,R). The need
for this screening can be explained as follows. Imagine t
we had solved self-consistently a single-particle Hartr
Fock equation instead of the empirical pseudopoten
Hamiltonian in Eq.~1!. The solution would depend on th
assigned occupation numbers$nh ,ne% for all the hole~h! and
electron~e! levels of the dot. In the ground state$nh

o ,ne
o% all

the electron and hole levels are empty. We can now crea
specific electron-hole pair by removing an electron from
particular level in the valence band and placing it in a p
ticular level in the conduction band. The new occupat
numbers are$ñh ,ñe%. If we had self-consistently solved th
Hartree-Fock equation for the new occupation numbers
would have obtained new single-particle wave functio

$c̃%, and therefore, new Hartree and exchange potentials
practice, we do not solve the problem self-consistently.
stead, we think of the new wave functions$c̃% as linear
combinations of the old wave functions$co%. Specifically,
every wave function in$c̃% now contains a mixture from al
states:
v-

-

at
-
l

a
a
-
n

e
s
In
-

c̃h5ch
o1(

h8
ah,h8ch8

o
1(

e8
ah,e8ce8

o

~12!

c̃e5ce
o1(

h8
ae,h8ch8

o
1(

e8
ae,e8ce8

o
.

When one constructs the CI expansion of Eq.~8! one should
incorporate not only the many-body functionF due toch

o

andce
o , but also all the cross terms resulting from the seco

and third sums in Eq.~12!. These cross terms describ
double, triple, etc., electron-hole pairs thatscreenor ‘‘dress’’
a particular electron-hole excitation. We thus see that
wave-function-mixing affects both electron-hole Hartree a
electron-hole exchange interaction. In our CI expansion
these multiple electron-hole pairs are neglected. To cor
for this, one introduces the screeningē(ur12r2u,R) in Eqs.
~9! and ~10!.

To model this screening, we first assume that the effec
excitation-induced wave-function-mixing can be thought
as an effect of some external field, so that the self-consis
field approximation30 can be applied. Second, we assum
linear response. Thusmultiple electron-hole excitations will

FIG. 1. Schematic description of the configuration interact
matrix of Eq.~11!. The shaded areas correspond to matrix eleme
between Slater determinants belonging to the same configura
and off-diagonal blocks represent configuration mixing, which p
duces correlation effects.
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be described by a single screening functionē(ur12r2u,R).
Third, we choose an analytical approximation f
ē(ur12r2u,R) which is described in Ref. 31.

Our foregoing argument suggests that the exchange in
action must also be screened. In the past, it was believed
while the Coulomb interaction is long-ranged~LR! and
therefore must be screened, the exchange interactio
purely short-ranged and therefore should remain unscree
We have recently shown1 that, in quantum dots, there is
significant LR component to the exchange. Since our die
tric function ē(ur12r2u,R) will approach 1 at small
ur12r2u it will naturally leave the SR interactions un
screened. However, the LR exchange interactions will
screened. This is further discussed in Ref. 1.

The electron-hole Coulomb and exchange integrals
Eqs. ~9! and ~10! thus involve a screening functio
ē(r1 ,r2 ,R) that depends on the interparticle distan
ur12r2u and on the quantum dot radiusR.1 Because there is
a discontinuity in the dielectric function at the surface of t
dots, surface-polarization energies should be taken into
count. However, it has been shown that the electron and
self-polarization energies and the electron-hole polariza
energy cancel each other almost exactly both in spheric32

and cubic33 dots. Therefore, polarizations effects will not b
considered in the present case.

Approximating ē(r1 ,r2 ,R)'ē(ur12r2u,R), the screened
Coulomb potential of Eqs.~9! and ~10! can be rewritten as

g~ ur12r2u![
e2

ē~ ur12r2u!ur12r2u

5e2 E e21~ ur12r u!ur2r2u21 dr , ~13!

where e21 is the inverse dielectric function. The Fourie
transform of the screened Coulomb potential is

g~k!5e21~k!
4pe2

k2
, ~14!

wheree21(k) is the Fourier transform ofe21(ur12r u). Be-
cause silicon is a covalent semiconductor, there is no io
contribution to the screening. We construct a model diel
tric function as follows: the inverse dielectric constante21

consists of the electronic~high-frequency! contribution only,
which is approximated here by the Thomas-Fermi mo
proposed by Resta31

e21~k!5
k21q2 sin~kr`!/~e`

dot kr`!

k21q2
. ~15!

Hereq52p21/2 (3p2n0)1/3 is the Thomas-Fermi wave vec
tor ~wheren0 is the average valence band electron densi!,
and r` is the solution of the equation sinh(qr`)/(qr`)
5e`

dot. The macroscopicdielectric constant of the quantum
dot e`

dot is related to the polarizability of the quantum dot
a whole. The dielectric constante`

dot is obtained from an
interpolation of the results of the screening dielectric co
r-
at

is
ed.

c-

e

f

c-
le
n
l

ic
-

l

-

stant using a moments method23 and pseudopotential calcu
lations of the wave functions and energy levels for differe
dot radii:

e`
dot~R!511

«021

11~R0 /R!h
, ~16!

where«0 is the bulk dielectric constant andR0 and h are
constants. A direct calculation ofe`

dot(R) by the pseudopo-
tential method gives for SiR056.9 Å and23 h51.37. This
expression gives slightly larger values ofe`

dot(R) than the
one calculated by Lannooet al.25 ~using a self-consistent ex
tended tight binding that incorporates the Coulomb inter
tion! and also by O¨ ḡüt et al.24 ~using an LDA calculation and
infinitesimal field method in small clusters!.

Although the reciprocal space formula for the screen
@Eq. ~15!# is very useful for our plane wave approach, it
instructive to analyze the real-space screening func

@ ē(r ,R)#, which is related toe21(k) via Eq. ~13!

ē~r ,R!5H e`
dot~R!q/@sinhq~r`2r !1q r#, r<r`

e`
dot~R!, r .r` .

~17!

Figure 2 shows the dependence of the screening func
ē(r ,R) on the interparticle distancer for different values of
the effective radius of the dotR. We have used«0511.4,
and a valence electron densityn050.1998 Å23. We see that
for interparticle distances larger than;2.5 Å ~corresponding
to the screening radiusr`) the screening function is identica
to its asymptotic valuee`(R). However, for smaller dis-
tances it falls quickly to 1. The electron-hole Coulomb inte
action is long ranged, so it is essentially screened by
quantum-dot macroscopic dielectric constante`

dot . The
electron-hole exchange interaction, on the other hand, c
sists of both a short-range and a long-range component.
causeē(r12r2 ,R)→1 when ur12r2u→0 ~see Fig. 2!, the
short-range component of the exchange interaction is ef
tively unscreened, as it is in bulk semiconductors.34,35 The
long-range component, instead, is significantly screened
discussed in Ref. 1.

The screening function proposed by Resta31 provides an
accurate description of the screening in the bulk.36 Accord-

FIG. 2. Dielectric screening for dots. Continuous line: screen
function used in this work as a function of the interparticle distan
r for different dot radiiR. Dashed line: screening function used b
Öḡüt, Chelikowsky, and Louie~Ref. 24!.
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ingly, any approximation for the screening functione(r ,R)
for a dot should converge to the form given by Resta for
values ofr when the dot sizeR goes to infinity. Figure 2
shows that our screening function has this property. In Fig
we have also plotted the distance dependent scree
function used by O¨ ḡüt et al.24 In that work, it is assumed tha
ē(r ,R)5e`

dot(r ). This assumption gives a screening functi
that depends only on the interparticle distancer ~independent
of the size of the dot!. Figure 2 shows that in the approx

mation used by O¨ ḡüt et al. ē(r ) is only equal to the bulk
value when the interparticle distancer is infinity. For all
otherr, the screening function used by O¨ ḡüt et al. is signifi-
cantly different. It thus does not describe bulk screen
correctly.

D. Comparison of the present method with other approaches

The present method differs form the classical EMA tre
ment of free-standing QD’s~Refs. 2 and 26! in several ways:
~1! The present method provides the microscopic structur
the wave functions, not just the envelope structure.~2! It
does not require the wave function to vanish at the bou
aries of the QD.~3! The numerical solution of Eq.~1! allows
us to include unlimited multiband couplings.~4! The method
describes the true physical symmetries of the dot~recall that
even the most perfect Si QD does not have spherical s
metry, as assumed in the EMA, but ratherTd symmetry!.

As to comparison of the present method and tight bindi
we note that both methods can give equivalent results if
tight-binding basis is large enough. However~1!, the de-
scription of the wave function is variationally much mo
direct and flexible in the plane-wave pseudopoten
method; and~2! while the position-dependent wave functio
are in general not accessible to a tight-binding model~only
the expansion coefficients are!, the pseudopotential approac
provides the wave functions. Moreover, the method is c
strained to give the bulk wave functions that fit local-dens
approximations~LDA ! calculations.

The configuration-interaction formalism used in this wo
is similar to those followed by Hillet al.,18 Leung et al.,19

and Chamarroet al.5 The main differences appear in th
evaluation of the matrix elements in Eqs.~9! and ~10!: ~1!
We evaluate theJ andK integrals explicitly in terms of the
wave functionsc obtained by solving the quantum do
Hamiltonian@Eq. ~1!#. ~2! In the works of Chamarroet al.,5

Hill et al.,18 and Leunget al.,19 the exchange integrals ar
not screened and only interactions up to first neighbors
taken into account while longer-range interactions were
glected.~3! In the work of Leunget al.,19 the Coulomb in-
teraction was screened by abulk distance-dependent dielec
tric constant that does not depend on the QD radius.

III. RESULTS

A. Single-particle energies and wave functions

Figure 3 shows the cross section of the band-edge w
functions for a few cases. We see that the amplitude of
oscillations in the wave functions is larger around the
center. The wave-function amplitude on the surface is sm
ll
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so the wave function and eigenenergies are expected t
rather insensitive to small changes in the surface shap
passivation~see below!.

Table II gives the energies and the symmetries obtai
by applying Eq.~4! of the band-edge states of dots wi
different sizes. In agreement with Ren,7 we found that the
VBM symmetry changes fromt2 to t1 in small dots (R
,12.7 Å). For even smaller dots (R,7.5 Å), thet2 sym-
metry of the VBM is restored. However, in our calculation
the t2 to t1 crossing occurs at sizes larger than those repo
by Ren.7 The t2 to t1 crossing was observed Delleyet al.8

only in very small clusters~the cases of 17 and 4 Si atoms!.
The crossing occurs when the clusters are so small that m
of the atoms are in the vicinity of the surface. We cannot
sure about the results obtained for those small clusters.

With respect to the CBM, we confirm the observatio
made in previous calculations7,8 that the symmetry change
between thea1 , e, andt2 representations in an irregular wa
The energy-splitting between these three states (DE) ap-
proaches zero for largeR ~e.g.,DE520 meV forR513.48
Å , DE54.1 meV forR527.25 Å!. We also found that the
symmetries are not affected by small~5%! changes in the
Si-H bond lengths. Our results correspond to Si-cente
dots. However, similar changes in the CBM symmetries h
been reported for dots centered on a tetrahedral inters
site.8

For small and intermediate size quantum dots, we exp
the influence of a departure from the geometric spher
shape on the wave-function symmetries and energy lev
We reduce the size of the dot in one direction (Rz), elimi-
nating some atoms while keeping the size of the dot in
perpendicular plane (Rx5Ry5 const). For a sphereRz /Rx
51. We find that the ordering of the energy levels and sy
metries can change whenRz /RxÞ1. However, for suffi-
ciently small dots, the wave functions can still be classifi
in terms or the representations of theTd symmetry: for
Rz /Rx as low as 0.85: becausep(c,m) is almost 1 or 0. For
the sameRz /Ry and larger dots, this classification becom
increasingly more difficult: forR515 Å andRz /Rx50.85,
p(c,m) values are around 0.9 and 0.1.

To check the effects of surface atomic relaxation on lev
ordering, we have performed LDA calculations for the tw
smallest QD’s reported in Table II, relaxing the atomic stru
ture. Then we use the empirical pseudopotential method
obtain the energy levels at the LDA relaxed geometry. In
LDA calculation, we use norm-conserving pseudopotent
with a kinetic energy cutoff of 15 Ry. The initial atomi
configuration is obtained from the unrelaxed bulk configu
tion plus a small random displacement at each atom. At
relaxed geometry we recalculated the wave functions
energies using an empirical pseudopotential approach~not
LDA !. We find that even in such small QD’s, where surfa
effects are important, the effects of atomic relaxations on
electronic structure are small. The VBMt2 symmetry of the
87-atom dot is preserved, but the symmetry of VBM of t
123-atom dot is restored fromt1 to t2. The ordering of the
conduction-band states is preserved in both cases. Tho
we cannot evaluate atomic relaxations for larger dots
know that such effects are going to be much smaller, beca
the wave functions are localized in the interior of the d
where the atomic relaxations are negligible.



, and

PRB 61 13 079DARK EXCITONS DUE TO DIRECT COULOMB . . .
FIG. 3. ~Color! Calculated wave functions, depicted along the~001! plane. Red indicates positive values, green corresponds to zero

blue is used for negative values. The values are given in arbitrary units. The crossed solid lines correspond to the~110! and (11̄0)
crystallographic directions of the dot. The outer circle marks the edge of the dot.
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Figure 4 shows the calculated single-particle energ
compared with the empirical tight-binding results of Deler
et al.37 and Ren.7 This figure shows a very good agreeme
with the calculation of Delerueet al.37 The agreement with
the calculation of Ren is not as good. The difference betw
the calculations of Ren and those of Delerueet al.37 is that
the former uses a smaller set of adjustable matrix elemen
the empirical tight-binding Hamiltonian.

Also shown in Fig. 4 are the recent experimental data
van Buurenet al.,17 which fall well below all calculated and
measured values~see Fig. 5 below!. Since the quantities
measured in this experiment are very different from stand
measurements,10,11 we will review them, so as to establish
there is a relationship with calculated quantities. van Buu
et al.17 measured the shift in the energy of the conductio
band minimum from the dot to the bulk, i.e.,

D«CBM5«CBM
dot 2«CBM

bulk , ~18!

and the valence-band shift

FIG. 4. Comparison between the single-particle energy gap o
dots obtained with different theories and experiments. Squares
respond to Delerueet al. ~Ref. 39! triangles to Ren~Ref. 7!, and
diamonds to the present pseudopotential calculation. Full cir
correspond to the experimental data of van Buurenet al. ~Ref. 17!.

FIG. 5. Comparison between the lowest excitonic gap obtai
with different theories and experiments. Full circles correspond
Wolkin et al. ~Ref. 10!, and full squares to Furukawaet al. ~Ref.
11!. Open symbols correspond to theoretical predictions: rhom
to present pseudopotential work, hexagons to Leunget al. ~Ref. 19!
tight binding and triangles to O¨ ḡüt et al. ~Ref. 24! LDA.
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D«VBM5«VBM
dot 2«VBM

bulk . ~19!

The band gap of the dot was thus

«g~dot!5«g~bulk!1D«CBM2D«VBM . ~20!

To obtain D«CBM , van Buurenet al. measured the differ-
ence between 2p→CBM core-level absorption in the dot an
in the bulk:

D«CBM5DEdot~Si2p→CBM!2DEbulk~Si2p→CBM!,
~21!

whereas to obtainD«VBM , they combined VBM photoemis
sion with Si2p photoemission, i.e.,

D«VBM5@DEdot~VBM→vac!2DEdot~Si2p→vac!#

2@DEbulk~VBM→vac!2DEdot~Si2p→vac!#.

~22!

In Eq. ~21!, DEdot(Si2p→CBM) is the energy difference be
tween a dot with an electron in the CBM and a hole in its 2p
core level and a dot in the ground state. In Eq.~22!,
DEdot(VBM→vac) is the ionization energy of the dot VBM
andDEdot(Si2p→vac) is the ionization energy of the dot 2p
core level.

It was already noted by van Buurenet al.17 that themea-
suredsingle-particle gap«g(dot) ~solid symbols in Fig. 4!
obtained from Eqs.~21! and~22! are not exactly comparabl
to thecalculatedone-electron band gap. First, they noted th
the quantity in Eq.~20! excludes the binding energy of th
exciton. Second, they noted thatDEdot(Si2p→CBM) and
DEbulk(Si2p→CBM) correspond to energies ofcore exci-
tons, whereas all conventional calculations of gaps in d
involve valenceexcitons. We note that because the electr
wave function of a dot is localized by quantum confineme
the binding energy of a core exciton could be larger in
dot that in the bulk case. Therefore, the binding energies
the dot versus bulk core excitons will not necessarily can
in Eq. ~21!, and the measured conduction band shiftD«CBM
could be underestimated relative to the single-particle res
Third, we note that in Eq.~22! the polarization energies mus
cancel out exactly both for a VBM hole and for a core ho
in order for Eq.~22! to yield D«VBM . Fourth, the energy
level of the core electron must be assumed to be indepen
of the position of the Si atom~inside the dot or in the sur
face!, and this may not be the case. In conclusion, althou
the experiments of van Buurenet al.17 show clear evidence
of quantum confinement, the physical quantities measure
not correspond to the normally calculated single-particle
ergies. An additional possible reason for the difference
tween the van Buurenet al.17 measurement of the single ga
and the theoretical calculations~Fig. 4! could be the fact that
the dots in this experiment are touching one another a
therefore, the wave function is not confined as it is in is
lated dots.38

B. Comparison of the calculated excitonic gaps with other
theories and experiments

In Fig. 5, we compare our calculatedlowest exciton ener-
gieswith other theoretical19,24 and experimental10,11 studies.
Our calculations correspond to the lowest excitation ene
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PRB 61 13 081DARK EXCITONS DUE TO DIRECT COULOMB . . .
obtained using the configuration-interaction method
scribed in Sec. II B. The detailed structure of the excit
multiplet will be described in the next section. In Fig. 5, fu
symbols correspond to experimental results and open s
bols correspond to theoretical predictions. We see an ex
lent agreement between our results and the recent pho
minescence~PL! data of Wolkin et al.10 on oxygen-free
samples. We also show theabsorption data of Furukawa
et al.,11 used in the past to compare with theory.24 The
absorption-determined gas is much higher than the
determined gap for the following reason. For indirect-g
bulk semiconductors absorption does not give reliable va
for the lowestgap~because of the small intensity!; and in this
case, emission is more reliable. Although the finite size
the dot breaks the translation symmetry and, in principle,
absorption is possible without the assistance of phonons
practice the absorption coefficient is extremely small11 at the
energy threshold. Moreover, the lowest-energy exciton st
can be forbidden, so absorption marks higher energy tra
tions, not the minimum gap. Therefore, PL~Ref. 10! is a
more reliable method to locate the minimum-gap in d
made of indirect gap material~provided that nonradiative
defects and surface defects are avoided.10!

With respect to the theoretical calculations, our resu
also almost coincide with a empirical tight-binding calcu
tions reported by Wolkinet al.10 ~which are not shown be
cause they are on top of the experimental data!. The empiri-
cal tight-binding calculations of Leunget al.19 report a
smaller excitonic gap, but that calculation also failed to
produce accurately the bulk gap.39 The LDA calculation of
Öḡüt et al.24 agrees poorly with the experimental PL data
Wolkin et al.,10 overestimating even the~already too high!
absorption data of Furukawaet al.11 This discrepancy result
from ~1! their underestimated screening function~see Fig. 2!,
which in turn reduces the energy of the exciton; and~2! their
overestimation in the calculation of the quasi-particle ene
gap,40 which raises the energy of the exciton.

C. The excitonic multiplet spectrum

Having discussed the ‘‘large-energy scale’’ pertaining
Fig. 5, we next describe the fine structure of the excito
spectra near the threshold. To understand the physics o
citon energies, we will calculate them in steps, introduc
progressively higher order effects.~a! At zero order, the en-
ergy exciton is the difference«e2«h in the single-particle
energies. In this approximation one ignores all electron-h
interactions. The next step~b! is to consider a single
configuration~i.e., one diagonal block of Fig. 1! and to in-
troduce the electron-hole direct Coulomb interactionJ. This
correction not only shifts the energy levels, but in indire
gap systems, also splits the energies of the different exc
symmetries that are degenerate in the single-particle pict
Then ~c! one may include the electron-hole exchange ter
within a single configuration, which gives additional spl
tings. Finally, ~d! one can add configuration interaction b
solving several blocks of Eq.~11!, including off diagonal
terms.~e! The convergence of the exciton energies in ter
of the determinantal basis set can be estimated by increa
the number of single-particle states in Eq.~11!.

The symmetries of the multiplets created within ea
single configuration can be obtained in a straightforw
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manner using standard group theory. Some representa
cases are given in Table I. Let us first analyze carefully so
examples of the excitonic spectra of individual dots befo
discussing the general conclusions that apply to all the
sults.

In Fig. 6, we show the energies of excitons derived fro
a t2 hole and at2 electron state calculated at levels~a!- ~e! as
defined above. The results were obtained for a dot wit
radiusR517.51 Å. The system has 1125 Si atoms, with 4
H atoms passivating the surface dangling bonds. For cla
of display, the excitations that do not have at2-hole
3t2-electron character are excluded from the figure.~a! At
the single-particle level@Fig. 6~a!# the t23t2 exciton is 36-
fold degenerate.~b! The main correction to this single
particle energy is the average direct Coulomb correct
J̄t23t2

;250 meV@Fig. 6~b!#, but this shift is not identical for
every exciton in the multiplet. The Coulomb interactio
splits the 36-fold degeneracy of the exciton energies i
four degenerate levels denotedE, A1 , T1, andT2 with de-
generacies 8, 4, 12, and 12, respectively. In the single c
figuration scheme with no exchange@Fig. 6~b!#, the lowest
energy exciton hasA1 symmetry and therefore is opticall
inactive because of the orbital selection rules even in
absence of exchange splitting. The next stateE is also opti-
cally inactive. The only optically active state is the four
one, which hasT2 symmetry.~c! The exchange contribution
@Fig. 6~c!# splits the energy of each exciton level in singl
and triplet states, with latter optically inactive. However, t
energy shift between singlet and triplet excitons depends
the orbital symmetry: it is much larger forA1 andE excitons
than for T1 and T2. As a consequence, the lowest ener
singlet exciton hasT1 symmetry and is optically inactive
whereas the next singlet exciton isT2 and is active.~d! Cor-
relation effects are taken into account in Figs. 6~d! and 6~e!.
In this dot, multiple configuration interactionsdo not alter

FIG. 6. Exciton energies for a dot of 1123 Si atomsR517.51 Å,
calculated under different approximations@indicated in the boxed
items ~a!–~e!# for a t23t2 configuration.
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the ordering of the energy levels and they introduce ene
correction on the order of 1 meV only.

Because the lowest energy exciton hasA1 symmetry, the
exciton is dark, which results from both the exchange int
action and the direct Coulomb contribution of the Coulom
interaction. Therefore, an exciton in the ground state ha
flip the spin and also has to change the orbital symmetr
order to recombine in a dipolar transition. That means t
the exciton transition is forbidden both by spin and orbi
symmetry. However, spin-orbit coupling, which is not i
cluded in the present calculation, can partially mix sing
and triplet states.

Another example of dark exciton is shown in Figs. 7 a
8 for a much smaller dot. The QD has 211 Si atoms w
additional 140 H atoms on its surface. The effective radius
the Si dot isR510.03 Å. The symmetry of the VBM for this
dot is t1, whereas the CBM ist2 ~see Table II!. In the ab-
sence ofe-h interaction @Fig. 7~a!#, this t13t2 exciton is
36-fold degenerate. Surprisingly, we find that the lowest
ergy exciton does not belong to at13t2 multiplet. The rea-
son is that the hole state next to the VBM state hast2 sym-
metry and is only 10 meV below thet12VBM. The
difference betweenJ̄t23t2

and J̄t13t2
is large enough to dis

place the exciton energy of thet23t2 multiplet below the
t13t2 @Fig. 7~b!#. Thus, the low-energy excitonic multiplet
are derived fromt2 holes even though thet1 holes are higher
in energy. Figure 8 shows the exciton obtained from thet2
3t2 multiplet on an enlarged scale. In this dot, the dire
Coulomb interaction is able to lower the energy of a da
exciton E below the optically activeT2 exciton @Fig. 8~b!#.
But, as in the example of Fig. 6, the exchange splitting@Fig.
8~c!# is smaller for theT singlets than forA1 andE singlets.
For this reason the symmetry of the lowest energy sin
@Fig. 8~c!# is T1 whereas the next singlet state isT2. In

FIG. 7. Exciton energies of a dot of 211 Si atomsR510.03 Å,
calculated under different approximations indicated in the bo
items ~a!–~e!. Note the crossing between thet23t2 and the
t13t2-related excitations resulting from the direct Coulomb corr
tions.
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contrast with the previous example, in this ca
configuration-mixings are important@Figs. 8~d! and 8~e!#,
and energy corrections are much larger. As a conseque
they can interchange the ordering of the exciton symmetr
This is due not only to the proximity of thet13t2 and t2
3t2 configurations, but also, to the relative growth of t
values of the of diagonal matrix elements in Eq.~11! ~see
below!.

Figures 6, 7, and 8 clearly show that the excitonic tran
tions are degenerate at the single-particle level. Theref
errors in the single-particle energies do not play a signific
role in the values of the splittings in a multiplet. Howeve
they can rigidly shift the full multiplet. We have found tha
~1! when the CBM hast2 symmetry, the direct Coulomb
interaction gives rise to a dark exciton. However,~2! when
the symmetry of the CBM is ‘‘e,’’ the lower energy excito
is in generalT2, which is bright. Finally,~3! when the CBM
symmetry is a1 the exciton always hasT2 symmetry.
Changes in the screening function~as large as those occu
ring when the size of the dot changes form 8 to 27 Å! do not
alter the main conclusion of this work: the excitonic tran
tion is symmetry forbidden when the symmetry of the CB
is t2 and allowed when it is not.

Unfortunately, the present experimental resolution a
size distribution of real samples does not allow us to reso
splittings as small as the ones introduced by the Coulo
interaction by direct PL experiments. Future single-dot e
periments are necessary to examine our predictions of Fig
and 8.

D. Bright-dark exciton splitting as a function
of the exciton energy

We next compare the calculated and measured split
between the dark and bright excitons. There are two type
experiments in this regard: ‘‘optical’’41 and ‘‘thermal.’’41–43

In theoptical experiment, one absorbs light into the optica

d

-

FIG. 8. Thet23t2 exciton manifold of Fig. 7 given on a large
scale.
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allowed state~i.e., 1T2), and emits from the lowest-energ
triplet ~e.g., 3A1 in Fig. 6! or from a thermal average ove
the lowest-energy triplets. The absorption versus emiss
Stokes shift then corresponds to the sumdopt5D1 DFC of
two effects: the bright-dark~‘‘singlet-triplet’’ ! splitting D
and the Franck-Condon shiftDFC due to the possibility tha
the atomic geometry in the excited state differs from tha
the ground state. Note that in Si QD’s,D does not necessar
ily correspond to an ‘‘exchange splitting’’ because theor-
bital symmetry of the bright and dark states might be diff
ent. Consequently,D contains also electron-hole Coulom
terms.

In a thermal experiment41–43 the radiative decay rate o
singlet to ground state and triplet to ground state is meas
as a function of the temperatureT. When kBT is much
smaller thand th , only the lower-energy forbidden triple
states are populated and the radiative decay is small. On
other hand, whenkBT is of the order ofd th or larger, the
occupation of the allowed1T2 states increases. As a result
the larger occupation of the optically allowed states, the
diative decay rate increases. The experimental works41–43 fit
the radiative decay rate to a two-level~singlet-triplet! model
in which d th is an adjustable parameter. Since the atom
geometry is expected to be very similar in the excited sing
and the excited triplet there is no Franck-Condon contri
tion to the thermally measured Shiftd th .

The values obtained fordopt and d th in the thermal and
optical experiments41–43are summarized in Fig. 9 along wit
the tight-binding calculations of Leunget al.,19 and the
present pseudopotential results, as a function of the exc
energy.

We see in Fig. 9 that~1! the optical shiftdopt of Calcott
et al.41 and the thermal data of Kovalevet al.42 agree
very well with each other, but differ from the thermal resu

FIG. 9. Energy-splitting between the lowest-energy bright ex
ton and the lowest-energy dark exciton as a function of the d
exciton energy. Circles correspond to the present calculations
crosses to the results of Leunget al. ~Ref. 19!; the solid continuous
line is a guide to the eye. Open and closed triangles corresp
respectively, to the optical onset measurements and thermal PL
cay measurements of Calcottet al. ~Ref. 41!; squares correspond t
the thermal PL decay measurements of Kovalevet al. ~Ref. 42!;
diamonds correspond to the thermal PL decay measuremen
Borngersmaet al. ~Ref. 43!.
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d th of both Calcottet al.41 and Brongersmaet al.43 It has
been argued by Calcottet al.41 that shape distributions migh
justify the difference between their optical and thermal e
periments. However, our calculated exchange energies
single-particle energies show that they are dependent on
volume of the dots rather than their shape. Because, the
change energy and the single-particle energy are the m
contributors to the dark-bright splittings and excitonic ga
respectively, we think that small shape fluctuations can
account for the difference between optical and therm
experiments41 or between different thermal experiments.41–43

~2! The qualitative agreement between different theor
and experiments is good. Our calculations are in excel
quantitative agreement with the opticaldopt onset measure
ments of Calcottet al.,41 and the variable-temperature me
surements of Kovalevet al.42 The thermal data of Calcot
et al.41 and Brongersmaet al.43 are both a factor of 1.8
higher than our calculations. The theoretical calculations
Leung et al.19 are only slightly above the thermal data
Calcottet al.41 and Brongersmaet al.43 The results of Martin
et al.44 ~not shown! only fit the experimental data when a
artificially low-dielectric constant is used.

~3! The fact that the calculated bright-dark splitting agre
with the optical shiftdopt5D1DFC between absorption an
emission does not leave much room for a Franck-Con
shift DFC. Indeed, the total measured shiftD1DFC&10 meV
is much smaller than Franck-Condon shift in large molecu
(DFC*100 meV!. Another puzzle is the fact that the me
sured thermal shiftd th'D is larger that the measured optica
shift dopt5D1DFC.

~4! Figure 9 plots the dark-bright energy splittingsD(R)
versus the excitonic gap energy«g

opt(R). Although theD(R)
vs «g

opt(R) plot of Leung et al. lies well above ours, their
D(R) values for a given dot radiusR agree with our values
In fact, theD(R) vs «g

opt(R) plot of Leunget al.19 is shifted
to smaller«g

opt values with respect to our values. This
because their absolute excitonic energies are lower than
~see Fig. 5!, which can be traced to the fact that their sing
particle levels are much lower too. Indeed, it has been no
recently39 that the tight-binding Hamiltonian used by Leun
et al.19 might give single-particle band gaps that are too lo
We estimate that Leunget al.19 results would be almost iden
tical to our results in Fig. 9 if their single-particle gaps we
similar to those reported by Delerueet al.37

Another question is if the electron-phonon interactio
can mix exciton levels. If the excited state distortions a
small, one could treat both the electronic and the phon
Hamiltonian in the same quantum mechanical approach.
cause all lattice distortions that are symmetry equival
~e.g., x, y, z) cost the same energy, the effective electro
hole phonon coupling Hamiltonian due to lattice distortio
must have the symmetry of the dot. Therefore, this effect
Hamiltonian will not mix different representations of the e
citon wave function~e.g., T1 with T2), although it could
contribute to the Coulomb splittings~e.g., energy splitting
betweenT1 and T2). On the other hand, if excited stat
distortions are large~i.e., if the frequency square of one o
more phonons becomes negative in the excited s
geometry45,46! the symmetry of the electronic Hamiltonia
could be broken after atomic relaxation and thus exciton l
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els of different symmetry could be mixed. A comparis
between optical experiments and our theoretical res
seems to show that the Franck-Condon shifts are small.
cordingly, we suspect that additional splittings or mixin
due to lattice distortion should be small compared to
Coulomb or exchange splittings.

IV. SIZE DEPENDENCE OF THE SINGLE-PARTICLE
AND INTERACTION ENERGIES

It is important to compare the size scaling of the sing
particle gap«g;R2n with the size scaling of the electron
hole Coulomb interactionJ;R2mR. If «g grows faster than
J asR→0, then Coulomb effects become negligible as co
pare with single-particle energies at small sizes. On the o
hand, ifJ grows faster than«g for R→0, the importance of
correlation effects increases.

A. Size scaling of the single-particle energies

The single-particle energy gap is usually fit with a fun
tion of the form

«g5«g
bulk1b/Rg, ~23!

where«g
bulk51.17 is the single-particle gap in bulk silicon

Using Eq.~23! and all values of Table II, our fitted value fo
g is 1.42.~If we restrict the data to the dots studied by Wa
and Zunger22 R<18.75 Å we getg51.37, the same as the
do.! For large dots, when the EMA is valid, it is expecte
thatg(R→`)52. Therefore, a more general fitting functio
that allowsg to be a function of the dot sizeR is required:

«g5«g
bulk1b/Rg(11d R), ~24!

whered is a small additional fitting parameter that allows t
exponent to change as a function ofR. A fit by Eq. ~24!
shows that the quantityg(11dR) is 1.13, 1.20, and 1.27 fo
R57, 17, and 27 Å, respectively. This means that the ‘‘e
ponent’’ of R is a strong function of the sizeR itself. Ac-
cordingly, disagreements between different theories can
partially understood by the different size of the dots studi
Our exponents are larger than the value obtained by De
et al.8 (g51) using LDA, but are similar to the valueg
51.39 obtained by Prootet al.20 and g51.37 by Wang
et al.22 The average size scaling of the CBM energy isR21.4

and for the VBM energy it isR21.0. Thus, the low exponen
of the single-particle gap is mainly a consequence of
smoother dependence of the VBM on size.

B. Symmetrization of the Coulomb and exchange integrals

It is advantageous to combine certain exchange and d
Coulomb integrals for the purpose of analyzing their s
scaling ~but not for calculation!. For degenerate states, th
solution of Eq.~1! gives a set of wave functions. Any linea
combination of these wave functions is also a possible s
tion of the single-particle Eq.~1!. The numerical method
used to diagonalizeH can select any set of orthogonal line
combinations of the degenerate wave functions as a solu
Because the values of a particular matrix elementJhe,h8e8 or
Khe,h8e8 depend on the~arbitrary! linear combination of the
degenerate conduction and valence band levels, they ar
ts
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suitable for analyzing the dependence ofJ andK as a func-
tion of the dot size. To do this, we first diagonalize the m
trixes Jhe,h8e8 or Khe,h8e8 in the subspace of a given sing
configuration, obtaining the eigenvaluesj he(C) andkhe(C),
respectively

QJCQ215 j he~C!dh,h8de,e8 , ~25!

and

TKCT215khe~C!dh,h8de,e8 ; ~26!

whereC represents electron-hole pairs of the formh3e @a
shaded block~Fig. 1!#, JC and KC are single-configuration
submatrixes of the full matrixesJhe,h8e8 or Khe,h8e8 , andQ
andT are unitary transformation matrices. We take the av
age value of the direct Coulomb and exchange interacti
J̄C andK̄C as a measure of the strength Coulomb interact
in a given configuration:

J̄C5
1

Nc
(
he

j he~C!, ~27!

K̄C5
1

Ns
(

s
khe~C!. ~28!

In Eq. ~28!, the average is taken on theNs singlet states tha
havekhe(C) eigenvalues different from zero~singlet states!.
The splitting in energy of the eigenvaluesj he(C) andkhe(C)
is a consequence of the exciton-exciton couplings wit
each configurationC. Accordingly, they are a good measu
of the exciton-exciton interaction within a configuration. W
then define

D J̄C5
1

Nc
(
he

u j he~C!2 J̄Cu ~29!

DK̄C5
1

Ns
(

s
ukhe~C!2K̄Cu. ~30!

Equations~27! and ~28! are functions of the traces of th
matrices while Eqs.~29! and~30! are only dependent on th
basis whereJ(C) or K(C) are diagonal within each configu
ration. Therefore, they are independent of the particu
choice of the degenerate single-particle states. The symm
of the band-edges extrema depends on the dot size. For
reason, we did not limit our study to the evolution of th
band-edge transitions; we also followed each configura
and characterized their direct Coulomb and exchange de
dence independently as a function of the dot radius.

C. Comparison between scaling behaviors

In order to study the relative importance of the dire
Coulomb and exchange interaction as a function of the
radius, we evaluated Eqs.~27!, ~28!, ~29!, and~30! for all the
dots in Table II. Using a least-squares procedure, we fit
~27! with a function of the form:47

J̄C~R!5a1b/Rg, ~31!

and Eq.~28! with a function of the form
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D J̄C~R!5b/Rg. ~32!

The form of Eq.~32! is also used to obtain the fitsK̄C(R),
andDK̄C(R) of Eqs.~29! and~30!. Table III gives the values
of the exponentg obtained from the fittings.

The first observation is that the exponent obtained for
size scaling of the direct-screened Coulomb energyJC
;R21.49 is larger than the one obtained in simplified mod
that use a size-independent screening constant and the E
J;R21. Note from Eq.~9! that the scaling ofJ depends on
the wave function structure and on the scaling ofē(r ,R). In
our calculation, the wave function is not constrained to
zero at the surface of the dot, which is the usual bound
condition for the envelope wave function in free-standi
QD’s. This leads to areduced48 electron-hole binding en
ergy, so the unscreened Coulomb energy scales
J(unscreened);R20.82. On the other hand, ourē(r ,R) de-
pends on the dot size being smaller than theR→` bulk
value @see Eq.~16! and Fig. 2#. This effect increasesthe
electron-hole binding energy. The combination of both
fects produces the final result asJ(screened);R21.49.

Because«g;R21.2, the relative importance of the Cou
lomb interaction compared to the single-particle gap is lar
for the smaller dots than for the larger ones. This direc
contradicts the assumption of simplified models32,26 about
the relative importance of single-particle energies and C
lomb energies in small dots.

The consequences of these scaling behaviors are ev
from a comparison among Figs. 6, 7, and 8. The aver
direct Coulomb correction in Fig. 7~b! is large enough to
change the order of the excitonic transitions from the cal
lated single-particle energies in Fig. 7~a!. In addition, Fig. 8
shows that configuration interactions are large enough to
turb the order of the exciton energies@see Figs. 8~c!, 8~d!,
and 8~e!#. This is a consequence of the larger influence
electron-hole correlations@included in Figs. 8~d! and 8~e!# in
very small dots. On the other hand, when the size of the
becomes comparable with the bulk Bohr radius, correlat
effects become crucial, because the exciton becomes lo
ized by the Coulomb interaction itself and not by quantu
confinement.

The second observation from Table III is that, in eve
case, the exchange integrals decay much faster than th
rect Coulomb integrals. Then, for small systems, the sing
triplet splitting is much larger than the direct Coulomb sp
tings. However, for large enough dots, the splittin

TABLE III. Size scaling of the direct Coulomb and exchan
contribution (R2g) as defined in Eqs.~31! and ~32!. Casesa–f
refers to Table I.

Case g in J̄C g in D J̄C g in K̄C g in DK̄C

a 1.49 1.94 2.71 2.53
b 1.46 2.72
c 1.49 1.93 2.67 2.48

d 1.36 2.57 2.71 2.31
e 1.28 2.31
f 1.29 3.0 2.50 2.17
e
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introduced by the direct Coulomb interaction itself becom
of the same order of magnitude as singlet-triplet splittin
The fact thatg'3 for K̄C(R) means that, for indirect gap
material, the exchange integrals are given basically by
short-range contribution.1

Finally, we note that in Table III the electron-hole excit
tions can be classified in two groups in which the dire
Coulomb interaction has distinct scaling properties. Grou
hast2 hole wave functions, whereas group II hast1 holes.J̄C
has stronger dependence on the dot radius for group I e
tons than for group II~see Table III!. The difference in
J̄C(R) between I and II groups tends to zero for large enou
QD’s. Thus, for small dots,J̄C is much larger for group-I
transitions than for group II. For that reason, the direct C
lomb term in Fig. 7~b! is large enough to compensate th
energy crossing between thet1 and t2 solutions in the va-
lence band. As a result, the lower-energy exciton has gro
character for all but one of the dots listed in Table II. T
only exception is the third dot in Table II. In this case. ex
tations belonging to group I and II are superimposed. The
fore, the interexciton coupling due the direct Coulomb a
exchange interactions becomes more important, and
lower exciton has only an impure group-II character. Nev
theless, in this small size regime the VBM symmetry b
comes uncertain because relaxation effects tend to restor
t2 symmetry of the VBM.

The Coulomb integrals in group I have similar depe
dence onR ~see Table III!. This result is expected, becaus
the lowest electron states are thea1 , e, andt2 states formed
from the six degenerate minima of the bulk-conduction ba
structure.7 Consequently, the Bloch parts of the wave fun
tions are similar and give similar matrix elements. As a co
sequence, the symmetries of the lower-energy exciton m
tiplet are fixed by the symmetry of the CBM, even thou
the single-particle energy splittings in the conduction ba
are much smaller than the average direct Coulomb ener

D. The origin of nonclassical size-scaling

The classical size scaling of

«g}R22 ~33!

assumes~a! single-band theory,~b! parabolic bands, and~c!
infinite barriers. Recently Ferreyra and Proetto49 have dem-
onstrated that exponents smaller than the classic value
Eq. ~33! can be obtained in a single-band theory with pa
bolic bands, provided that one replaces the infinite poten
barrier by some finite potential barrier. This result does
clarify the relative physical origins~a!–~c! of the nonclassic
exponents. Our present EPM calculations includes all th
contributions~a!–~c! to the value of the exponents. The fa
that not only finite barriers, but also nonparabolicity contr
ute to the value of the exponent can be gleamed from
following: In the ‘‘truncated crystal’’~TC! calculation,50 one
replaces the parabolic band approximation by the actual n
parabolic bands of the host material, while retaining t
single-band description. It was found50 that the exponent«g
}R2n is already much smaller than the classic value on
52 even though both the single-band approximation and
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infinite potential barrier approximation were used. Th
nonparabolicity of the bulk band reducesn.

V. CONCLUSIONS

We have found that Coulomb interactions are very imp
tant in determining the symmetry of excitons in quantu
dots made of a bulk indirect-gap material. In particular,~1!
direct Coulomb interactions are able to split the energies
excitons that have degenerate single-particle energies~2!
When the symmetry of the CBM ist2, the direct Coulomb
interaction lowers the energy of a dark exciton below
optically active ones.~3! Exchange corrections raise the e
ergy of singlet states; because exchange splittings are di
ent for each exciton symmetry, the ordering of symmetrie
altered by the exchange interaction. In general, the excha
splitting is smaller forT singlets than forE or A1, which
lowers their energies below the other singlets. But, theT2
singlet remains at higher energy than theT1. ~4! When the
symmetry of the CBM is nott2, the lower energy excitons
haveT2 symmetry. Thus, when the CBM symmetry is nott2,
the lowest exciton is spin-forbidden only.~5! The hole wave
function of the lowest-energy exciton belongs to thet2 sym-
metry even in some cases in which the symmetry of
ev
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e

. J
,

-

f

e
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VBM is t1. This is due to the fact that, for small dots, th
electron-hole direct Coulomb attraction is significantly larg
when the hole ist2 than when it ist1. ~6! We find that our
dark-bright excitonic splitting agrees very well with the e
perimental optical data of Calcottet al.41 and thermal data
Kovalevet al.42 The agreement is not as good with the the
mal data of Calcottet al.41 and Brongersmaet al.43 Finally,
~7! in contradiction with simple textbook arguments, w
have found that the relevance of the Coulomb direct inter
tion, exchange interaction, and correlation effects increas
compared to the single-particle energy splittings for sma
dots. This effect is a consequence of a realistic descriptio
the dot potential and the interparticle screening.
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