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Dark excitons due to direct Coulomb interactions in silicon quantum dots
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Electron-hole exchange interactions can lead to spin-forbidden “dark” excitons in direct-gap quantum dots.
Here, we explore an alternative mechanism for creating optically forbidden excitons. In a large spherical
guantum dot made of a diamond-structure semiconductor, the symmetry of the valence band mas@&klim
ist,. The symmetry of the conduction band minimy@BM) in direct-gap material ia,, but for indirect-gap
systems the symmetry could k@epending on si2ea,, e, or t,. In the latter cases, the resulting manifold of
excitonic states contains several symmetries derived from the symmetries of the VBM ande&C®M,
Xt,=A;+E+T,+T, or t,Xe=T,+T,). Only the T, exciton is optically active or “bright,” while the
othersA,, E, and T, are “dark.” The question is which is lower in energy, tliark or bright. Using
pseudopotential calculations of the single-particle states of Si quantum dots and a direct evaluation of the
screened electron-hole Coulomb interaction, we find that, when the CBM symmeijrytiee direct electron-
hole Coulomb interaction lowers the energy of tferk excitons relative to théright T, exciton. Thus, the
lowest energy exciton is forbidden, even without an electron-hole exchange interaction. We find that our
dark-brightexcitonic splitting agrees well with experimental data of Calettal, Kovalevet al, and Brong-
ersmaet al. Our excitonic transition energies agree well with the recent experiment of Welkal. In
addition, and contradicting simplified models, we find that Coulomb correlations are more important for small
dots than for intermediate sized ones. We describe the full excitonic spectrum of Si quantum dots by using a
many-body expansion that includes both Coulomb and exchange electron hole terms. We present the predicted
excitonic spectra.

[. INTRODUCTION citons. In the absence of electron-hole Coulomb attraction,
all four states are degenerate. However, ohjyis allowed
Much of the interest in semiconductor quantum dotswhile the T,, E, and A are dark. In direct-gap materials,
(QD’s) centers around the ability to tune their emission en-Coulomb interactions tend to shift states, but not to split
ergy and intensity via their quantum size. For that purpose, ithem. Here we ask whether in indirect-gap dots the electron-
is desirable to haveallowed excitonic transitions at thresh- hole Coulomb interactiorinot the exchangecan split the
old. However, it is possible that quantum size effects willenergy of a dark excitonT(;, E, or A;) below the energy of
make the lowest excitonic transitiorfierbidden (“dark”).  the “bright” T, exciton. We address this question for Si
The first such case is due to electron-hole exchange effects guantum dots. To answer this question we must kbvthe
dots made of a direct-gap zinc-blende matekidlin this symmetries and energies of the near-edge single-particle
case, the valence band maximuMBM) hast, symmetry electron and hole state$?) the matrix elements of the
(derived from the bulkl',5 statg, whereas the conduction electron-hole direct Coulomb and exchange interactions be-
band minimum(CBM) is a, (derived from the bulk[;  tween them, and3) the screening function. All of these
statg. Consequently, in the absence of the electron-hole inquantities can depend on the size and shape of the dot.
teraction, the exciton has the symmetg a;=T,, and the Silicon dots can be prepared via electrochemical
corresponding transition is optically allowed. The electron-etching!® reactive sputtering} embedding in sol-gel
hole exchange interaction can sglis into a lower-energy ~ matrices;? implantation in a Si@ layer;® self-assembly;®
triplet and a higher-energy singlet. Whereas the spin-orbit
interaction can mix singlets and triplets, the lowest state is TABLE I. Possible symmetries of the excitons as a result of the
still forbidden. Indeed, for direct-gap QD'’s, the only mecha-symmetry of the electron and hole wave functions. An asterisk de-
nism to have a forbidden, “dark exciton” is through such notes allowedbright) excitons.
exchange interaction. The second case explored here is when
the bulk material from which the QD is made is a multivalley Case Hole Electron Possible excitons
semiconductor(Si, Ge, AlAs, GaP, or when the QD be-

comes indirect because of quantum confinenterg., small a ty ty T, +T5+E+A;
GaAs dots are predicted to have an indirect®aphen, the 1| b t, a, T

CBM electron state need not haag symmetry, but can also c t, e T, +T

be t, or e’~° In Table I, we give the symmetries of the | d t, t, T+ TS +E+A,
possible excitonscapital lettersbased on the symmetries of 11 | e ty a, T 2

the single-particle hole and electron wave functigiosver- f ty e Ti+T§

case letters For example, if both the hole and the electron
havet, symmetry, one can gepXt,=T;+T,+E+A; ex-
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inverse micelles synthest8 and thermal vaporizatiol. The  interactions can produce reorderings in the symmetries of the
most popular experiments that probe QD’s are opticakxcitonic states in smaller dots with respect to the uncorre-
measurement®!1%in which an electron-hole pailan ex- lated states(6) Our configuration-interaction calculations in-
citon) is generated in the QD by the incoming photons. Thecluding both Coulomb and exchange interactions provides a
physics of the experiment is dominated by the electron an@rediction for the excitonic manifold in spherical Si dots.
hole energy levels, the electron-hole Coulomb interaction,

and the response or screening of the rest of the electrons in Il. METHOD OF CALCULATION

the valence band.

The classical theoretical approach to the problem is the
effective mass approximatiqgeMA), which predicts that the
shift in the single-particle energy gap scales & With the We consider approximately spherical silicon crystallites
radiusR of a quantum dot. The EMA and a size-independentcentered around a Si atom. All Si atoms are assumed to be
screening assumption predict that the Coulomb energy scaléscated at their ideal bulk positions. The dots are generated
as 1R in the limit R—0. However, recent microscopic by discarding all the Si atoms that are outside a sphere of a
calculations,®'8-?2show that the single-particle energy gap given radius. We eliminate surface atoms that have more
dependence oR is less strong. This is due mainly to band than two dangling bonds, while the remaining dangling
mixing and nonparabolicity effects. In addition, the Coulombbonds are passivated with hydrogen atoms, as described in
binding energies are expected to increase faster thBn 1/Ref. 27. All the dots generated by this procedure h@ye
because the dielectric screening becomes less efficient thagymmetry. The passivated dots are then surrounded by
in the bulk®-2° vacuum and placed in a large supercell, which is repeated

In the past, the calculation of energy levels of QD’s wasperiodically. The closest distance between two neighboring
also performed using EMAS empirical tight binding,*®=?°  dots is always larger than 10 A. Having created antificial)
empirical pseudopotential methot$?? and local density periodic structure, we can calculate its electronic structure
approximatior??* The symmetry of the band-edge wave via ordinary “band structure” methods applied to the super-
functions has been discussed in detail by Reand Delley  cell. We consider dots with radii ranging from 7.5 to 27.25 A
et al® However, the symmetry of the exciton was not dis-and containing 87 to 4235 Si atonfshown in the first two
cussed. The excitonic spectra of spherical Si QD have beetolumns of Table ).
studied in the frame of the EMARef. 26 and empirical The single-particle energy levels and wave functions are
tight binding®° But, the exciton in Si has not been calcu- obtained by solving the Schidimger equation
lated in a configuration interaction pseudopotential frame.

In this paper, we first calculate the single-particle states
using a pseudopotential approach. In agreement with previ- Hii=ei i, (1)
ous calculationé? we find that the symmetry of the CBM \1ere the Hamiltonian is given B
can beaq, €, ort,, depending on the QD radius, whereas the
symmetry of the VBM is in generdl}, (but could bet; for a 12
sufficiently small QD. We next calculate the electron-hole
interaction matrix elements using microscopic pseudopoten- H=~ %VZJF% USi(r_RSiH% UH(r=Ry). (2)
tial wave functions and find that the excitonic gap is in ex- '
cellent agreement with recent experimental res§iWe also  Here m is the bare electron mass, and; andvy are the
find that(1) the symmetry of the lowest excitonic transition atomic local empirical pseudopotentsf Si and H, which
is determined by the symmetry of the single-particle stateare taken from Refs. 22 and 27.
and not by the size of the da®) If the CBM ist,, the direct We expand the wave functiongr) in a plane wave basis
Coulomb interaction alone can split the exciton manifoldset. The energy cutoff must be compatible with the cutoff
T,+T,+E+A; into lower-energy dark states and higher- used in generating the pseudopotentfd vg; and vy,
energy bright states. At low temperatures, only the lowestwhich were designed for 4.5 Ry cutoff. We solve Ed)
energy (dark) excitons are populated, so emission is weakusing the folded-spectrum mettddo obtain the states near
and long-lived. At higher temperatures, all excitons arethe band edges. Thus, our method is not self-consistent.
populated but only th&, emit. (3) On the other hand, if the However, the use of screened pseudopotentials makes it ap-
CBM is a; or e symmetric, then the lower-energy exciton propriate for large dots.
hasT, symmetry, which is optically allowed4) Even if the Because the dot hdg, symmetry, its single-particle states
VBM is t; and the CBM ig,, the lowest exciton can still be must belong to the irreducible representatiags a,, e, t;,
dark because the Coulomb interaction lowers a Mgistate  or t,. The single-particle states that belong to the represen-
below T,. (5) Simple EMA models suggest that the single- tationsa, or a, of the T4 group are in general nondegener-
particle gap scales with size ag~ R™2, whereas for a size- ate, whereas those that belongefd,, andt, are degenerate.
independent screening, the electron-hole Coulomb interacFhe symmetry of any solutiogi(r) of Eq. (1) can be found
tion is expected to scale ds,~R™*. We find, in contrast by using an operatdP*) that projects any function into the
with this simple expectationgy~R ™% and Jo,~R™ 1'% subspace of the representatiar?®
Thus, in contradiction to simple theories, we find that when
the dot size is much smaller than the bulk-exciton Bohr ra-
dius, the Coulomb interactions are more important than pw —_*
the single-particle splittings. Therefore, configuration- g

A. Calculation and classification of single-particle energies
and wave functions

n ~
% X0, 3
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TABLE Il. CBM and VBM energies and symmetries for different Si QD radius.

Radius Si atoms CBM VBM Band gap
R Energy(eV) Symmetry EnergyeV) Symmetry (eV)
7.46 87 —2.65 al —-5.97 t2 3.32
8.37 123 —291 e —5.92 t1 3.00
8.89 147 —2.87 t2 —5.80 t1 2.93

10.03 211 —-3.06 t2 -5.75 tl 2.69

12.70 429 —-3.28 t2 —551 t2 2.22

13.48 513 —3.32 e —5.44 t2 2.12

15.07 717 —-3.41 al —-5.40 t2 1.99

16.21 891 —3.46 al -5.35 t2 1.89

16.72 979 —3.46 t2 —5.33 t2 1.87

17.32 1087 —3.49 t2 —5.30 t2 1.81

17.51 1123 —3.49 t2 —5.30 t2 1.81

17.93 1207 —3.50 al —5.30 t2 1.79

18.75 1379 —3.53 e —5.27 t2 1.74

19.38 1551 —3.54 e —5.25 t2 1.71

20.27 1743 —3.56 al —5.22 t2 1.66

20.72 1863 —3.57 t2 —5.21 t2 1.64

21.64 2121 —3.59 al —5.20 t2 1.61

23.14 2593 —3.61 t2 —-5.17 t2 1.56

24.42 3049 —3.63 e —5.16 t2 1.52

27.25 4235 —3.66 al —5.12 t2 1.46

wheren,, is the dimension of the subspace of the represenHere, N is the total number of electrons in the system,

tation u, g is the total number of operatior@@ in the sym-

=1,] is the spin variable, andl is the antisymmetrizing

metry group,X(Q") is the character corresponding to the op-operator. The Slater determinabt, . represents an electron-

erationQ in the representatiop, andC)Q is an operator that
applies the transformatio® of the group to the wave func-
tion #(r). Then we calculate the matrix element

(P )
(Hlyy

BecauseP(® is a projector® p(i,u) is only going to be
equal to 1 ifyy belongs to the representatipnof the group.

P(¢p)= (4)

B. The many-body expansion

From the solutions of Eq1) we construct a set of single-
substitution Slater determinan{$, }, obtained from the
ground-state Slater determinahg by promoting an electron
from the (occupied valence state},, of energye,, to the
(unoccupiedl conduction state), of energye:

(Do(rl,o'l, P ,rN,O'N)
=A[Y1(ry,00) - hn(ri o) - - In(rn,on) ]
5
q)hye(l’l,a'l, . ,rN,O'N)

=A[p1(ry,00) - e(ri,09) - - hn(ry,on) |-
(6)

hole pair. Two Slater determinani?.rhl,el anddDhZ,ez belong

to the same “configuration” if the single-particle hole states
thn, and i, are degeneratesgfshz), and the single-

particle electron statege, and the, are degeneratesg1

:Sez)-
The exciton wave function®(®) are expanded in terms
of this determinantal basis $&f

Ne Nh

Y@= > Cc{dy,, @
e=1 h=1

where N, and N, denote the number of hole and electron
states included in the expansion of the exciton wave func-
tions. In this notation, the hole states are numbered from 1 to
N, in order of decreasingenergy starting from the VBM,
whereas the electron states are numbered from Ml tan
order ofincreasingenergy starting from the CBM.

The matrix elements of the many-particle Hamiltonfdn
in the basis sefd,, .} are calculated as

Hhe, h’e’E<(I)he|H|q)h’e’>:(se_8h) 5h,h’ 5e,e’_‘]he, h'e’

+Khe’h!e/ (8)

whereJ andK are the electron-hole Coulomb and exchange
integrals, respectively
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Jhe,h'e':ez 2 J‘ﬂhr(rl.(fl)fe(rz,Uz)‘ﬂh(l’l.O'l)wef(rz.Uz)drler, )
01,07 e(|ri—ral,R)[ri—ry

Knone—€ S ffdlh/(rl,al)fe(rz,UZ){/le’(rl,Ul)wh(rz’UZ)drldrz. 10
01,02 e([ri—ro[,R)[ry—ry

The excitonic states of the quantum dot are obtained by solv-

~ 0 0
ing the secular equation: lﬁh:¢ﬁ+2 ah,h’l//h'+z An ety
h e
(12)
NU NC
S S Hpenre CO,=E@ c(®) (12) ~ _ o 0 0
R hehre’ Lprler he - Vo= ¢e+z ae’h,l/,h,_f_Z Bee Wy -
h e

When one constructs the Cl expansion of Bj.one should
incorporate not only the many-body functidh due to i
andy, but also all the cross terms resulting from the second
and third sums in Eq(12). These cross terms describe
double, triple, etc., electron-hole pairs tisateenor “dress”

a particular electron-hole excitation. We thus see that the
wave-function-mixing affects both electron-hole Hartree and
electron-hole exchange interaction. In our Cl expansion all
these multiple electron-hole pairs are neglected. To correct

The Hamiltonian matrix of Eq(11) is shown schematically
in Fig. 1. The diagonal block&shaded areasorrespond to
matrix elementsHyg nrer between Slater determinants be-
longing to thesameconfiguration. Each block corresponds to
a row in Table I. For example, if the hole statetjsand the
electron state i\, thet,Xa,; block is (including spin) 12
X 12. In a similar way, the,X<t, block is 36x36. The off-
diagonal blockslunshaded areaslescribe the coupling be-
tween different configuration@.e., correlation effecis _ ) — ]
In order to obtain an insight about the origin of the cal-for this, one introduces the screeniafjr,—r5[,R) in Egs.
culated excitation energies, we will first solve the single con9) and(10). ] ) .
figuration problem by including only the diagonal blocks of ~ 10 model this screening, we first assume that the effect of
Fig. 1 in the many-body HamiltonidiEq. (11)]. This will be excitation-induced Wave-functl_on-mlxmg can be though_t of
done in two steps(1) retaining only the direct Coulomb &S an effect _of S(_)m(()e external fleld_, so that the self-consistent
interactionJ, and then(2) including both Coulomb) and ~ field approximatiorf can be applied. Second, we assume
exchangeX interactions. We will then introduce configura- linear response. Thusultiple electron-hole excitations will
tion mixing (correlation$ by including the off-diagonal
blocks in Fig. 1.

Lxt,
C. The model screening dielectric function

In Egs.(9) and (10) we have screened the electron hole

interaction by a dielectric functioa(|r;—r5|,R). The need
for this screening can be explained as follows. Imagine that txe
we had solved self-consistently a single-particle Hartree-
Fock equation instead of the empirical pseudopotential
Hamiltonian in Eq.(1). The solution would depend on the
assigned occupation numbérs, ,n.} for all the hole(h) and
electron(e) levels of the dot. In the ground stafep ,n3} all

the electron and hole levels are empty. We can now create | t, xt,
specific electron-hole pair by removing an electron from a
particular level in the valence band and placing it in a par-
ticular level in the conduction band. The new occupation

numbers are{ﬁh ,ﬁe}. If we had self-consistently solved the t,xe
Hartree-Fock equation for the new occupation numbers we
would have obtained new single-particle wave functions
{4}, and therefore, new Hartree and exchange potentials. It
practice, we do not solve the problem self-consistently. In-

stead., W_e think of the new wave functgo@&} as. .I|near matrix of Eq.(11). The shaded areas correspond to matrix elements
combinations of the old wave functiorig°}. Specifically, between Slater determinants belonging to the same configuration,

every wave function iy} now contains a mixture from all and off-diagonal blocks represent configuration mixing, which pro-
states: duces correlation effects.

t,xa,

t,xa,

FIG. 1. Schematic description of the configuration interaction
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-
N

be described by a single screening functﬁmrl_—rz[,R). - R-20A R-25A R-30A Ry3A
Third, we choose an analytical approximation for o 10} p l 3 +
e(Jry—r,|,R) which is described in Ref. 31. g . A B=15A — ==
Our foregoing argument suggests that the exchange inter- £ °| R-104 -
. . . Q P
action must also be screened. In the past, it was believed that £ e ResA L~
while the Coulomb interaction is long-ranggdlR) and © —
therefore must be screened, the exchange interaction is § *[ L
purely short-ranged and therefore should remain unscreened. % 2lf 7= OcCL
We have recently showrthat, in quantum dots, there is a a Screening
significant LR component to the exchange. Since our dielec- 0 5 To 5 20 o5 30

tric function e(Jr;—r,|,R) will approach 1 at small
[ri—r,| it will naturally leave the SR interactions un-
screened. However, the LR exchange interactions will be FIG. 2. Dielectric screening for dots. Continuous line: screening
screened. This is further discussed in Ref. 1. function used in this work as a function of the interparticle distance
The electron-hole Coulomb and exchange integrals of for different dot radiiR. Dashed line: screening function used by
Egs. (99 and (10) thus involve a screening function Oglt, Chelikowsky, and Louig¢Ref. 24.
e(rq,r,,R) that depends on the interparticle distance ) _
Ir,—r,| and on the quantum dot radis* Because there is ste_mt using a moments r_netl‘?édand pseudopotential qalcu—
a discontinuity in the dielectric function at the surface of thelations of the wave functions and energy levels for different

dots, surface-polarization energies should be taken into adot radii:

Interparticle Distance r (A)

count. However, it has been shown that the electron and hole
self-polarization energies and the electron-hole polarization
energy cancel each other almost exactly both in sphéfical

e*(R)=1+

€0
1+ (Ry/R)"’

(16)

and cubié® dots. Therefore, polarizations effects will not be
considered in the present case.

Approximating e(r;,r,,R)~e(|r;—r,|,R), the screened
Coulomb potential of Eq99) and (10) can be rewritten as

2

g(|ri—ra))==
e(|ry—ra))|ri—ry
=e2f6*1(|r1—r|)|r—r2|*1dr, (13
where e is the inverse dielectric function. The Fourier

transform of the screened Coulomb potential is

4re?

k2 '

g(k)=¢"*(k) (14)

wheree (k) is the Fourier transform oé 1(|r,—r|). Be-

where g is the bulk dielectric constant arig, and » are
constants. A direct calculation Qﬂ"‘(R) by the pseudopo-
tential method gives for SRy=6.9 A and® »=1.37. This
expression gives slightly larger values ef°(R) than the
one calculated by Lanncet al?® (using a self-consistent ex-
tended tight binding that incorporates the Coulomb interac-
tion) and also by @t et al?* (using an LDA calculation and
infinitesimal field method in small clustgrs

Although the reciprocal space formula for the screening
[Eq. (15)] is very useful for our plane wave approach, it is
instructive to analyze the real-space screening function

[e(r,R)], which is related toe (k) via Eq. (13

€2°(R)g/[sinhqa(p..—r)+qr],
U ENR), r>p..

— I<po.
e(r

17

Figure 2 shows the dependence of the screening function

cause silicon is a covalent semiconductor, there is no ioni€(":R) on the interparticle distancefor different values of
contribution to the screening. We construct a model dielecthe effective radius of the dd® We have used=11.4,

tric function as follows: the inverse dielectric constant
consists of the electronihigh-frequency contribution only,

and a valence electron density=0.1998 A 3. We see that
for interparticle distances larger thar2.5 A (corresponding

which is approximated here by the Thomas-Fermi modefC the screening radiys.) the screening function is identical

proposed by Resth

k2+ 02 sin(kp..)/(€2°'kp..)
k?+q? '

e (k)= (15)

Hereq=27"Y2(37%ny) 2 is the Thomas-Fermi wave vec-
tor (wheren, is the average valence band electron density
and p,, is the solution of the equation sirda(.)/(gp.,)

= The macroscopicdielectric constant of the quantum

to its asymptotic valuee,.(R). However, for smaller dis-
tances it falls quickly to 1. The electron-hole Coulomb inter-
action is long ranged, so it is essentially screened by the
quantum-dot macroscopic dielectric constaef®’. The
electron-hole exchange interaction, on the other hand, con-
sists of both a short-range and a long-range component. Be-
causee(r,—r,,R)—1 when|r;—r,|—0 (see Fig. 2, the
short-range component of the exchange interaction is effec-
tively unscreened, as it is in bulk semiconduct$r® The
long-range component, instead, is significantly screened, as

dot €9°! is related to the polarizability of the quantum dot asdiscussed in Ref. 1.

a whole. The dielectric constarf! is obtained from an

The screening function proposed by RéSgarovides an

interpolation of the results of the screening dielectric con-accurate description of the screening in the Bllaccord-
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ingly, any approximation for the screening functie(r,R) so the wave function and eigenenergies are expected to be
for a dot should converge to the form given by Resta for allrather insensitive to small changes in the surface shape or
values ofr when the dot sizeR goes to infinity. Figure 2 passivationsee below.

shows that our screening function has this property. In Fig. 2, Table Il gives the energies and the symmetries obtained
we have also plotted the distance dependent screeniryy applying Eq.(4) of the band-edge states of dots with
function used by @it et al?* In that work, it is assumed that different sizes. In agreement with Réme found that the
€(r,R) = €%°r). This assumption gives a screening function VBM symmetry changes front, to t; in small dots R

that depends only on the interparticle distan¢mdependent <12.7 A). For even smaller dotR(7.5 _A), thet, sym-

of the size of the dot Figure 2 shows that in the approxi- metry of the VBM is restored. !—|owever, in our calculations,
mation used by"@t ot al.?(r) is only equal to the bulk thet, to t; crossing occurs at sizes larger than those reported

7 ; 8
value when the interparticle distanceis infinity. For all by Ren. The', to t, crossing was observed Dellet al

th th ing funci d bt et al. is sianif only in very small clustersthe cases of 17 and 4 Si atoms
otherr, th€ screening function used bygil et al. 1S signifi-- = g crossing occurs when the clusters are so small that most

cantly different. It thus does not describe bulk screeningyt ihe atoms are in the vicinity of the surface. We cannot be
correctly. sure about the results obtained for those small clusters.

D. Comparison of the present method with other approaches With respect to the CBM, we confirm the observation

. . made in previous calculatioh§that the symmetry changes
The present method differs form the classical EMA treat-p . veen the,, e, andt, representations in an irregular way.

ment of free-standing QD'&Refs. 2 and 2Bin several ways:  1he energy-splitting between these three state)( ap-
(1) The present_method prowdes the microscopic structure Oﬁroaches zero for largR (e.g.,AE=20 meV forR=13.48
the wave func_tmns, not just the_ envelope_ structug. It A, AE=4.1 meV forR=27.25 A). We also found that the
dqes not require the wave fu_nctlon to_ vanish at the boundSymmetries are not affected by sméli%) changes in the
aries of the QD(3) The numerical solution of Ed1) allows  sj.H bond lengths. Our results correspond to Si-centered
us to include unlimited multiband couplinggl) The method  dots. However, similar changes in the CBM symmetries have
describes the true physical symmetries of the(detall that  been reported for dots centered on a tetrahedral interstitial
even the most perfect Si QD does not have spherical synmsite®
metry, as assumed in the EMA, but ratfigr symmetry. For small and intermediate size quantum dots, we explore
As to comparison of the present method and tight bindingthe influence of a departure from the geometric spherical
we note that both methods can give equivalent results if thehape on the wave-function symmetries and energy levels.
tight-binding basis is large enough. Howewdy, the de- We reduce the size of the dot in one directid®,), elimi-
scription of the wave function is variationally much more nating some atoms while keeping the size of the dot in the
direct and flexible in the plane-wave pseudopotentialperpendicular planeR,=R,= const). For a spherR,/R,
method; and2) while the position-dependent wave functions =1. We find that the ordering of the energy levels and sym-
are in general not accessible to a tight-binding madely =~ metries can change wheR,/R,#1. However, for suffi-
the expansion coefficients aréhe pseudopotential approach _ciently small dots, the wave functions can still be classified
provides the wave functions. Moreover, the method is conil terms or the representations of tfig symmetry: for
strained to give the bulk wave functions that fit local-densityRz/Rx s low as 0.85: becaug, ) is almost 1 or 0. For
approximationgLDA) calculations. fthe sarr_1eRZ/Ry and _Ia_rger dots, this classification becomes
The configuration-interaction formalism used in this work INcréasingly more difficult: folR=15 A andR,/R,=0.85,

is similar to those followed by Hilet al,'® Leunget al.}®  P(#:u) values are around 0.9 and 0.1. ,
and Chamarroet al® The main differences appear in the To check the effects of surface atomic relaxation on level-

evaluation of the matrix elements in Ed9) and (10): (1) ordering, we have periormed LDA calculations for the two
We evaluate thd andK integrals explicitly in terms of the smallest QD's reported in Tap]e Il, relaxing the atomic struc-

) . . ture. Then we use the empirical pseudopotential method to
wave fur_wctlonsw obtained by solving the quantum 5d°t obtain the energy levels at the LDA relaxed geometry. In the
Hgmntom?Q[Eq. (1] (2) In ”;99 works of Chamarretal.” | pa cajculation, we use norm-conserving pseudopotentials
Hill etal,™ and Leunget al,™ the exchange integrals are \yith 4 kinetic energy cutoff of 15 Ry. The initial atomic
not screened and only interactions up to first neighbors argsnfiguration is obtained from the unrelaxed bulk configura-
taken into account while longer-range interactions were negjgn, plus a small random displacement at each atom. At the
glected.(3) In the work of Leunget al,'® the Coulomb in-  relaxed geometry we recalculated the wave functions and
teraction was screened bybalk distance-dependent dielec- energies using an empirical pseudopotential apprgach
tric constant that does not depend on the QD radius. LDA). We find that even in such small QD’s, where surface

effects are important, the effects of atomic relaxations on the
electronic structure are small. The VBt symmetry of the
. RESULTS 87-atom dot is preserved, but the symmetry of VBM of the
123-atom dot is restored from to t,. The ordering of the
conduction-band states is preserved in both cases. Though
Figure 3 shows the cross section of the band-edge wavwae cannot evaluate atomic relaxations for larger dots we
functions for a few cases. We see that the amplitude of th&now that such effects are going to be much smaller, because
oscillations in the wave functions is larger around the dothe wave functions are localized in the interior of the dot
center. The wave-function amplitude on the surface is smallhere the atomic relaxations are negligible.

A. Single-particle energies and wave functions
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(@) t,=CBM; R=23.1 A (b) e=CBM: R=24.4 A

. |
¥,
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"‘iihii!!r
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3 élhi

FIG. 3. (Color) Calculated wave functions, depicted along ¢881) plane. Red indicates positive values, green corresponds to zero, and
blue is used for negative values. The values are given in arbitrary units. The crossed solid lines correspond 10 ted (110)
crystallographic directions of the dot. The outer circle marks the edge of the dot.
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6 Asygu=eiam—evim- (19
- —o— Delerue etal., TB
35/ S R seutopot ] The band gap of the dot was thus
3 —e— van_Buuren et al., (exp.)
§4_ Sg(dot):Sg(bulk)+ASCBM_A8VBM. (20)
w
2 To obtainAecgy, van Buurenet al. measured the differ-
£33 ence between@— CBM core-level absorption in the dot and
S in the bulk:
22|
) AsCBM=AEdO‘(SinHCBM)—AEb”'k(SinHCBM)(,Z )

1 1

0 5 10 15 20 25 30 ) ] )

Dot Radius (A) whereas to obtaie\ gy, they combined VBM photoemis-
sion with SiZ photoemission, i.e.,
FIG. 4. Comparison between the single-particle energy gap of Si

dots obtained with different theories and experiments. Squares cor- Aeygw=[AE(VBM —vac) — AE?°(Siy,—vac)]

respond to Deleruet al. (Ref. 39 triangles to RenRef. 7), and .

diarF;onds to the present pseudopote%tial calculation. Full circles —[AEbU”‘(VBM_>vac)—AEd°t(S|2p_>V3C)],

correspond to the experimental data of van Buwetal. (Ref. 17. (22

In Eq. (21), AE®°(Si,,—CBM) is the energy difference be-

Figure 4 shows the calculated single-particle energie§ween a dot with an electron in the CBM and a hole in its 2
compared with the empirical tight-binding results of DelerueCore level and a dot in the ground state. In EE2)

37 e f
i eacomion 1 oo T ot e AE%{VBM —vac) i h orizaon cnery of n ot Va1,
. . ' 9 and AE?°Y(Siy,—vac) is the ionization energy of the dop2
the calculation of Ren is not as good. The difference between
the calculations of Ren and those of Delemteal® is that  COre Vel 17
the former uses a smaller set of adjustable matr'ix elements in It was already noted by van Buurenal.” that themea-
g ; L adu suredsingle-particle gap,(dot) (solid symbols in Fig. #
the empirical tight-binding Hamiltonian. ; 9
A . btained from Eqs(21) and(22) are not exactly comparable
Also shown in Fig. 4 are the recent experimental data o .
17 .5 o thecalculatedone-electron band gap. First, they noted that
van Buureret al,~" which fall well below all calculated and

measured valueésee Fig. 5 below Since the quantities the quantity in Eq(20) excludes the binding energy of the

A . : xciton. Second, they noted thAtEY°{(Si,,—CBM) and
measured in this experiment are very different from standariEbu.k(Si _.CBM) correspond to energipes core exci
2p -

measurement®:*1we will review them, so as to establish if . . .
tons, whereas all conventional calculations of gaps in dots

there is a relationship with calculated quantities. van Buurer :
et alX” measured the shift in the energy of the conduction nvolve valenceexcitons. We note that because the electron
band minimum from the dot to the bulk. i.e wave function of a dot is localized by quantum confinement,

T the binding energy of a core exciton could be larger in the

dot that in the bulk case. Therefore, the binding energies of

Aecgy= e?;"BtM— Sbcuslkm (18)  the dot versus bulk core excitons will not necessarily cancel
in Eq. (21), and the measured conduction band shift-gy
and the valence-band shift could be underestimated relative to the single-particle result.
Third, we note that in Eq22) the polarization energies must
5 : : . : : : cancel out exactly both for a VBM hole and for a core hole
] in order for EqQ.(22) to yield Aeygy. Fourth, the energy
Expt. { o Furukans oial {absor) level of the core electron must be assumed to be independent
4l —o— present . of the position of the Si atoniinside the dot or in the sur-
Ogutet ol G 12 et face), and this may not be the case. In conclusion, although
the experiments of van Buurest al."’ show clear evidence

of quantum confinement, the physical quantities measured do
not correspond to the normally calculated single-particle en-
ergies. An additional possible reason for the difference be-

Present ——
)

Excitonic Energy gap (eV)
w

21 Leungetal — iy tween the van Buureet all’ measurement of the single gap
\O\O\ﬂ and the theoretical calculatiofBig. 4) could be the fact that
the dots in this experiment are touching one another and,
' 5 10 15 20 25 30 therefore, the wave function is not confined as it is in iso-

Dot radius (A) lated dots®

FIG. 5. Comparison between the lowest excitonic gap obtained B. Comparison of the calculated excitonic gaps with other
with different theories and experiments. Full circles correspond to

Wolkin et al. (Ref. 10, and full squares to Furukawet al. (Ref.
11). Open symbols correspond to theoretical predictions: rhombus In Fig. 5, we compare our calculatémivest exciton ener-
to present pseudopotential work, hexagons to Leetra). (Ref. 19 gieswith other theoreticaP®* and experiment&!** studies.
tight binding and triangles to @it et al. (Ref. 24 LDA. Our calculations correspond to the lowest excitation energy

theories and experiments
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obtained using the configuration-interaction method de-
scribed in Sec. Il B. The detailed structure of the exciton
multiplet will be described in the next section. In Fig. 5, full
symbols correspond to experimental results and open sym-
bols correspond to theoretical predictions. We see an excel-
lent agreement between our results and the recent photolu-
minescence(PL) data of Wolkin et al!® on oxygen-free

~—1.81eV
1.66 | txt, R=1751A

samples. We also show thabsorptiondata of Furukawa <
etal,'* used in the past to compare with thedfyThe L
absorption-determined gas is much higher than the PL- 5
determined gap for the following reason. For indirect-gap &
bulk semiconductors absorption does not give reliable values W
for thelowestgap(because of the small intensjifyand in this §
case, emission is more reliable. Although the finite size of ‘G

E

the dot breaks the translation symmetry and, in principle, the
absorption is possible without the assistance of phonons, in

practice the absorption coefficient is extremely siiat the @ (b) © @ (e)

energy threshold. Moreover, the lowest-energy exciton states oo | | Snolo g‘:rf’f'lz ﬁ?x'.'ﬂg m‘:g
can be forbidden, so absorption marks higher energy transi- 1.65 || Energy Jon,yg' K N,=12| [N =24
tions, not the minimum gap. Therefore, RRef. 10 is a N, =12 N, = 24

more reliable method to locate the minimum-gap in dots
made of indirect gap materigprovided that nonradiative FIG. 6. Exciton energies for a dot of 1123 Si atoRs 17.51 A,

defegts and surface defects ar(_a avo'%d' . calculated under different approximatiofiadicated in the boxed
With respect to the theoretical calculations, our resultqtems(a)_(e)] for at,xt, configuration.

also almost coincide with a empirical tight-binding calcula-

tions reported by Wolkiret alX° (which are not shown be- _ _
cause they are on top of the experimental daFae empiri- Manner using standard group theory. Some representative
cal tight-binding calculations of Leungtall® report a cases are given in Table I. Let us first analyze carefully some
smaller excitonic gap, but that calculation also failed to re-examples of the excitonic spectra of individual dots before
produce accurately the bulk gdpThe LDA calculation of ~discussing the general conclusions that apply to all the re-
Oglit et al?* agrees poorly with the experimental PL data of Sults.

Wolkin et al,*° overestimating even th&lready too high In Fig. 6, we show the energies of excitons derived from
absorption data of Furukavet al!* This discrepancy results at, hole and & electron state calculated at levéds- (e) as
from (1) their underestimated screening functisee Fig. 2, defined above. The results were obtained for a dot with a
which in turn reduces the energy of the exciton; &dtheir ~ radiusR=17.51 A. The system has 1125 Si atoms, with 436
overestimation in the calculation of the quasi-particle energy atoms passivating the surface dangling bonds. For clarity

gap?° which raises the energy of the exciton. of display, the excitations that do not have tghole
X t,-electron character are excluded from the figuee.At
C. The excitonic multiplet spectrum the single-particle levelFig. 6(a)] thet,Xt, exciton is 36-

fold degenerate(b) The main correction to this single-

Having discussed the "large-energy scale” pertaining to rticle energy is the average direct Coulomb correction

Fig. 5, we next describe the fine structure of the excitoni&a . ) o : .
spectra near the threshold. To understand the physics of ext,xt,™ 250 meV[Fig. 6b)], but this shift is not identical for
citon energies, we will calculate them in steps, introducingevery exciton in the multiplet. The Coulomb interaction
progressively higher order effeci@) At zero order, the en- splits the 36-fold degeneracy of the exciton energies into
ergy exciton is the difference,— e, in the single-particle four degenerate levels denotéd A;, T,, and T, with de-
energies. In this approximation one ignores all electron-holgeneracies 8, 4, 12, and 12, respectively. In the single con-
interactions. The next stegb) is to consider a single- figuration scheme with no exchangeig. 6b)], the lowest
configuration(i.e., one diagonal block of Fig.)Jand to in-  energy exciton ha#&; symmetry and therefore is optically
troduce the electron-hole direct Coulomb interactiohis  inactive because of the orbital selection rules even in the
correction not only shifts the energy levels, but in indirect-absence of exchange splitting. The next stis also opti-
gap systems, also splits the energies of the different excitogally inactive. The only optically active state is the fourth
symmetries that are degenerate in the single-particle pictur@ne, which hag', symmetry.(c) The exchange contribution
Then (c) one may include the electron-hole exchange termgFig. 6(c)] splits the energy of each exciton level in singlet
within a single configuration, which gives additional split- and triplet states, with latter optically inactive. However, the
tings. Finally, (d) one can add configuration interaction by energy shift between singlet and triplet excitons depends on
solving several blocks of Eq11), including off diagonal the orbital symmetry: it is much larger féy; andE excitons
terms.(e) The convergence of the exciton energies in termghan for T; and T,. As a consequence, the lowest energy
of the determinantal basis set can be estimated by increasimsinglet exciton hasr; symmetry and is optically inactive,
the number of single-particle states in Efjl). whereas the next singlet excitonTs and is active(d) Cor-

The symmetries of the multiplets created within eachrelation effects are taken into account in Fig&d)@and Ge).
single configuration can be obtained in a straightforwardn this dot, multiple configuration interactiordo not alter
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- 2.69¢eV -~ 2696V
&‘—2-689V R=10.03A L —]
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3
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(a) (b) (c) (d) (e) F
- | Single | [Single Single Config. Config. | ] @ (b) (d) (d) (e)
Particle| [Config. Config. Mixing Mixing Single- Single Single Config. Config.
Energy | [J only J+K Ng=12| |Ny=24 238l Particle | | Config. Config. Mixing Mixing i
235 1 Ny=12[ |N,=24]] . Energy Jonly J+K Ng=12 N, =24
N, =12 N, =24

FIG. 7. Exciton energies of a dot of 211 Si atoRs 10.03 A, . . . .
calculated under different approximations indicated in the boxedsca'I:éG' 8. Thet,xt, exciton manifold of Fig. 7 given on a larger
items (a)—(e). Note the crossing between thgXxt, and the '

t, X ty,-related excitations resulting from the direct Coulomb correc-

tions. contrast with the previous example, in this case
configuration-mixings are importajfigs. 8d) and 8e)],

and energy corrections are much larger. As a consequence,
¥hey can interchange the ordering of the exciton symmetries.

coréecnon orghth? ordr-,:[r of 1 meV qtnly. v th This is due not only to the proximity of thg Xt, andt,
ecause the lowest energy exciton Wassymmetry, the Xt, configurations, but also, to the relative growth of the

exc_lton is dark, WhICh results from b_oth _the exchange mter-values of the of diagonal matrix elements in Egl) (see
action and the direct Coulomb contribution of the COUIOmbbeIov@
interaction. Therefore, an exciton in the ground state has to '

flio th . 4 also has 1o ¢h th bital Ty i Figures 6, 7, and 8 clearly show that the excitonic transi-
Ip the Spin and also has 1o change the orbrial Symmetry iy, "5 re degenerate at the single-particle level. Therefore,
order to recombine in a dipolar transition. That means tha

. o X . . _errors in the single-particle energies do not play a significant
the exciton transition is forbidden both by spin and orbltalrole in the values of the splittings in a multiplet. However,

symmetry. However, spin-orbit coupling, which is not in- yoo can rigidly shift the full multiplet. We have found that

cluded in the present calculation, can partially mix smglet(l) when the CBM hag, symmetry, the direct Coulomb

and triplet states. o - interaction gives rise to a dark exciton. Howevg), when
Another example of dark exciton is shown in Figs. 7 andthe symmetry of the CBM is “e,” the lower energy exciton

8 for a much smaller dot. The QD has 211 Si atoms with, . T .
. . . . in generalT,, which is bright. Finally(3) when the CBM
additional 140 H atoms on its surface. The effective radius ofy mmetry isa, the exciton always has, symmetry.

the Si dot isR=10.03 A, The symmetry of the VBM for this Changes in the screening functi¢éas large as those occur-

dot 'Stl’f w::e_retas tr;? CIB:M '$72 (se?hTatbli tu. In tf;e ap- ring when the size of the dot changes form 8 to 27dA not
sence ofe-h interaction[Fig. 7(@)], this t, Xt, exciton is alter the main conclusion of this work: the excitonic transi-

36-fold d_(tagerzjerate. Stut;plrisingtlyt, W(?[ find |t»:'1a|t :hirl]OWESt ®Mion is symmetry forbidden when the symmetry of the CBM
ergy exciton does not belong totaxt, multiplet. The rea- ¢ t, and allowed when it is not.

son is that the hole state next to the VBM state iasym- Unfortunately, the present experimental resolution and

metry and is only 10 meV below thé;—VBM. The ¢ gistribution of real samples does not allow us to resolve
difference betweed, .., andJ; x., is large enough to dis- gspjittings as small as the ones introduced by the Coulomb
place the exciton energy of thigXxt, multiplet below the interaction by direct PL experiments. Future single-dot ex-
t;Xt, [Fig. 7(b)]. Thus, the low-energy excitonic multiplets periments are necessary to examine our predictions of Figs. 6
are derived front, holes even though thg holes are higher and 8.
in energy. Figure 8 shows the exciton obtained from tthe

Xt, multiplet on an enlarged scale. In this dot, the direct
Coulomb interaction is able to lower the energy of a dark
exciton E below the optically activel', exciton[Fig. 8b)].

But, as in the example of Fig. 6, the exchange splitfifig). We next compare the calculated and measured splitting
8(c)] is smaller for theT singlets than foA; andE singlets.  between the dark and bright excitons. There are two types of
For this reason the symmetry of the lowest energy singleexperiments in this regard: “opticaf* and “thermal.”*~43
[Fig. 8(c)] is T, whereas the next singlet state Ts. In In the optical experiment, one absorbs light into the optically

D. Bright-dark exciton splitting as a function
of the exciton energy
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S s 5., of both Calcottet al** and Brongersmat al*® It has

> th

€ 5 | o Presentcat. been argued by Calcatt al** that shape distributions might

o . ottt o, v o justify the difference between their optical and thermal ex-

.S 251 | m Kovalevetal (Therm) v periments. However, our calculated exchange energies and

= & Brongersma et al. (Therm) A . . .

S X Leung et al. Calc. v single-particle energies show that _they are dependent on the

2 volume of the dots rather than their shape. Because, the ex-

L 154 change energy and the single-particle energy are the main

1% contributors to the dark-bright splittings and excitonic gaps,

L 10 4 . . .

> respectively, we think that small shape fluctuations cannot

© 54 account for the difference between optical and thermal

Q experimentd’ or between different thermal experimefits#?

5 1 (2) The qualitative agreement between different theories

& . : . . and experiments is good. Our calculations are in excellent
05 1.0 15 20 25 3.0

quantitative agreement with the opticéJ,; onset measure-
Excitonic Gap (eV) ments of Calcotet al,*! and the variable-temperature mea-
o _ “surements of Kovaleet al*? The thermal data of Calcott

FIG. 9. Energy-splitting between the lowest-energy bright exci-at 5141 and Brongersmaet al®® are both a factor of 1.8

ton and the lowest-energy dark exciton as a function of the darky;ger than our calculations. The theoretical calculations of

exciton energy. Circles correspond to the present calculations anl(_jeung et all® are only slightly above the thermal data of
crosses to the results of Leurgal. (Ref. 19; the solid continuous galcottet al.“l and Brongersmat al 43 The results of Martin

line is a guide to the eye. Open and closed triangles correspond, - .
4 9 °ye. 2P 9 PON%t al*4 (not shown only fit the experimental data when an
respectively, to the optical onset measurements and thermal PL de-

cay measurements of Calcett al. (Ref. 41); squares correspond to artificially low-dielectric constant is used.

the thermal PL decay measurements of Kovadewl, (Ref. 42: _ (3) The fact that_the calculated bright-dark splittiqg agrees
diamonds correspond to the thermal PL decay measurements $fith the optical shifté, = A+ Agc between absorption and
Borngersmaet al. (Ref. 43. emission does not leave much room for a Franck-Condon

shift Arc. Indeed, the total measured shift- Apc=10 meV

allowed state(i.e., 1T,), and emits from the lowest-energy is much smaller than Franck-Cono!on shift in large molecules
triplet (e.g., 3A; in Fig. 6) or from a thermal average over (Arc=100 meV. Another puzzle is the fact that the mea-
the lowest-energy triplets. The absorption versus emissiofured thermal shiféy,~ A is larger that the measured optical
Stokes shift then corresponds to the sdgg=A+ Agcof  Shift Sop=A+Arc. _ N
two effects: the bright-dark“singlet-triplet”) splitting A (4) Figure 9 plots the dark-bright energy splitting¢R)
and the Franck-Condon shiftr. due to the possibility that Versus the excitonic gap energ§”'(R). Although theA(R)
the atomic geometry in the excited state differs from that invs g”(R) plot of Leunget al. lies well above ours, their
the ground state. Note that in Si QD’,does not necessar- A(R) values for a given dot radiug agree with our values.
ily correspond to an “exchange splitting” because e In fact, theA(R) vs JP(R) plot of Leunget al.”® is shifted
bital symmetry of the bright and dark states might be differ-to smaller=°P* values with respect to our values. This is
ent. Consequentlyd contains also electron-hole Coulomb because their absolute excitonic energies are lower than ours
terms. (see Fig. 5, which can be traced to the fact that their single-

In a thermal experimert'~3 the radiative decay rate of particle levels are much lower too. Indeed, it has been noted
singlet to ground state and triplet to ground state is measureg@cently® that the tight-binding Hamiltonian used by Leung
as a function of the temperatul® When kgT is much et al® might give single-particle band gaps that are too low.
smaller thané,,, only the lower-energy forbidden triplet We estimate that Leunet al° results would be almost iden-
states are populated and the radiative decay is small. On thigal to our results in Fig. 9 if their single-particle gaps were
other hand, wherkgT is of the order ofé,, or larger, the similar to those reported by Deleret al>’
occupation of the allowedT, states increases. As a result of ~ Another question is if the electron-phonon interactions
the larger occupation of the optically allowed states, the racan mix exciton levels. If the excited state distortions are
diative decay rate increases. The experimental viori3fit small, one could treat both the electronic and the phonon
the radiative decay rate to a two-levsinglet-triple} model  Hamiltonian in the same quantum mechanical approach. Be-
in which &, is an adjustable parameter. Since the atomiacause all lattice distortions that are symmetry equivalent
geometry is expected to be very similar in the excited singlete.g., %, y, z) cost the same energy, the effective electron-
and the excited triplet there is no Franck-Condon contribuhole phonon coupling Hamiltonian due to lattice distortions
tion to the thermally measured Shif;, . must have the symmetry of the dot. Therefore, this effective

The values obtained fo,,; and é, in the thermal and  Hamiltonian will not mix different representations of the ex-
optical experimenfé~*3are summarized in Fig. 9 along with citon wave function(e.g., T; with T,), although it could
the tight-binding calculations of Leungtal,’® and the contribute to the Coulomb splitting.g., energy splitting
present pseudopotential results, as a function of the excitobetweenT; and T,). On the other hand, if excited state
energy. distortions are largéi.e., if the frequency square of one or

We see in Fig. 9 thatl) the optical shifts,, of Calcott  more phonons becomes negative in the excited state
etal® and the thermal data of Kovaleet al’” agree geometry®>9 the symmetry of the electronic Hamiltonian
very well with each other, but differ from the thermal results could be broken after atomic relaxation and thus exciton lev-
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els of different symmetry could be mixed. A comparisonsuitable for analyzing the dependenceJadndK as a func-
between optical experiments and our theoretical resulttion of the dot size. To do this, we first diagonalize the ma-
seems to show that the Franck-Condon shifts are small. Adfixes Jyeprer OF Kpenrer in the subspace of a given single
cordingly, we suspect that additional splittings or mixingsconfiguration, obtaining the eigenvalugg(C) andk¢(C),
due to lattice distortion should be small compared to theespectively
Coulomb or exchange splittings.
QIcQ '=]he(C) S Seer s (29
IV. SIZE DEPENDENCE OF THE SINGLE-PARTICLE
AND INTERACTION ENERGIES

and

-1_ .
It is important to compare the size scaling of the single- TKcT " =kne(C) S v Ge,er 5 (26)

particle gapsq~R™" with the size scaling of the electron- \yhere C represents electron-hole pairs of the fomm e [a
hole Coulomb interactiod~R™"R. If ¢4 grows'fa'\ster than  ghaded blockFig. 1)], Jc and K¢ are single-configuration
JasR—0, then Coulomb effects become negligible as com-,pmatrixes of the full matrixed o o OF Kpoprer, andQ
pare with single-particle energies at small sizes. On the othegn§T are unitary transformation matrices. We take the aver-
hand, if J grows faster tham for R—0, the importance of 446 value of the direct Coulomb and exchange interactions

correlation effects increases. - — . .
Jc andK as a measure of the strength Coulomb interaction

) . ) ) _ in a given configuration:
A. Size scaling of the single-particle energies

The single-particle energy gap is usually fit with a func- - :i .
tion of the form Je N, % Ine(C), (27)
89288”|k+,8/R7, (23 1
Ke=— Kne(C). 28
whereeg"“=1.17 is the single-particle gap in bulk silicon. NG g e ) (28)

Using Eq.(23) and all values of Table Il, our fitted value for

v is 1.42.(If we restrict the data to the dots studied by Wang
and Zunger? R<18.75 A we gety=1.37, the same as they

do.) For large dots, when the EMA is valid, it is expected
that y(R—)=2. Therefore, a more general fitting function
that allows+y to be a function of the dot sizR is required:

In Eq. (28), the average is taken on thg singlet states that
havek;o(C) eigenvalues different from zeringlet states
The splitting in energy of the eigenvalupg(C) andk;,«(C)

is a consequence of the exciton-exciton couplings within
each configuratiol©. Accordingly, they are a good measure
of the exciton-exciton interaction within a configuration. We
ngsgulk+ BIRY1L+3 R), (24) then define

whereé is a small additional fitting parameter that allows the — 1 i —

exponent to change as a function Rf A fit by Eq. (24) AJC:N_C% |ine(C) = Jcl (29)
shows that the quantity(1+ 6R) is 1.13, 1.20, and 1.27 for

R=7, 17, and 27 A, respectively. This means that the “ex- 1 .

ponent” of R is a strong function of the sizR itself. Ac- AKC:N— > |kne(C)—Kgl. (30
cordingly, disagreements between different theories can be s S

partially understood by the different size of the dots StUdiequuations(27) and (28) are functions of the traces of the

Our %xponents are larger than the vglge obtained by De”e}hatrices while Eqs(29) and (30) are only dependent on the

et al” (y=1) using LDA, butzglre similar to the valug  paqis wherg(C) or K(C) are diagonal within each configu-

= 132% obtained by Prooetal™ and y=1.37 by V\{an4g ration. Therefore, they are independent of the particular

et al™ The average size _s,an|[119100f the CBM energRRis™* ¢ ice of the degenerate single-particle states. The symmetry

and for the VBM energy it iR™"". Thus, the low exponent ot the pand-edges extrema depends on the dot size. For that

of the single-particle gap is mainly a consequence of th@eason, we did not limit our study to the evolution of the

smoother dependence of the VBM on size. band-edge transitions; we also followed each configuration
and characterized their direct Coulomb and exchange depen-

B. Symmetrization of the Coulomb and exchange integrals dence independently as a function of the dot radius.

It is advantageous to combine certain exchange and direct
Coulomb integrals for the purpose of analyzing their size C. Comparison between scaling behaviors
scaling (but not for calculation For degenerate states, the |, order to study the relative importance of the direct
solution of Eq.(1) gives a set of wave functions. Any linear coylomb and exchange interaction as a function of the dot
combination of these wave functions is also a possible soluzadiys, we evaluated Eq7), (28), (29), and(30) for all the

tion of the single-particle Eq(1). The numerical method gots in Table II. Using a least-squares procedure, we fit Eq.
used to diagonalizél can select any set of orthogonal linear (27) with a function of the fornf”

combinations of the degenerate wave functions as a solution.

Because the values of a p_articulf_;lr matrix elelzmb?rgjh,e, or jc(R)I a+ BIR?, (31)
Khenrer depend on thearbitrary) linear combination of the

degenerate conduction and valence band levels, they are natd Eq.(28) with a function of the form
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TABLE IlI. Size scaling of the direct Coulomb and exchange introduced by the direct Coulomb interaction itself become
contribution R~”) as defined in Eqs(31) and (32). Casesa-f  of the same order of magnitude as singlet-triplet splittings.

refers to Table I. The fact thaty~3 for Ko(R) means that, for indirect gap
material, the exchange integrals are given basically by the

Case yinJe  yinAJe  yinKc  yinAKc short-range contributioh.
a 1.49 1.94 271 253 Finally, we note that in Table Il the electron-hole excita-
b 1.46 272 tions can be classified in two groups in which the direct
c 1.49 193 267 248 Coulomb interaction has distinct scaling properties. Group |
hast, hole wave functions, whereas group Il liadoles.Jc
d 1.36 257 271 231 has stronger dependence on the dot radius for group | exci-
e 1.28 231 tons than for group li(see Table Il The difference in
f 1.29 3.0 2.50 2.17 Jc(R) between | and Il groups tends to zero for large enough
QD’s. Thus, for small dotsJc is much larger for group-I
transitions than for group Il. For that reason, the direct Cou-
AJc(R)=BIR”. (320 lomb term in Fig. Tb) is large enough to compensate the
_ energy crossing between the andt, solutions in the va-
The form of Eq.(32) is also used to obtain the fit§c(R),  lence band. As a result, the lower-energy exciton has group-
andAK(R) of Egs.(29) and(30). Table Il gives the values character for all but one of the dots listed in Table Il. The
of the exponenty obtained from the fittings. only exception is the third dot in Table IlI. In this case. exci-

The first observation is that the exponent obtained for théations belonging to group | and Il are superimposed. There-
size scaling of the direct-screened Coulomb enedgy fore, the interexciton coupling due the direct Coulomb and
~R™%%s larger than the one obtained in simplified modelsexchange interactions becomes more important, and the
that use a size-independent screening constant and the EMMwer exciton has only an impure group-Il character. Never-
J~R™ 1. Note from Eq.(9) that the scaling of depends on theless, in this small size regime the VBM symmetry be-
the wave function structure and on the scaling@f,R). In  COMes uncertain because relaxation effects tend to restore the

our calculation, the wave function is not constrained to bd2 Symmetry of the VBM. o
zero at the surface of the dot, which is the usual boundary The Coulomb integrals in group | have similar depen-
condition for the envelope wave function in free-standingdence orR (see Table Ill. This result is expected, because
QD’s. This leads to aeduced?® electron-hole binding en- the lowest electron states are g e, andt; states formed
ergy, so the unscreened Coulomb energy scales Jeom the7S|x degenerate minima of the bulk-conduction band

_0.82 — structure. Consequently, the Bloch parts of the wave func-
J(unscreened~R . On the other hand, ow(r,R) de- . o . o .

. : tions are similar and give similar matrix elements. As a con-

pends on the dot size being smaller than Be>~ bulk ) )

) . . sequence, the symmetries of the lower-energy exciton mul-
value [see EQq.(16) and Fig. 3. This effectincreasesthe ol fixed by th f the CBM houah
electron-hole binding energy. The combination of both ef—tIp et are fixed by the symmetry of the , even thoug
fects produces the final resuli afscreenej~ R~ 149 the single-particle energy splittings in the conduction band

P 12 Lo : are much smaller than the average direct Coulomb energy.
Becausesy~R™ 4, the relative importance of the Cou-

lomb interaction compared to the single-particle gap is larger
for the smaller dots than for the larger ones. This directly D. The origin of nonclassical size-scaling
contradicts the assumption of simplified modéf about
the relative importance of single-particle energies and Cou-
lomb energies in small dots. .

The consequences of these scaling behaviors are evident eg*R (33
from a comparison among Figs. 6, 7, and 8. The average
direct Coulomb correction in Fig. () is large enough to assumega) single-band theory(b) parabolic bands, an()
change the order of the excitonic transitions from the calcuinfinite barriers. Recently Ferreyra and Pro&ttoave dem-
lated single-particle energies in FigiaY. In addition, Fig. 8 onstrated that exponents smaller than the classic values of
shows that configuration interactions are large enough to dig=g. (33) can be obtained in a single-band theory with para-
turb the order of the exciton energigsee Figs. &), 8(d),  bolic bands, provided that one replaces the infinite potential
and 8e)]. This is a consequence of the larger influence ofbarrier by some finite potential barrier. This result does not
electron-hole correlatioréncluded in Figs. &) and 8e)] in clarify the relative physical origing)—(c) of the nonclassic
very small dots. On the other hand, when the size of the dotxponents. Our present EPM calculations includes all three
becomes comparable with the bulk Bohr radius, correlatiorcontributions(a)—(c) to the value of the exponents. The fact
effects become crucial, because the exciton becomes locghat not only finite barriers, but also nonparabolicity contrib-
ized by the Coulomb interaction itself and not by quantumute to the value of the exponent can be gleamed from the
confinement. following: In the “truncated crystal(TC) calculation®® one

The second observation from Table Il is that, in everyreplaces the parabolic band approximation by the actual non-
case, the exchange integrals decay much faster than the giarabolic bands of the host material, while retaining the
rect Coulomb integrals. Then, for small systems, the singletsingle-band description. It was foutidhat the exponent
triplet splitting is much larger than the direct Coulomb split- <R™" is already much smaller than the classic valuenof
tings. However, for large enough dots, the splittings=2 even though both the single-band approximation and the

The classical size scaling of
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infinite potential barrier approximation were used. Thus,VBM is t;. This is due to the fact that, for small dots, the

nonparabolicity of the bulk band reduces electron-hole direct Coulomb attraction is significantly larger
when the hole ig, than when it ist;. (6) We find that our
V. CONCLUSIONS dark-bright excitonic splitting agrees very well with the ex-

, _ , perimental optical data of Calcott al** and thermal data
We have found that Coulomb interactions are very imporgyalev et al*? The agreement is not as good with the ther-

tant in determining the symmetry of excitons in quantumpma| data of Calcotet al*! and Brongersmet al*® Finally,

dots made of a bulk indirect-gap material. In particul@,  (7) in contradiction with simple textbook arguments, we
direct Coulomb interactions are able to split the energies O?1ave found that the relevance of the Coulomb direct interac-
excitons that have degenerate single-particle energ®s. (on exchange interaction, and correlation effects increase as
When the symmetry of the CBM i, the direct Coulomb  ¢ompared to the single-particle energy splittings for smaller
interaction lowers the energy of a dark exciton below theyots, This effect is a consequence of a realistic description of

optically active ones(3) Exchange corrections raise the en- the dot potential and the interparticle screening.
ergy of singlet states; because exchange splittings are differ-

ent for each exciton symmetry, the ordering of symmetries is
altered by the exchange interaction. In general, the exchange
splitting is smaller forT singlets than forE or A;, which
lowers their energies below the other singlets. But, The The authors would like to thank Lin-Wang Wang for sup-
singlet remains at higher energy than the (4) When the  plying some of the programs used in this work and for stimu-
symmetry of the CBM is not,, the lower energy excitons lating discussions. The authors also would like to thank D.
haveT, symmetry. Thus, when the CBM symmetry ismgt  Kovalev and M. Brongersma for supplying their bright-dark
the lowest exciton is spin-forbidden onlg) The hole wave exciton shifts(Fig. 9) prior to publication. This work was
function of the lowest-energy exciton belongs to thesym-  supported by OER-BES-DMS under Contract No. DE-
metry even in some cases in which the symmetry of theéAC36-98-GO10337.
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