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Many-body pseudopotential theory of excitons in InP and CdSe quantum dots
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We present a pseudopotential approach to the calculation of the excitonic spectrum of semiconductor
guantum dots. Starting from a many-body expansion of the exciton wave functions in terms of single-
substitution Slater determinants constructed from pseudopotential single-particle wave functions, our method
permits an accurate and detailed treatment of the intraconfiguration electron-hole Coulomb and exchange
interactions, while correlation effects can be included in a controlled fashion by allowing interconfiguration
coupling. We calculate the exciton fine structure of InP and CdSe nanocrystals in the strong-confinement
regime. We find a different size dependence for the electron-hole exchange interaction than previously as-
sumed(i.e., R™? instead ofR™%). Our calculated exciton fine structure is compared with recent experimental
results obtained by size-selective optical spectroscopisl63-182609)00227-1

[. INTRODUCTION lomb interaction are added as a perturbation. This approach
has been very successful at describing the size dependence of

The physics of excitons ibulk semiconductotsis gov-  the excitonic lines in CdS¥, InP ° and InAs'® nanocrystals.
erned by electron-holeorrelation effects, which control the However, the interpretation of the exciton “fine” structure
magnitude of the exciton radius and exciton binding energyrequires a more detailed treatment of the electron-hole inter-
A departure from this picture, however, is expected for ex-action. This goal is achieved here by a many-body expansion
citons in semiconductoquantum dotsas the sizeR of the  of the exciton wave functions in terms of single-substitution
guantum dot is reduced, the separation between singléSlater determinants constructed from pseudopotential single-
particle energy levels increases at a faster rate than thgarticle wave functions.
electron-hole Coulomb energy. When the physical size of the The idea of a “configuration-interaction” expansion of
quantum dot becomes smaller than the bulk exciton radiuthe exciton wave functions is not new. It was introduced in
(strong-confinement limit the electron-hole correlation en- the framework of the single-band effective-mass approxima-
ergy becomes negligible compared to the direct electron-holion by Hu, Lindberg, and Koch, and later applied to the
Coulomb and exchange energies. Thus, the spectroscopy tfiht-binding approximation®2! Recently, however, accu-
strongly-confined quantum dots is decided by the hierarchyrate pseudopotential calculatiéAéhave shown that the use
Coulomb greater than exchange greater than correlation. lof effective-mass envelope functions to estimate Coulomb
this paper we present a practical and accurate technique fand exchange integrals can lead to considerable errors. For
calculating the excitonic spectrum of quantum dots that ignstance, the electron-hole Coulomb energy of the lowest-
designed for such cases. energy exciton is underestimated by as much as 40% in

Semiconductor nanocrystals in the strong-confinement resmall nanocrystalé Furthermore, pseudopotential calcula-
gime can now be produced with a high degree of controtions have shown that the electron-hole exchange energy in-
over size and shape distributiohkn the case of CdS&InP?  cludes a long-range compong&htthat was previously
and InAs® the good quality of the nanocrystal samples hasgnored®®-'°These effects are fully included in the present
permitted one to resolve and identify several excitonic linescalculation.
in the photoluminescence excitatigRLE) spectrum, span- The fine structure of the lowest exciton states of CdSe
ning a range of more than 1 eV above the fundamental opranocrystal was previously discus&&din terms of a model
tical gap. By varying the PLE detection energy and/or the8 X 8 electron-hole Hamiltonian. The Hamiltonian matrix el-
average size of the nanocrystals, the size dependence of teements were derived starting from single-particle effective-
excitonic energy levels has been observed and analyzed. Funass wave functions calculated for spherical nanocrystals
thermore, a careful utilization of size-selective spectroscopitiaving the cubic lattice structure. The warping of the valence
technique’ has permitted a thorough investigation of the band and the nonparabolicity of the conduction band were
fine structure of the lowest excitonic transitions, showing forneglected, while crystal-field splitting effects and deviations
example a~10-meV redshift of the emission line from the from sphericity were treated in a perturbative fashion. The
lowest-energy absorption life!? Recent advances in the four highest valence stateE §, symmetry and the two low-
spectroscopy of single nanocrystdlsuggest that the fine est conduction stated'§, symmetry were included in the
structure of the band-edge excitons, as well as higher-enerdyasis set for the calculation of the excitonic structure. Only
transitions, can be addressed in the near future with unprethe short-range part of the electron-hole exchange interaction
edented detail. was included in the calculations; the long-range exchange

The “coarse” excitonic structure of semiconductor interaction was neglected. The lowest-energy exciton state of
nanocrystals is usually interpreted in terms of single-particlespherical nanocrystals was predicted to have an infinite ra-
energy gaps, to which the effects of the electron-hole Coudiative lifetime(“dark exciton”). While the solutions of this
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model Hamiltonian fit well the observed redshift in CdSeobtained in the framework of density-functional theory and

nanocrystal§;2°for spherical zinc-blende quantum dots this are fitted to reproduce the measured bulk transition energies,

model predicts a R® scaling of the redshift with siz&, deformation potentials, and effective mas&es.

which is not observed in either InfRef. 7) or InAs (Ref. 12 In the next step, from the solutions of E@) we construct

nanocrystals, where & 1/R? scaling is seen instead. a set of single-substitution Slater determinafds, .}, ob-
More recently, a configuration-interaction approach basedained from the ground-state Slater determin&gtby pro-

on a tight-binding parametrization of the bulk band structuremoting an electron from théccupied valence state), of

was applied to CdSe nanocrystals by Leung, Pokrant, andnergye, to the (unoccupiedl conduction state. of energy

Whaley?® The single-particle wave functions of CdSe «.:

nanocrystals in the wurtzite structure were calculated using a

{s,px.Py,P,,s*} tight-binding basis set. The interaction pa-

rameters were derived from the band structure of the zinc®y(rq1,01, ... N, ON)
blende phase and adjusted to reproduce the wurtzite bulk
band structure. Spin-orbit coupling was then added as a per- =Ali(ry,0o0) - dy(ry,0o0) - dn(rn,on) ], (3a

turbation to the single-particle states. A configuration-

interaction expansion of the exciton wave functions was per-

formed, including both Coulomb and exchange matrixPv.c(f1:01, -+ In,ON)

elements. The calculated redshift was in relatively good  _

agreement with the experimental results of Efaisal® A AT o) - gieltv,ov) - gl on) ] (3

finite radiative lifetime of about 10° s was predicted for

the lowest exciton state of spherical CdSe nanocrystals. Here N is the total number of electrons in the system,
Our approach differs from previous calculations in that:=1,| is the spin variable, andl is the antisymmetrizing

(i) Crystal-field splitting, spin-orbit coupling, and shape ef- operator. Two Slater determina"f’%l,cl andCID\,Z,C2 belong

fects are built at the outset into the solution of the singlety the same “configuration” if the single-particle valence

particle Schrdinger equation and are not treated pertmba‘states:,/fvl andy,, as well as the single-particle conduction

tively. (ii) Microscopic pseudopotential wave functions statesss. and are degenerates. — ande. —
(rather than envelope functions or tight-binding orbitalee Ve, e, 9 vi~ 8, e, ™ Eeyr

used to calculate the Coulomb and exchange matrix elgNote that each single-particle level is at least twofold degen-
ments.(ii) A physically completdalbeit phenomenological €rate because of time-inversion symmeti§ramer’s dou-
dielectric function is used to screen the electron-hole interPl€d. As a result, each exciton configuration has a minimum
action; the dielectric function depends on the electron-holglimension of four. _

separation as well as the quantum-dot si#e. Several con- The exciton wave functions’(*) (where a denotes the
figurations are included in the many-body expansion of theé€Xciton quantum numbeyrare expanded in terms of this de-
exciton wave functions. Thus, correlation effects can be del€minantal basis set,

scribed in a systematic and controlled fashion.

NV NC
Il. METHOD Pl = 21 21 c o, ., 4
The first step in the calculation of the excitonic structure Ve eT

of a nanocrystal is the solution of the single-particle prob-

lem. In the pseudopotential approach this amounts to solving’hereN, andN. denote the number of valence and conduc-
the single-particle Schdinger equation tion states included in the expansion of the exciton wave

functions. In this notation the valence states are numbered
from 1 toN, in order ofdecreasingenergy starting from the
5 N _ valence-band maximum, while the conduction states are
- 2_mov VN4V di(ro)=eigi(r,o), (1) numbered from 1 to\, in order ofincreasingenergy starting
from the conduction-band minimum. Inclusion of multisub-
stitution Slater determinants will introduce additional multi-
exciton levels at higher energy. In this work we are inter-
sted only in single-exciton states; multiexciton states will be
escribed in another publicatidh.
The matrix elements of the many-particle Hamiltonfgn
in the basis sefd, .} are calculated as

2

whereV(r) is the microscopic pseudopotential of the sys-

tem (dot plus surrounding materjalandV,, is a short-range
operator that accounts for the nonlocal part of the potenti
(including spin-orbit coupling V,(r) is calculated here
from the superposition of screened atomic potentials,

Vpdr)= E Vo (r—Ri o), (2 Hycwro =Py HIPyr o) =(ec—€,) 8y ' Fc.cr = ycvrer
i
+ch,v’c’ ! (5)

wherev,(r—R; ,) is the atomic potential for an atom of
type a located at the positioR; ,. The atomic pseudopo- whereJ andK are the Coulomb and exchange integrals, re-
tentials are derived from the bulk screened pseudopotentisipectively:
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f f W (1, 0) W (12,02 (11,01) e (r2,07)
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drydry, (6)

71,02
Wy (1, 0) P (12,00 e (T1,01) iy (12,07)
ch,v’c’:ez 2 j f - — drqdr,. (7)
01,07 €(ry,ra)|ri—ry)
|
The screening of the electron-hole interaction, caused by the A. Solution of the single-particle problem

polarization of the medium, is described phenomenologﬂcally The solution of the Schitinger equatior(1) for a 1000-

by the microscopic position-dependent dielectric constant atom system represents a formidable task, even when a fixed,

and will be discussed in Sec. IIB. The structure of thenon-self-consistent potential is used. However, only a few

Hamiltonian matrix is schematically illustrated in Fig. 1. The single-particle states in an energy window around the band

diagonal blocks(shaded areascorrespond to matrix ele- gap are needed in the construction of the basis{ $gt.}.

mentsH, . between Slater determinants belonging to theThus, Eq(1) can be effectively solved using the folded spec-

same configuration. The off-diagonal blocksshaded ar- trum method®?’ which allows one to calculatselected

eag describe the coupling between different configurations.eigenstates of the Schitimger equation. In this approach, Eq.
The excitonic states of the quantum dot are obtained by1) is replaced by the eigenvalue equation

solving the secular equation

ﬁ2 2
N N — V24V (1) + VN —eref| ¢i(T,0
2 2 HVCYV,C,CS/??C,: E(a)C\(ffg. (8) 2m ps( ) NL ref ¢|( )
e = (81— ere) 24 (1,0), (11)
From the knowledge of the exciton energy levels and wave
functions, the near-edge normalized absorption spectrum camhere e iS an arbitrary reference energy. The “ground
be obtained as state” of Eq.(11) coincides with the solution of the Schro
dinger equatior(1) with energy closest to the reference en-
1 ergye.s. Therefore, by choosing the reference energy in the
o(w)o VE IMD|25(hw—E@), (9)  band gap, the band-edge states can be obtained by minimiz-
“ ing the functionalA[ 1= (y|(H— &e)?| ).

We solve Eq(11) by expanding the pseudopotential wave
functionsy;(r,o) in a plane-wave basis set. To this purpose,
the total pseudopotentiaf,(r) is defined in a periodically
repeated supercel} containing the quantum dot surrounded

o) « by a region of vacuum. The size of the vacuum region is
M )_% C\('vc)<w"|r|"0°>' (10 sufficiently large to ensure that the solutions of Efl) are
converged within a few meV. The single-particle wave func-
In the following sections the most important details of theions can then be expanded &gr, o) =2sCi(G,0)exp(G
solution of Eqs(1)—(10) will be discussed. -r), where the sum runs over the reciprocal-lattice ved®rs
of the supercell). The energy cutoff of the plane-wave ex-
pansion is the same used to fit the bulk electronic structure,
to ensure that the band structure consistently approaches the
1 8 16 24 32 bulk limit. The minimization of the functional\[ «] is car-
ried out in the plane-wave basis set using a preconditioned
config.

whereV is the nanocrystal volume ard(® are the dipole
matrix elements:

Ny X N¢

conjugate-gradients algorithm. More details on the minimi-
zation procedure, and the scaling with the system size can be
found in Ref. 27.

16

B. Screening of Coulomb and exchange interactions

Ny X N¢

In the case of Wannier excitons in bulk semiconductors,
the electron-holeCoulomb interaction is screened by the
bulk dielectric constant. This fundamental result was derived
for the first time to our knowledge by Sham and Rfbasing
effective-mass arguments. An alternative derivation was

FIG. 1. Schematic form of the Hamiltonian matrix of E§).  given by Strinafi® using the GW approximatidfi for the
The shaded areas correspond to matrix elements between Slaglectron self-energy. Pseudopotential calculations for semi-
determinants belonging to the same configuration. conductor quantum dotshave shown that the macroscopic

24

32
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dielectric constant decreases significantly as the size of the [Egan+AE]?
quantum dot is reduced, thus enhancing the electron-hole Ry =1+ (e2k—1)

d 1
Coulomb energy. [Egad R) +AE]?

The effects of dielectric screening on the electron-holgyhere 24k is the bulk high-frequency dielectric constant
exchangan_teractlon are more subtle. It is generally under-and Egi’gﬂLAE is the energy of the first pronounced peak in
stood that in bulk semiconductors the short-range exchangme b

. : 9 ulk absorption spectrufeorresponding to th&, tran-
gggﬁéoeniﬁtg?ggiobﬁ S‘;}giﬁéegﬁfre\'gxg tg; tfg%ﬂﬁ(ﬂgile Csition in zinc-blende semiconductord he low-frequency di-
N ; R R o} do bulk
! 4 : _ N
tric tensor’>3 Recent pseudopotential calculations for InP(ilegH,'(c constant i obtained a&’(R)= €’(R) +(eg
and CdSe nanocrystafshave revealed that the electron-hole 6_|_°°h ’ lectron-hole Coulomb int fon is | d
exchange interaction in quantum-confined systems consists e electron-hole Loulomb Inteéraction IS long ranged, so

of a short-range component and a long-range componeng is essentially screened by the quantum-dot macroscopic

which in the case of directi{-derived excitons have com- ielectric constant. The electron-hole exchange interaction,

parable magnitude. Therefore, the screening of the Ionan the other hand, consists of both a short-range and a long-

range exchange interaction has a sizable effect on the extef@nge componerit. Sincee(ry—r;)—1 when|r;—r,/—0,
of the electron-hole exchange splitting in semiconductotthe short-range component of the exchange interaction is ef-
quantum dots. fectively unscreened, as it is in bulk semiconduct8r&:33

We will use here a position-dependent dielectric constanf he long-range component, instead, is significantly screened,
to screen the Coulomb and exchange interactions in quantuf® discussed in detail in Ref. 23.
dots according to the electron-hole separation. The screened Unlike the dielectric constants used in previous

Coulomb potential of Eqg6) and(7) can be rewritten as effect!ve—ma;%g and tight-binding®~** calculations, our di-
electric function depends both on the electron-hole separa-

e2 tion and the quantum-dot size. In previous calculations the
g(rl,rz)s_—zezf € L(ry,r)|r—ry " dr, electron-hole exchange interaction was either left
€(r1,1o)|r =1yl unscreenet!®?* or screened by thbulk distance-dependent
(12 gielectric constant®2°

wheree ™! is the inverse dielectric function. Assuming that

(15

e Y(ry,r)=e Yr,—r), the Fourier transform of the C. Calculation of Coulomb and exchange integrals
screened Coulomb potential is The Coulomb[Eq. (6)] and exchangéEq. (7)] integrals
Amre? can be cast in the general form
g(k)=€_1(k)kT, (13

- , , - J JPf(r)g(r—f’)pz(f')dfdf'=J’P’I(Ud’z(f)dr,
where e (k) is the Fourier transform o0& (r,—r). The

inverse dielectric constané™ = e+, consists of an (16
electronic (high-frequency contribution e,* and an ionic  Wherep,(r) andp,(r) denote products of complex single-
(low-frequency contributionA fiEnl' which are approximated particle wave functions and include a sum over the spin vari-
here by the Thomas-Fermi model proposed by Réstad  ableo [see Egs(6) and(7)].

by the polaronic model of Haketi,respectively. Bothe,* The screened electrostatic potentia,(r)=Jg(r

— . . . . _ et ’ r . : .
and Ae;! are diagonal and isotropic in reciprocal space,~" )P2(r’)dr’ is conveniently calculated in reciprocal
space using the convolution theorem; we have

where they have the analytic form

L KPP sinkp.) /(€57 p..) ba(1)=2 9(G)p(G)e'CT, 17
€ (K)= : (149 G
el k2+q2
whereg(G) and p,(G) are the Fourier transforms af(r)
1 1 1/2 and p,(r), respectively. Compared to the real-space
Aeg (k)= ( Tt_Tt) s+ >—|. (14b computatioR? of ¢,, the reciprocal-space formalism offers a
eg” €| 1+ppk®  1+pek higher degree of flexibility in dealing with different func-

tional forms of the screening functiay(r) and different ge-
ometries of the supercefl. However, the use of periodic
boundary conditions in the calculation @, introduces spu-
rious electrostaticinteractions between periodic replicas of

) : the quantum dot, even when the superé€elis sufficiently
electron(e) effective mass, and,o is the frequency of the |06 o ensure that the quantum dots are electronically de-
bulk LO phonon mode. Thmacroscopicigh-frequency and ¢ hjed. A practical and effective way to overcome this dif-
low-frequency dielectric constants of the quantum adf! ficulty is discussed in the Appendix.

and eg"t, are related to the polarizability of the quantum dot
as a whole. The high-frequency dielectric constant is ob-
tained from a modified Penn model where the effective-mass
band gap is replaced by the pseudopotential calculated band We consider here nearly spherical InP and CdSe nanoc-
gap, rystals. The InP nanocrystals have the zinc-blende crystalline

Hereq=2m Y437%ny)*? is the Thomas-Fermi wave vec-
tor (whereng is the electron densifyandp., is the solution
of the equation sinh(ox)/(qpm)=e§o°t. Also, phe
= (h/2my, s )% where m, . denotes the holeéh) and

IIl. EXCITONIC ENERGY LEVELS



PRB 60 MANY-BODY PSEUDOPOTENTIAL THEORY OF ... 1823

TABLE I|. Near-edge single-particle states of InP and CdSe spherical nanocrystals. For each value of the nanocrystal radius, the first row
gives the energyin eV) of the single-particle states with respect to the vacuum level, while the second row indicates the symmetry of the
bulk Bloch states from which the nanocrystal states originate, as well as the dominant angular momentum character of their envelope

function. The symbolshl, ... h4 denote the four highest-energy valence-band levels, wéfile2 denote the two lowest-energy
conduction-band levels.

Dot radius(A) h1 h2 h3 h4 el e2

ZB InP

10.11 -6.390 -6.390 -6.499 -6.563 -3.568 -3.225
Ig,, s-like I'g,, s-like r,,, s-like I'g,, p-like e, s-like Lge, s-like

11.84 -6.319 -6.319 -6.364 -6.364 -3.726 -3.378
Ig,, s-like Ig,, s-like I's,, p-like I's,, p-like g, s-like Lg., s-like

14.00 -6.148 -6.148 -6.237 -6.237 -3.744 -3.481
g, , s-like g, s-like I'g,, p-like I'g,, p-like g, s-like Le., s-like

17.39 -6.092 -6.092 -6.145 -6.145 -3.968 -3.660
Ig,, s-like I'g,, s-like I's,, p-like I'g,, p-like Ige, s-like Lge, s-like

WZ CdSe

10.33 -5.904 -5.947 -5.987 -5.998 -2.901 -2.282
Ig,, s-like Ig,, s-like I'g,, p-like I's,, p-like g, s-like Fge, p-like

14.63 -5.691 -5.719 -5.741 -5.747 -3.178 -2.765
gy, s-like gy, s-like I'g,, p-like gy, p-like g, s-like Fee, p-like

19.24 -5.561 -5.589 -5.599 -5.602 -3.319 -3.020
g, , s-like Ig,, s-like I's,, p-like I's,, p-like Ige, s-like Ige, p-like

structure and their overall symmetryTig. The CdSe nanoc-

InP nanocrystal, where the; level originates from thé"-,

rystals have the wurtzite crystalline structure. In both casessplit-off statg. The lowest unoccupied energy leydenoted
the interatomic distance is taken as the experimental bulksel in Table ) derives from the buld’¢. state and has an
interatomic distance. The dangling bonds at the surface df-like envelope function. The next unoccupied energy level
the nanocrystals are passivated by ligandlike potentialg,e2) is Lg. derived in InP nanocrystals adds, derived in
which are designed to remove the surface states from th€dSe nanocrystals.

band gap and minimize the coupling with the band-edge In what follows, we will examine the evolution of the
states. Crystal-field and spin-orbit effects, which previouslyexcitonic spectrum as more detailed electron-hole interac-
were treated perturbativef{’?***are described here explic- tions are included: single-particle energy differences, diago-
itly by specifying the atomic positions and the nonlocal po-nal electron-hole Coulomb interaction, single-configuration
tentials. approach (including intraconfiguration Coulomb and ex-
The effective radius of the nanocrystals is defined inchange integrajs and finally configuration interactiofin-
terms of the number of atoms in the doN4f) as R cluding interconfiguration coupling
=ao(yNge) Y3, where a, is the bulk lattice constanty
=3/32r for zinc-blende dots, and/=3+3c,/32ma, for
wurtzite dots. The nanocrystals considered here have effec-
tive diameter ranging from-20-40 A. If the electron-hole interaction is neglected, the exciton
The calculation of the single-particle energies and wavavave functions are given simply by the Slater determinants
functions was discussed in detail by Wang and Zulger {®, ¢}, corresponding to noninteracting electron-hole pairs
CdSe nanocrystals and by Fu and Zungéar InP nanocrys-  of energye.—¢, [see Eq.(5)]. Note that at this level of
tals. Table | summarizes the energy and the wave-functioapproximation all the excitonic states originating from the
character of a few near-edge single-particle states for theame single configuration are degenerate. The single-particle
nanocrystals considered in this work. Each energy level irspectrum of a few InP and CdSe nanocrystals is shown in
Table | is doubly degenerate, due to time-inversion symmeFig. 2 (left-hand columih The excitonic levels are labeled
try. The two highest occupied energy levétienoted ah;  according to the electron-hole pairsi(ej) from which they
andh, in Table ) derive primarily from the bulld’g, states  originate. The two lowest excitonic levels correspond to the
and have ars-like envelope function. These two energy lev- (hl,el) and h2,e2) electron-hole pairévhich are energeti-
els are degenerate ifij-symmetry InP nanocrystals, while cally degenerate in InP nanocrysjadsd are optically active
they are split by crystal-field and shape effects in wurtzite(large oscillator strengih The next two excitonic levels cor-
CdSe nanocrystals. The next two occupied energy levels ( respond to thel{3,e1) and h4,el) electron-hole pairs and
andh,) also derive from the bulK'g, states but havealike  are optically inactive(small oscillator strengthbecause of
envelope functionwith the exception of theR=10.11 A  the different symmetry of the electron and hole envelope

A. Single-particle spectrum
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E.—E, €.—€y— Jy E.— €, €.—€y— Ju
2.6 2.6
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InP R=14.0A CdSe R=14.6 A
(h5,e1)
2 (2 i i 7
(h3,el)+(hdel) _ 8
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FIG. 2. Single-particle exciton levels of InP and CdSe nanocrystals with and without diagonal Coulomb energy. The symbols in
parentheses denote the electron-hole pairs from which the exciton states originate. Solid lines correspond to optically actizeystates
oscillator strength while dashed lines correspond to optically inactive stésesall oscillator strengih

functions (see Table ). The (h5,el) electron-hole pair of state the unscreened Coulomb enerﬂ}{: scales approxi-
InP nanocrystals is optically active, as shown in Fig. 2, bemately asR~ %8 with the size of the nanocrystal, and that the
cause théh5 single-particle state originates mainly from the effective-mass approximatidmhich predicts &R~ * scaling
I';, bulk state and has awlike envelope function. significantly overestimates the Coulomb energy.

The effects of the diagonal Coulomb energies on the ex-
citonic spectrum are shown in Fig. 2 for InP and CdSe
nanocrystals(right-hand colump The electron-hole Cou-

The effects of the electron-hole Coulomb interaction onlomb energy tends to lower the exciton energy levels, typi-
the excitonic energy levels of a nanocrystal can be approxieally by 0.1-0.4 eV. Interestingly, the magnitude of the Cou-
mated using first-order perturbation theory. The excitonidomb energy is different for different energy levels, and in
levels are then given by.—e,—J, ., wherelJ, . are the some cases this leads to level crossing. For example, the
diagonalelectron-hole Coulomb energids .=J, c- Coulomb energy of theh,e1) electron-hole pair in th&®

In Ref. 22 we studied in detail the size dependence of the=14.0 A InP nanocrystal is significantly larger than the
diagonal Coulomb energiek . using pseudopotential wave Coulomb energy of the h3el) and (4.el) pairs
functions and compared our calculations with effective-mas$0.207 eV versus 0.186 eV). Thus, although thé,€1)
results. It was found that for the lowest-energy excitonicpair is higher in energy than théa8,el) and (4.el) pairs

B. Diagonal Coulomb energy
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(@ (®) © (a) (b) ©
Single Single Configuration Single Single Configuration
particle configuration  interaction particle configuration  interaction
2.315
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FIG. 3. (a) Single-particle spectrum of InP and CdSe nanocrystals including Coulomb interdb)i@ingle-configuration spectrurfc)
Configuration-interaction spectrum. Solid lines denote optically active states, dashed lines denote orbitally-forbidden states, dotted lines
denote spin-forbidden states. The symbols in parenthes@s itenote the electron-hole pairs from which the exciton states originate. The
degeneracy of each exciton level in the single-configuration approximation is shain The configuration-mixing coefficient® (%) [see
Eq. (18)] are shown in(c). The total number of single-particle states included in the configuration-interaction expansion is 26 valence states
and 18 conduction states for tRe=14.0 A InP nanocrystal, 22 valence states and 10 conduction states R+thé.4 A InP nanocrystal,

8 valence states and 8 conduction states for the two CdSe nanocrystals.

in the single-particle approximation, the order is reversed The single-configuration spectrum of InP and CdSe

when the Coulomb interaction is includésee Fig. 2 nanocrystals is shown in Fig(l®. While the effects of the
intraconfiguration Coulomb interaction are negligible, the
C. Single-configuration approximation exciton levels are split by the intraconfiguration exchange

interaction into a lower-energy, spin-forbidden multiplet

In the “single-configuration” approach, only the diagonal . . i L .
blocks of the Hamiltonian matrig{,. /.. (shaded areas in (dot.ted. lines, apd a .h|_gher energy, spin alllowc‘a:d. multiplet
' (solid lineg. This splitting creates the exciton “fine struc-

Fig. 1) are retained. The intraconfiguration Coulomb and ex- Y
) . ) . ture.
change matrix elements are fully included in the single-
configuration calculation, whereas the interaction between
different configurationgnonshaded areas in Fig) is ne-
glected. This approach was used by Efevsl? in the con- In the final step, the configuration-interaction spectrum is
text of thek - p approximation to analyze the splitting of the obtained by diagonalizing the Hamiltonian matrix of E).

lowest-energy exciton in CdSe nanocrystals. The convergence of the configuration-interaction expansion

D. Configuration-interaction spectrum
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I's. conduction-band minimum is twofold degenerdie-
cluding spin degeneragyThus, in the absence of electron-
hole interaction, the lowest exciton level is eightfold degen-
erate. This degeneracy can be broken by deviations from the
T4 symmetry and/or by the electron-hole interaction.

Using a perturbative approac¢tvhich neglects configura-
tion interactiony, Efros et al® have shown that the lowest
exciton eightfold multiplet splits into five different energy
levels, which are labele@ubscripts according to their total
angular momentum projectidr:

3 1
Eio=—5Ax—54ck,
1 (2A¢—Acp)?
_ _ S W
FIG. 4. Convergence of the lowest exciton energy with the num- - 2 4
ber of valence-band statedl() and conduction-band stateBl ()

included in the expansion of Edq4). The curves correspond to 1 (2A4—A F)z
isolines with the same exciton energy. EglzzAXJr \/ 2 < +3A2,

(19

in terms of the size of the determinantal basis set is illus-
trated in Fig. 4. This figure shows a contour plot of the
lowest exciton energy of an InP nanocrystg14.0 A) as

a function of the number of valence statég ] and conduc-
tion states {.) included in the many-body expansion of Eq.
(4). As we can see from Fig. 4, the convergence of the ex- EE,J:EAXJrzACF,
citon energy levels is quite slow. The convergence of the

level splittings, however, is relatively fast. We estimate thatwhereAx is the exchange parameter, ahgr is a perturba-
the calculated exchange splitting of the lowest-energy excig,e parameter that accounts for deviations from Thesym-

ton state is converged within 0.5 meV for the nanocrystal§yeyry (due to crystal-field splitting and/or deviations from
considered here. The splitting of higher-energy exciton State§phericity. Both Ay and A depend, in general, on the
is converged within a few meV. % cF ’ '

The extent of configuration mixing can be quantified by
defining the mixing coefficient

.3 1
E0: - EAX+§ACF’

nanocrystal size.
In the case of spherical InP nanocrystals, Thesymmetry
is preserved, and -=0. Thus, according to Eq19), the
original eight-fold multiplet splits into a quintuplet with en-
R@W=1-2 |cl|?, (18 ergy Eqin=—3Ax/2 and a triplet with energyEipe
Vi€ =5A/2. SinceAy>0, the triplet lies above the quintuplet,
where the sum is restricted to the Slater determinants belong@nd the exciton exchange splitting is given M, = Ey;piet
ing to the single configuration from which the exciton state— Equine=4Ax . The triplet states are optically active, while
¥ () predominantly originates. The energy spectrum includthe quintuplet states are optically inactive; thus, the exciton
ing configuration-interaction effects is shown in Figc)3  splitting AE, corresponds to a redshift of the lowest emis-
The main consequence of configuration mixing is a signifi-sion line with respect to the lowest absorption line.
cant downshift(several meV of the energy levels. In some  In the case of CdSe nanocrystals, thg symmetry is
cases level crossing can be observed, although the confighiroken by the wurtzite lattice structufeven for spherical
ration mixing is relatively smallR (¥<5% in all the cases nanocrystals and Acg>0. Thus, the five energy levels of
considered heje Interestingly, we find that the lowest exci- Ed. (19) are, in general, nondegenerate. The lowest-energy
tonic state is essentially spin forbidden, even when configuexcitonic level is the optically inactive doubl&..,, while
ration mixing is included. In fact, the ratio between the tran-the next excitonic level is the optically active doubE%;l.
sition probabilities of the lowest allowed transition and theThe redshift of the emission line with respect to the absorp-
lowest forbidden transition is at least®lid CdSe nanocrys- tion line is then given byAE,=E%,—E_,.
tals and 1€ in InP nanocrystals. This is in contrast with the ~ Our pseudopotential many-body expansion allows us to
results of Leunget al?° who found a ratio of about £nthe  obtain Ay(R) and Ac(R) from first principles. For
case of CdSe spherical nanocrystals. The allowed/forbidden -symmetry InP nanocrystald =0, and Ay is derived
ratio may depend strongly on the shape of the nanocrystaldirectly from the exchange splittingyx=AE, /4. For CdSe
nanocrystals the crystal-field splitting paramete¥ is given
IV. ANALYSIS OF THE BAND-EDGE EXCITON LEVELS by the difference between the energies of tife and h2
single-particle levelgsee Table)l. The exchange parameter
Ay is then fitted to reproduce the calculated exciton energy
In a semiconductor nanocrystal witly symmetry thd'g, levels according to Eq19). The quality of the fit is quite
valence-band maximum is four-fold degenerate, while thegood, the average error in the exciton energies being about 1

A. Exciton energies
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TABLE II. Crystal-field splitting parameteA - and exchange 0 : . : . . . .
parameterAy of InP and CdSe nanocrystals calculated using the
configuration-interaction approach. Also shown is the short-range St InP .

exchange parameter?™* obtained by Efrozt al. (Ref. 9 using

the effective-mass approximation.

Dot radius(A) Ace (meV) Ay (meV) AE™A (mev)

Exciton splitting (meV)

ZB InP

10.11 0 5.75

11.84 0 4.68

14.00 0 3.58

17.39 0 2.16 30 . . . . . . .

W2Z CdSe 10 11 12 13 14 15 16 17 18
10.32 43.3 5.53 16.20 Effective radius (A)

14.63 28.3 2.91 5.69

19.24 28.7 1.51 2.50 FIG. 5. The pseudopotential calculated exciton splitting of

spherical InP nanocrystalsolid line) is compared with a fit to the
experimental results of Miciet al. (Ref. 7, dashed line The en-
. . ergy of the lowest spin-allowed optical transition is taken as the
meV. Our results are summarized in Table II. We next com- 9" P P

. - . . .zero of the energy scale.
pare our results with previous calculations and with experi-

ment.

indicates that the observed redshift of the emission peak
originates from the exciton exchange splitting.
B. Comparison with previous calculations Figure 6 compares the calculated low-energy excitonic
levels of CdSe nanocrystals with the experimental results of
, 5 S 10 Norris et al® The exciton energies are plotted as a function
Nirmal et al,” Efros et al,” Chamarroet al,™ and Woggon ¢ tne band-gap energicorresponding to the energy of the

et al, ™ the exchange parametay was calculated retaining |o\est absorbing stateas the measured nanocrystal size is
only the short-range part of the electron-hole exchange 'mers'ubject to significant uncertainty. The two exciton Ie\Eﬂ;’sl
action and, therefore, assuming that the exchange parame -

tgﬁd Ey are not resolved experimentally for small nanocrys-
scales as R°® with the nanocrystal size. Also, the crystal- | bo d 21 eV P hei y tor h : F'y
field contribution toAr was assumed to be size indepen—tas( and gap>2.1 eV), so their average is s OWn 1N F19.
dent cF 6. The agreement between theory and experiment is very
The last column of Table Il shows the exchange paramgood, although some discrepancies seem to exist for large

. nanocrystal§band gap<2 eV). We observe, however, that
eterAFMA for CdSe nanocrystals, calculated according to the ystals gap=2 ev)

/ , in the bulk limit the exciton level€., and E-, should
effective-mass model of Efrost al® We see thatn;™* is ity =

_ - L U U
significantly overestimated compared to the direct pseudopoqonverge tE=0, while the level&s, E., , andE, should

tential calculation. By fitting theize dependenaa our cal-
culated exchange energy with the functional fohg(R)

In the phenomenological approach used by Noetisl,®

<«—— Increasing size
70 T T T T T T T

=aR ?, we obtainy=1.93 for InP nanocrystal and

=1.97 for CdSe nanocrystals. This is in contrast with the 60 - Theory —s—e— CdSe 5
conventional assumpti6fi'® that Ay scales aR™3. The & 50 Expt o o e

reason for this discrepancy is the presence of a sizable long-g& 20 |
range component in the electron-hole exchange interattion. ~ _
Banin et al!? found experimentally that the exchange split- & 30 F—— - LI
ting in InAs nanocrystals scales approximatelyRas’. They % W0F o. TTTmemommmTTT Eg
interpreted their results in the framework of the effective- : ol e * |
mass approximation by assuming the existence of a signifi- 8 * EL

cant leakage of the electron wave function outside the nano—&“é 0—=—s - * = o
crystal. The resulting exchange parameter was then oL T TTewe-ll __Eu
multiplied by an adjustable prefactor and fitted to the experi- 0 . . . ° T P-4

mental exchange splitting. This model, however, ignores the

long-range contributions tay, which are responsible for
the R™2 scaling. Band gap (eV)

19 20 21 22 23 24 25 26 27

FIG. 6. Comparison of calculatgdquares joined by lingsand
measuredcircles excitonic levels of CdSe nanocrystals as a func-
tion of the band-gap energy. The experimental results are taken

The exciton splitting of InP nanocrystals calculated usingfrom Ref. 6. Solid symbols and solid lines denote optically active
pseudopotential wave functions is compared in Fig. 5 with &tates, while open symbols and dashed lines denote optically inac-
fit to the experimental results of Miciet al.” As we can see, tive states. The energy of the lowest spin-allowed optical transition
the agreement with experimental results is very good andE},) is taken as the zero of the energy scale.

C. Comparison with experiment
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converge to the value of the bulk crystal-field splittiri, R L
=26 meV. The experimental exciton energies for large S 16k .~ B+Madelung term
nanocrystals do not appear to approach the bulk limit in a C) _
consistent way. B 14f E g
Yo
[
5 12} .
V. SUMMARY P
Using a many-body expansion based oricroscopic é 10 -
pseudopotential wave functions, we have developed a prac- S o8l
tical and accurate method to calculate the excitonic spectrum
of semiconductor quantum dots in the strong-confinement 0.6 T
regime. We find thati) the diagonal Coulomb energids 40 45 50 55 60 65 70 75 80 85
depend on the electron and hole orbitals. This effect leads in Supercell size (A)

some cases to level crossifigig. 2). (i) Intraconfiguration

exchange leads to splitting into spin-forbidden and spin- FIG. 7. Convergence of the unscreened diagonal Coulomb en-
allowed multiplets(Fig. 3). (i) Configuration mixing leads ergyJJ . between the valence-band maximum and the conduction-
to significant energy lowering and possibly to state crossing/and minimum of an InP nanocrystaR€14.0 A), as a function
(Fig. 3. If configuration interactions are ignored, the exci- of the supercell size. The curve labeléadorresponds to the uncor-
tonic energy levels are off by several mel) Configura- rected Coulomb integral of EqA1), E is the corrected Coulomb
tion mixing does not significantly affect the oscillator integral of Eq.(A3), and E+ Madelung term) corresponds to Eq.
strength of the lowest, spin-forbidden excitonic multip(ed. ~ (A3) where only the first correction term is retained.

The phenomenological single-configuration model of Efros

etal’ is analyzed. We find that the exchange parameter dinole: B d
Ax(R) has a different size dependence than previously ipole: Dy o= | paAr)rdr, (A2)
assumed.
. _ 2
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APPENDIX choice of the supercel), provided thatp,(r) and p,(r)
vanish at the boundaries of the supercell.

In this appendix we discuss a practical and accurate The corrected form dE((2) is then obtainedsee Ref. 3y
method to accelerate the convergence of the reciprocal-spaes
expansion of CoulompEg. (6)] and exchang€Eq. (7)] in-

tegrals with respect to the volum@ of the supercell con- 0192 A

taining the quantum dot and the surrounding barrier. In the E(Q)=E(Q)- <o @magt 3Qed0tDl‘ D,
reciprocal-space formalisrisee Eqs.(16) and (17)], these 0 0
integrals have the general form 20
G Egot(Q1Q2+ 42Q1), (A3)
E(Q)=2 p1(G)9(G)paG), (A1) o
G where the Madelung parametey,.q iS given by the Ewald
8
wherep,(G), p»(G), andg(G) are the Fourier transforms of
pa(r), po(r), andg(r—r'), respectively, and the sum runs erfdR7Yd) 4x exp(—G¥4n) (45|12
over the reciprocal-lattice vecto of the supercell). Amad™ E TvLﬁ E ez (7)
The convergence of the Fourier expansigd) with the R#0 G#0

supercell volumé) is decided by the lowest-order multipole -
moments ofp; and p,. In order to accelerate the conver- _77_9' (A4)

gence, we subtract the multipole contributions frBif{}) to
obtain acorrectedenergy integraE(Q), which approaches Here % is the (arbitrary) Ewald parameter, and the sums run
the converged valuE(s)=E () at a much faster rate. Our OVer the nonvanishing direct-lat.tice vectoR”® and the
approach is a generalization of the method developed b{eciprocal-lattice vectors, respectively.

Makov and Payri¥ in the context ofab initio calculations The convergence &(Q) with the supercell size is illus-
for finite systems using periodic boundary conditions. trated in Fig. 7 in the case of the diagonal Coulomb energy
The lowest-order multipole moments pf andp, are Jy.c- We see that even for the smallest supercell size consid-

ered here, corresponding to the supercell used in the solution
of the single-particle problem, E¢L1), the corrected energy

monopole: g, ;= f prANdr, E has already converged to its asymptotic vale@respond-
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ing to )2 — ). The expansion of EqA3) works well when-  form of the screened Coulomb interaction

ever the electrostatic interaction between the periodic repli-

cas of the quantum dots—described by the long-range part of g(r) A5
i o ) . S r= ’

the functiong(r—r')—is essentially Coulombic. This in Joulr) 15 expl|r = Soad V) (A5)

cludes the cases where the screening funcéfm-r') of
Eqg. (12) is a constant or converges rapidiwithin a few  whereS, is a cutoff radius, and is a smoothing parameter
lattice constanisto its asymptotic [ —r’|— o) limit. (of the order of a few A Provided thati) the cutoff radius

In the presence of strong ionic screening, however, th&,, is larger than the quantum-dot diamef2r and (ii) the
long-range part og(r—r’) can deviate considerably from a supercell size is larger thadd+ S, the truncated Coulomb
simple 1f function. In this case the corrected integreAS) potential effectively eliminates the electrostatic interactions
converge slowly with the supercell size, particularly whenbetween periodic replicas of the quantum dot, while correctly
g:=0g,=1. It is then more convenient to use a truncateddescribing the intradot Coulomb and exchange interactions.
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