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Many-body pseudopotential theory of excitons in InP and CdSe quantum dots

A. Franceschetti, H. Fu, L. W. Wang, and A. Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 15 October 1998!

We present a pseudopotential approach to the calculation of the excitonic spectrum of semiconductor
quantum dots. Starting from a many-body expansion of the exciton wave functions in terms of single-
substitution Slater determinants constructed from pseudopotential single-particle wave functions, our method
permits an accurate and detailed treatment of the intraconfiguration electron-hole Coulomb and exchange
interactions, while correlation effects can be included in a controlled fashion by allowing interconfiguration
coupling. We calculate the exciton fine structure of InP and CdSe nanocrystals in the strong-confinement
regime. We find a different size dependence for the electron-hole exchange interaction than previously as-
sumed~i.e., R22 instead ofR23). Our calculated exciton fine structure is compared with recent experimental
results obtained by size-selective optical spectroscopies.@S0163-1829~99!00227-1#
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I. INTRODUCTION

The physics of excitons inbulk semiconductors1 is gov-
erned by electron-holecorrelation effects, which control the
magnitude of the exciton radius and exciton binding ener
A departure from this picture, however, is expected for
citons in semiconductorquantum dots: as the sizeR of the
quantum dot is reduced, the separation between sin
particle energy levels increases at a faster rate than
electron-hole Coulomb energy. When the physical size of
quantum dot becomes smaller than the bulk exciton rad
~strong-confinement limit!, the electron-hole correlation en
ergy becomes negligible compared to the direct electron-h
Coulomb and exchange energies. Thus, the spectroscop
strongly-confined quantum dots is decided by the hierarc
Coulomb greater than exchange greater than correlation
this paper we present a practical and accurate techniqu
calculating the excitonic spectrum of quantum dots tha
designed for such cases.

Semiconductor nanocrystals in the strong-confinemen
gime can now be produced with a high degree of con
over size and shape distributions.2 In the case of CdSe,3 InP,4

and InAs,5 the good quality of the nanocrystal samples h
permitted one to resolve and identify several excitonic lin
in the photoluminescence excitation~PLE! spectrum, span-
ning a range of more than 1 eV above the fundamental
tical gap. By varying the PLE detection energy and/or
average size of the nanocrystals, the size dependence o
excitonic energy levels has been observed and analyzed.
thermore, a careful utilization of size-selective spectrosco
techniques6,7 has permitted a thorough investigation of t
fine structure of the lowest excitonic transitions, showing
example a;10-meV redshift of the emission line from th
lowest-energy absorption line.6–12 Recent advances in th
spectroscopy of single nanocrystals13 suggest that the fine
structure of the band-edge excitons, as well as higher-en
transitions, can be addressed in the near future with unp
edented detail.

The ‘‘coarse’’ excitonic structure of semiconduct
nanocrystals is usually interpreted in terms of single-part
energy gaps, to which the effects of the electron-hole C
PRB 600163-1829/99/60~3!/1819~11!/$15.00
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lomb interaction are added as a perturbation. This appro
has been very successful at describing the size dependen
the excitonic lines in CdSe,14 InP,15 and InAs,16 nanocrystals.
However, the interpretation of the exciton ‘‘fine’’ structur
requires a more detailed treatment of the electron-hole in
action. This goal is achieved here by a many-body expans
of the exciton wave functions in terms of single-substituti
Slater determinants constructed from pseudopotential sin
particle wave functions.

The idea of a ‘‘configuration-interaction’’ expansion o
the exciton wave functions is not new. It was introduced
the framework of the single-band effective-mass approxim
tion by Hu, Lindberg, and Koch,17 and later applied to the
tight-binding approximation.18–21 Recently, however, accu
rate pseudopotential calculations22,23have shown that the us
of effective-mass envelope functions to estimate Coulo
and exchange integrals can lead to considerable errors.
instance, the electron-hole Coulomb energy of the lowe
energy exciton is underestimated by as much as 40%
small nanocrystals.22 Furthermore, pseudopotential calcul
tions have shown that the electron-hole exchange energy
cludes a long-range component23 that was previously
ignored.6,8–10 These effects are fully included in the prese
calculation.

The fine structure of the lowest exciton states of Cd
nanocrystal was previously discussed6,8,9 in terms of a model
838 electron-hole Hamiltonian. The Hamiltonian matrix e
ements were derived starting from single-particle effecti
mass wave functions calculated for spherical nanocrys
having the cubic lattice structure. The warping of the valen
band and the nonparabolicity of the conduction band w
neglected, while crystal-field splitting effects and deviatio
from sphericity were treated in a perturbative fashion. T
four highest valence states (G8v symmetry! and the two low-
est conduction states (G6c symmetry! were included in the
basis set for the calculation of the excitonic structure. O
the short-range part of the electron-hole exchange interac
was included in the calculations; the long-range excha
interaction was neglected. The lowest-energy exciton stat
spherical nanocrystals was predicted to have an infinite
diative lifetime~‘‘dark exciton’’!. While the solutions of this
1819 ©1999 The American Physical Society



e
is

se
ur
an
e
g

a-
in
bu
pe
n
e
rix
o

at
f-
le

ba
s

el

te
o

th
de

re
b
in

s

ti

f
-
nt

nd
ies,

e
n

en-

um

-

c-
ve
red

are

b-
ti-
r-
be

re-

1820 PRB 60A. FRANCESCHETTI, H. FU, L. W. WANG, AND A. ZUNGER
model Hamiltonian fit well the observed redshift in CdS
nanocrystals,6,8,9 for spherical zinc-blende quantum dots th
model predicts a 1/R3 scaling of the redshift with size,9

which is not observed in either InP~Ref. 7! or InAs ~Ref. 12!
nanocrystals, where a;1/R2 scaling is seen instead.

More recently, a configuration-interaction approach ba
on a tight-binding parametrization of the bulk band struct
was applied to CdSe nanocrystals by Leung, Pokrant,
Whaley.20 The single-particle wave functions of CdS
nanocrystals in the wurtzite structure were calculated usin
$s,px ,py ,pz ,s* % tight-binding basis set. The interaction p
rameters were derived from the band structure of the z
blende phase and adjusted to reproduce the wurtzite
band structure. Spin-orbit coupling was then added as a
turbation to the single-particle states. A configuratio
interaction expansion of the exciton wave functions was p
formed, including both Coulomb and exchange mat
elements. The calculated redshift was in relatively go
agreement with the experimental results of Efroset al.9 A
finite radiative lifetime of about 1025 s was predicted for
the lowest exciton state of spherical CdSe nanocrystals.

Our approach differs from previous calculations in th
~i! Crystal-field splitting, spin-orbit coupling, and shape e
fects are built at the outset into the solution of the sing
particle Schro¨dinger equation and are not treated pertur
tively. ~ii ! Microscopic pseudopotential wave function
~rather than envelope functions or tight-binding orbitals! are
used to calculate the Coulomb and exchange matrix
ments.~iii ! A physically complete~albeit phenomenological!
dielectric function is used to screen the electron-hole in
action; the dielectric function depends on the electron-h
separation as well as the quantum-dot size.~iv! Several con-
figurations are included in the many-body expansion of
exciton wave functions. Thus, correlation effects can be
scribed in a systematic and controlled fashion.

II. METHOD

The first step in the calculation of the excitonic structu
of a nanocrystal is the solution of the single-particle pro
lem. In the pseudopotential approach this amounts to solv
the single-particle Schro¨dinger equation

F2
\2

2m0
¹21Vps~r !1V̂nlGc i~r ,s!5« ic i~r ,s!, ~1!

whereVps(r ) is the microscopic pseudopotential of the sy
tem ~dot plus surrounding material!, andV̂nl is a short-range
operator that accounts for the nonlocal part of the poten
~including spin-orbit coupling!. Vps(r ) is calculated here
from the superposition of screened atomic potentials,

Vps~r !5(
i ,a

va~r2Ri ,a!, ~2!

where va(r2Ri ,a) is the atomic potential for an atom o
type a located at the positionRi ,a . The atomic pseudopo
tentials are derived from the bulk screened pseudopote
d
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obtained in the framework of density-functional theory a
are fitted to reproduce the measured bulk transition energ
deformation potentials, and effective masses.24

In the next step, from the solutions of Eq.~1! we construct
a set of single-substitution Slater determinants$Fv,c%, ob-
tained from the ground-state Slater determinantF0 by pro-
moting an electron from the~occupied! valence statecv of
energy«v to the~unoccupied! conduction statecc of energy
«c :

F0~r1 ,s1 , . . . ,rN ,sN!

5A@c1~r1 ,s1!•••cv~r v ,sv!•••cN~rN ,sN!#, ~3a!

Fv,c~r1 ,s1 , . . . ,rN ,sN!

5A@c1~r1 ,s1!•••cc~r v ,sv!•••cN~rN ,sN!#. ~3b!

Here N is the total number of electrons in the system,s
5↑,↓ is the spin variable, andA is the antisymmetrizing
operator. Two Slater determinantsFv1 ,c1

andFv2 ,c2
belong

to the same ‘‘configuration’’ if the single-particle valenc
statescv1

andcv2
, as well as the single-particle conductio

statescc1
and cc2

, are degenerate:«v1
5«v2

and «c1
5«c2

.
Note that each single-particle level is at least twofold deg
erate because of time-inversion symmetry~Kramer’s dou-
blet!. As a result, each exciton configuration has a minim
dimension of four.

The exciton wave functionsC (a) ~wherea denotes the
exciton quantum numbers! are expanded in terms of this de
terminantal basis set,

C (a)5 (
v51

Nv

(
c51

Nc

Cv,c
(a) Fv,c , ~4!

whereNv andNc denote the number of valence and condu
tion states included in the expansion of the exciton wa
functions. In this notation the valence states are numbe
from 1 toNv in order ofdecreasingenergy starting from the
valence-band maximum, while the conduction states
numbered from 1 toNc in order ofincreasingenergy starting
from the conduction-band minimum. Inclusion of multisu
stitution Slater determinants will introduce additional mul
exciton levels at higher energy. In this work we are inte
ested only in single-exciton states; multiexciton states will
described in another publication.25

The matrix elements of the many-particle HamiltonianH
in the basis set$Fv,c% are calculated as

Hvc,v8c8[^Fv,cuHuFv8,c8&5~ec2ev!dv,v8dc,c82Jvc,v8c8

1Kvc,v8c8 , ~5!

whereJ andK are the Coulomb and exchange integrals,
spectively:
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Jvc,v8c85e2 (
s1 ,s2

E E cv8
* ~r1 ,s1!cc* ~r2 ,s2!cv~r1 ,s1!cc8~r2 ,s2!

ē~r1 ,r2!ur12r2u
dr1dr2 , ~6!

Kvc,v8c85e2 (
s1 ,s2

E E cv8
* ~r1 ,s1!cc* ~r2 ,s2!cc8~r1 ,s1!cv~r2 ,s2!

ē~r1 ,r2!ur12r2u
dr1dr2 . ~7!
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The screening of the electron-hole interaction, caused by
polarization of the medium, is described phenomenologic
by themicroscopic, position-dependent dielectric constantē
and will be discussed in Sec. II B. The structure of t
Hamiltonian matrix is schematically illustrated in Fig. 1. Th
diagonal blocks~shaded areas! correspond to matrix ele
mentsHvc,v8c8 between Slater determinants belonging to
same configuration. The off-diagonal blocks~unshaded ar-
eas! describe the coupling between different configuration

The excitonic states of the quantum dot are obtained
solving the secular equation

(
v851

Nv

(
c851

Nc

Hvc,v8c8Cv8,c8
(a)

5E(a)Cv,c
(a) . ~8!

From the knowledge of the exciton energy levels and w
functions, the near-edge normalized absorption spectrum
be obtained as

s~v!}
1

V(
a

uM (a)u2d~\v2E(a)!, ~9!

whereV is the nanocrystal volume andM (a) are the dipole
matrix elements:

M (a)5(
vc

Cv,c
(a)^cvur ucc&. ~10!

In the following sections the most important details of t
solution of Eqs.~1!–~10! will be discussed.

FIG. 1. Schematic form of the Hamiltonian matrix of Eq.~5!.
The shaded areas correspond to matrix elements between S
determinants belonging to the same configuration.
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A. Solution of the single-particle problem

The solution of the Schro¨dinger equation~1! for a 1000-
atom system represents a formidable task, even when a fi
non-self-consistent potential is used. However, only a f
single-particle states in an energy window around the b
gap are needed in the construction of the basis set$Fv,c%.
Thus, Eq.~1! can be effectively solved using the folded spe
trum method,26,27 which allows one to calculateselected
eigenstates of the Schro¨dinger equation. In this approach, E
~1! is replaced by the eigenvalue equation

F2
\2

2m
¹21Vps~r !1V̂NL2« refG2

c i~r ,s!

5~« i2« ref!
2c i~r ,s!, ~11!

where « ref is an arbitrary reference energy. The ‘‘ground
state’’ of Eq.~11! coincides with the solution of the Schro¨-
dinger equation~1! with energy closest to the reference e
ergy« ref . Therefore, by choosing the reference energy in
band gap, the band-edge states can be obtained by mini
ing the functionalA@c#5^cu(Ĥ2« ref)

2uc&.
We solve Eq.~11! by expanding the pseudopotential wa

functionsc i(r ,s) in a plane-wave basis set. To this purpos
the total pseudopotentialVps(r ) is defined in a periodically
repeated supercellV containing the quantum dot surrounde
by a region of vacuum. The size of the vacuum region
sufficiently large to ensure that the solutions of Eq.~11! are
converged within a few meV. The single-particle wave fun
tions can then be expanded asc i(r ,s)5(Gci(G,s)exp(iG
•r ), where the sum runs over the reciprocal-lattice vectorsG
of the supercellV. The energy cutoff of the plane-wave ex
pansion is the same used to fit the bulk electronic struct
to ensure that the band structure consistently approache
bulk limit. The minimization of the functionalA@c# is car-
ried out in the plane-wave basis set using a preconditio
conjugate-gradients algorithm. More details on the minim
zation procedure, and the scaling with the system size ca
found in Ref. 27.

B. Screening of Coulomb and exchange interactions

In the case of Wannier excitons in bulk semiconducto
the electron-holeCoulomb interaction is screened by th
bulk dielectric constant. This fundamental result was deriv
for the first time to our knowledge by Sham and Rice28 using
effective-mass arguments. An alternative derivation w
given by Strinati29 using the GW approximation30 for the
electron self-energy. Pseudopotential calculations for se
conductor quantum dots31 have shown that the macroscop
ter
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dielectric constant decreases significantly as the size of
quantum dot is reduced, thus enhancing the electron-
Coulomb energy.

The effects of dielectric screening on the electron-h
exchangeinteraction are more subtle. It is generally unde
stood that in bulk semiconductors the short-range excha
interaction should be unscreened,28,29 while the long-range
exchange interaction should be screened by the bulk die
tric tensor.32,33 Recent pseudopotential calculations for In
and CdSe nanocrystals23 have revealed that the electron-ho
exchange interaction in quantum-confined systems con
of a short-range component and a long-range compon
which in the case of direct (G-derived! excitons have com-
parable magnitude. Therefore, the screening of the lo
range exchange interaction has a sizable effect on the e
of the electron-hole exchange splitting in semiconduc
quantum dots.

We will use here a position-dependent dielectric const
to screen the Coulomb and exchange interactions in quan
dots according to the electron-hole separation. The scree
Coulomb potential of Eqs.~6! and ~7! can be rewritten as

g~r1 ,r2![
e2

ē~r1 ,r2!ur12r2u
5e2E e21~r1 ,r !ur2r2u21dr ,

~12!

wheree21 is the inverse dielectric function. Assuming th
e21(r1 ,r )'e21(r12r ), the Fourier transform of the
screened Coulomb potential is

g~k!5e21~k!
4pe2

k2 , ~13!

wheree21(k) is the Fourier transform ofe21(r12r ). The
inverse dielectric constante215eel

211e ion
21 consists of an

electronic ~high-frequency! contribution eel
21 and an ionic

~low-frequency! contributionDe ion
21 , which are approximated

here by the Thomas-Fermi model proposed by Resta34 and
by the polaronic model of Haken,35 respectively. Botheel

21

and De ion
21 are diagonal and isotropic in reciprocal spac

where they have the analytic form

eel
21~k!5

k21q2 sin~kr`!/~e`
dotkr`!

k21q2
, ~14a!

De ion
21~k!5S 1

e0
dot

2
1

e`
dotD S 1/2

11rh
2k2 1

1/2

11re
2k2D . ~14b!

Here q52p21/2(3p2n0)1/3 is the Thomas-Fermi wave vec
tor ~wheren0 is the electron density!, andr` is the solution
of the equation sinh(qr`)/(qr`)5e`

dot. Also, rh,e

5(\/2mh,evLO)1/2, where mh,e denotes the hole~h! and
electron~e! effective mass, andvLO is the frequency of the
bulk LO phonon mode. Themacroscopichigh-frequency and
low-frequency dielectric constants of the quantum dot,e`

dot

ande0
dot, are related to the polarizability of the quantum d

as a whole. The high-frequency dielectric constant is
tained from a modified Penn model where the effective-m
band gap is replaced by the pseudopotential calculated b
gap,
he
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e`
dot~R!511~e`

bulk21!
@Egap

bulk1DE#2

@Egap
dot~R!1DE#2

, ~15!

where e`
bulk is the bulk high-frequency dielectric constan

andEgap
bulk1DE is the energy of the first pronounced peak

the bulk absorption spectrum~corresponding to theE2 tran-
sition in zinc-blende semiconductors!. The low-frequency di-
electric constant is obtained ase0

dot(R)5e`
dot(R)1(e0

bulk

2e`
bulk).
The electron-hole Coulomb interaction is long ranged,

it is essentially screened by the quantum-dot macrosco
dielectric constant. The electron-hole exchange interact
on the other hand, consists of both a short-range and a lo
range component.23 Since ē(r12r2)˜1 when ur12r2u˜0,
the short-range component of the exchange interaction is
fectively unscreened, as it is in bulk semiconductors.28,32,33

The long-range component, instead, is significantly screen
as discussed in detail in Ref. 23.

Unlike the dielectric constants used in previo
effective-mass8,9 and tight-binding18–21 calculations, our di-
electric function depends both on the electron-hole sep
tion and the quantum-dot size. In previous calculations
electron-hole exchange interaction was either l
unscreened9,19,21or screened by thebulk distance-dependen
dielectric constant.18,20

C. Calculation of Coulomb and exchange integrals

The Coulomb@Eq. ~6!# and exchange@Eq. ~7!# integrals
can be cast in the general form

E E r1* ~r !g~r2r 8!r2~r 8!drdr 85E r1* ~r !f2~r !dr ,

~16!

wherer1(r ) and r2(r ) denote products of complex single
particle wave functions and include a sum over the spin v
ables @see Eqs.~6! and ~7!#.

The screened electrostatic potentialf2(r )5*g(r
2r 8)r2(r 8)dr 8 is conveniently calculated in reciproca
space using the convolution theorem; we have

f2~r !5(
G

g~G!r2~G!eiG•r, ~17!

whereg(G) and r2(G) are the Fourier transforms ofg(r )
and r2(r ), respectively. Compared to the real-spa
computation22 of f2, the reciprocal-space formalism offers
higher degree of flexibility in dealing with different func
tional forms of the screening functiong(r ) and different ge-
ometries of the supercellV. However, the use of periodic
boundary conditions in the calculation off2 introduces spu-
rious electrostaticinteractions between periodic replicas
the quantum dot, even when the supercellV is sufficiently
large to ensure that the quantum dots are electronically
coupled. A practical and effective way to overcome this d
ficulty is discussed in the Appendix.

III. EXCITONIC ENERGY LEVELS

We consider here nearly spherical InP and CdSe nan
rystals. The InP nanocrystals have the zinc-blende crysta
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TABLE I. Near-edge single-particle states of InP and CdSe spherical nanocrystals. For each value of the nanocrystal radius, th
gives the energy~in eV! of the single-particle states with respect to the vacuum level, while the second row indicates the symmetr
bulk Bloch states from which the nanocrystal states originate, as well as the dominant angular momentum character of their
function. The symbolsh1, . . . ,h4 denote the four highest-energy valence-band levels, whilee1,e2 denote the two lowest-energ
conduction-band levels.

Dot radius~Å! h1 h2 h3 h4 e1 e2

ZB InP
10.11 -6.390 -6.390 -6.499 -6.563 -3.568 -3.225

G8v , s-like G8v , s-like G7v , s-like G8v , p-like G6c , s-like L6c , s-like

11.84 -6.319 -6.319 -6.364 -6.364 -3.726 -3.378
G8v , s-like G8v , s-like G8v , p-like G8v , p-like G6c , s-like L6c , s-like

14.00 -6.148 -6.148 -6.237 -6.237 -3.744 -3.481
G8v , s-like G8v , s-like G8v , p-like G8v , p-like G6c , s-like L6c , s-like

17.39 -6.092 -6.092 -6.145 -6.145 -3.968 -3.660
G8v , s-like G8v , s-like G8v , p-like G8v , p-like G6c , s-like L6c , s-like

WZ CdSe
10.33 -5.904 -5.947 -5.987 -5.998 -2.901 -2.282

G8v , s-like G8v , s-like G8v , p-like G8v , p-like G6c , s-like G6c , p-like

14.63 -5.691 -5.719 -5.741 -5.747 -3.178 -2.765
G8v , s-like G8v , s-like G8v , p-like G8v , p-like G6c , s-like G6c , p-like

19.24 -5.561 -5.589 -5.599 -5.602 -3.319 -3.020
G8v , s-like G8v , s-like G8v , p-like G8v , p-like G6c , s-like G6c , p-like
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structure and their overall symmetry isTd . The CdSe nanoc
rystals have the wurtzite crystalline structure. In both cas
the interatomic distance is taken as the experimental b
interatomic distance. The dangling bonds at the surface
the nanocrystals are passivated by ligandlike potenti
which are designed to remove the surface states from
band gap and minimize the coupling with the band-ed
states. Crystal-field and spin-orbit effects, which previou
were treated perturbatively,8,9,20,21are described here explic
itly by specifying the atomic positions and the nonlocal p
tentials.

The effective radius of the nanocrystals is defined
terms of the number of atoms in the dot (Ndot) as R
5a0(gNdot)

1/3, where a0 is the bulk lattice constant,g
53/32p for zinc-blende dots, andg53A3c0 /32pa0 for
wurtzite dots. The nanocrystals considered here have e
tive diameter ranging from;20–40 Å.

The calculation of the single-particle energies and wa
functions was discussed in detail by Wang and Zunger14 for
CdSe nanocrystals and by Fu and Zunger15 for InP nanocrys-
tals. Table I summarizes the energy and the wave-func
character of a few near-edge single-particle states for
nanocrystals considered in this work. Each energy leve
Table I is doubly degenerate, due to time-inversion symm
try. The two highest occupied energy levels~denoted ash1
andh2 in Table I! derive primarily from the bulkG8v states
and have ans-like envelope function. These two energy le
els are degenerate inTd-symmetry InP nanocrystals, whil
they are split by crystal-field and shape effects in wurtz
CdSe nanocrystals. The next two occupied energy levelsh3
andh4) also derive from the bulkG8v states but have ap-like
envelope function~with the exception of theR510.11 Å
s,
lk
of
s,
he
e
y

-

c-

e

n
e

in
-

e

InP nanocrystal, where theh3 level originates from theG7v
split-off state!. The lowest unoccupied energy level~denoted
ase1 in Table I! derives from the bulkG6c state and has an
s-like envelope function. The next unoccupied energy le
(e2) is L6c derived in InP nanocrystals andG6c derived in
CdSe nanocrystals.

In what follows, we will examine the evolution of th
excitonic spectrum as more detailed electron-hole inter
tions are included: single-particle energy differences, dia
nal electron-hole Coulomb interaction, single-configurati
approach ~including intraconfiguration Coulomb and ex
change integrals!, and finally configuration interaction~in-
cluding interconfiguration coupling!.

A. Single-particle spectrum

If the electron-hole interaction is neglected, the excit
wave functions are given simply by the Slater determina
$Fv,c%, corresponding to noninteracting electron-hole pa
of energy«c2«v @see Eq.~5!#. Note that at this level of
approximation all the excitonic states originating from t
same single configuration are degenerate. The single-par
spectrum of a few InP and CdSe nanocrystals is shown
Fig. 2 ~left-hand column!. The excitonic levels are labele
according to the electron-hole pairs (hi,e j) from which they
originate. The two lowest excitonic levels correspond to
(h1,e1) and (h2,e2) electron-hole pairs~which are energeti-
cally degenerate in InP nanocrystals! and are optically active
~large oscillator strength!. The next two excitonic levels cor
respond to the (h3,e1) and (h4,e1) electron-hole pairs and
are optically inactive~small oscillator strength! because of
the different symmetry of the electron and hole envelo
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FIG. 2. Single-particle exciton levels of InP and CdSe nanocrystals with and without diagonal Coulomb energy. The sym
parentheses denote the electron-hole pairs from which the exciton states originate. Solid lines correspond to optically active sta~large
oscillator strength!, while dashed lines correspond to optically inactive states~small oscillator strength!.
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functions ~see Table I!. The (h5,e1) electron-hole pair of
InP nanocrystals is optically active, as shown in Fig. 2,
cause theh5 single-particle state originates mainly from th
G7v bulk state and has ans-like envelope function.

B. Diagonal Coulomb energy

The effects of the electron-hole Coulomb interaction
the excitonic energy levels of a nanocrystal can be appr
mated using first-order perturbation theory. The excito
levels are then given by«c2«v2Jv,c , whereJv,c are the
diagonalelectron-hole Coulomb energiesJv,c[Jvc,vc .

In Ref. 22 we studied in detail the size dependence of
diagonal Coulomb energiesJv,c using pseudopotential wav
functions and compared our calculations with effective-m
results. It was found that for the lowest-energy excito
-

i-
c

e

s
c

state the unscreened Coulomb energyJv,c
o scales approxi-

mately asR20.8 with the size of the nanocrystal, and that th
effective-mass approximation~which predicts aR21 scaling!
significantly overestimates the Coulomb energy.

The effects of the diagonal Coulomb energies on the
citonic spectrum are shown in Fig. 2 for InP and Cd
nanocrystals~right-hand column!. The electron-hole Cou-
lomb energy tends to lower the exciton energy levels, ty
cally by 0.1–0.4 eV. Interestingly, the magnitude of the Co
lomb energy is different for different energy levels, and
some cases this leads to level crossing. For example,
Coulomb energy of the (h5,e1) electron-hole pair in theR
514.0 Å InP nanocrystal is significantly larger than th
Coulomb energy of the (h3,e1) and (h4,e1) pairs
(0.207 eV versus 0.186 eV). Thus, although the (h5,e1)
pair is higher in energy than the (h3,e1) and (h4,e1) pairs
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FIG. 3. ~a! Single-particle spectrum of InP and CdSe nanocrystals including Coulomb interaction.~b! Single-configuration spectrum.~c!
Configuration-interaction spectrum. Solid lines denote optically active states, dashed lines denote orbitally-forbidden states, do
denote spin-forbidden states. The symbols in parentheses in~a! denote the electron-hole pairs from which the exciton states originate.
degeneracy of each exciton level in the single-configuration approximation is shown in~b!. The configuration-mixing coefficientsR (a) @see
Eq. ~18!# are shown in~c!. The total number of single-particle states included in the configuration-interaction expansion is 26 valenc
and 18 conduction states for theR514.0 Å InP nanocrystal, 22 valence states and 10 conduction states for theR517.4 Å InP nanocrystal,
8 valence states and 8 conduction states for the two CdSe nanocrystals.
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in the single-particle approximation, the order is revers
when the Coulomb interaction is included~see Fig. 2!.

C. Single-configuration approximation

In the ‘‘single-configuration’’ approach, only the diagon
blocks of the Hamiltonian matrixHvc,v8c8 ~shaded areas in
Fig. 1! are retained. The intraconfiguration Coulomb and
change matrix elements are fully included in the sing
configuration calculation, whereas the interaction betw
different configurations~nonshaded areas in Fig. 1! is ne-
glected. This approach was used by Efroset al.9 in the con-
text of thek•p approximation to analyze the splitting of th
lowest-energy exciton in CdSe nanocrystals.
d

-
-
n

The single-configuration spectrum of InP and Cd
nanocrystals is shown in Fig. 3~b!. While the effects of the
intraconfiguration Coulomb interaction are negligible, t
exciton levels are split by the intraconfiguration exchan
interaction into a lower-energy, spin-forbidden multipl
~dotted lines!, and a higher-energy, spin-allowed multipl
~solid lines!. This splitting creates the exciton ‘‘fine struc
ture.’’

D. Configuration-interaction spectrum

In the final step, the configuration-interaction spectrum
obtained by diagonalizing the Hamiltonian matrix of Eq.~5!.
The convergence of the configuration-interaction expans
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in terms of the size of the determinantal basis set is ill
trated in Fig. 4. This figure shows a contour plot of t
lowest exciton energy of an InP nanocrystal (R514.0 Å) as
a function of the number of valence states (Nv) and conduc-
tion states (Nc) included in the many-body expansion of E
~4!. As we can see from Fig. 4, the convergence of the
citon energy levels is quite slow. The convergence of
level splittings, however, is relatively fast. We estimate th
the calculated exchange splitting of the lowest-energy e
ton state is converged within 0.5 meV for the nanocryst
considered here. The splitting of higher-energy exciton sta
is converged within a few meV.

The extent of configuration mixing can be quantified
defining the mixing coefficient

R (a)512(
v,c

uCv,c
(a)u2, ~18!

where the sum is restricted to the Slater determinants bel
ing to the single configuration from which the exciton sta
C (a) predominantly originates. The energy spectrum inclu
ing configuration-interaction effects is shown in Fig. 3~c!.
The main consequence of configuration mixing is a sign
cant downshift~several meV! of the energy levels. In som
cases level crossing can be observed, although the con
ration mixing is relatively small (R (a)<5% in all the cases
considered here!. Interestingly, we find that the lowest exc
tonic state is essentially spin forbidden, even when confi
ration mixing is included. In fact, the ratio between the tra
sition probabilities of the lowest allowed transition and t
lowest forbidden transition is at least 106 in CdSe nanocrys-
tals and 1010 in InP nanocrystals. This is in contrast with th
results of Leunget al.20 who found a ratio of about 103 in the
case of CdSe spherical nanocrystals. The allowed/forbid
ratio may depend strongly on the shape of the nanocrys

IV. ANALYSIS OF THE BAND-EDGE EXCITON LEVELS

A. Exciton energies

In a semiconductor nanocrystal withTd symmetry theG8v
valence-band maximum is four-fold degenerate, while

FIG. 4. Convergence of the lowest exciton energy with the nu
ber of valence-band states (Nv) and conduction-band states (Nc)
included in the expansion of Eq.~4!. The curves correspond t
isolines with the same exciton energy.
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G6c conduction-band minimum is twofold degenerate~in-
cluding spin degeneracy!. Thus, in the absence of electron
hole interaction, the lowest exciton level is eightfold dege
erate. This degeneracy can be broken by deviations from
Td symmetry and/or by the electron-hole interaction.

Using a perturbative approach~which neglects configura
tion interactions!, Efros et al.9 have shown that the lowes
exciton eightfold multiplet splits into five different energ
levels, which are labeled~subscripts! according to their total
angular momentum projectionF:

E6252
3

2
DX2

1

2
DCF,

E61
L 5

1

2
DX2A~2DX2DCF!

2

4
13DX

2,

E61
U 5

1

2
DX1A~2DX2DCF!

2

4
13DX

2, ~19!

E0
L52

3

2
DX1

1

2
DCF,

E0
U5

5

2
DX1

1

2
DCF,

whereDX is the exchange parameter, andDCF is a perturba-
tive parameter that accounts for deviations from theTd sym-
metry ~due to crystal-field splitting and/or deviations fro
sphericity!. Both DX and DCF depend, in general, on th
nanocrystal size.

In the case of spherical InP nanocrystals, theTd symmetry
is preserved, andDCF50. Thus, according to Eq.~19!, the
original eight-fold multiplet splits into a quintuplet with en
ergy Equint523DX/2 and a triplet with energyEtriplet
55DX/2. SinceDX.0, the triplet lies above the quintuple
and the exciton exchange splitting is given byDEx5Etriplet
2Equint54DX . The triplet states are optically active, whi
the quintuplet states are optically inactive; thus, the exci
splitting DEx corresponds to a redshift of the lowest em
sion line with respect to the lowest absorption line.

In the case of CdSe nanocrystals, theTd symmetry is
broken by the wurtzite lattice structure~even for spherical
nanocrystals!, and DCF.0. Thus, the five energy levels o
Eq. ~19! are, in general, nondegenerate. The lowest-ene
excitonic level is the optically inactive doubletE62, while
the next excitonic level is the optically active doubletE61

L .
The redshift of the emission line with respect to the abso
tion line is then given byDEx5E61

L 2E62 .
Our pseudopotential many-body expansion allows us

obtain DX(R) and DCF(R) from first principles. For
Td-symmetry InP nanocrystalsDCF50, and DX is derived
directly from the exchange splitting,DX5DEx /4. For CdSe
nanocrystals the crystal-field splitting parameterDCF is given
by the difference between the energies of theh1 and h2
single-particle levels~see Table I!. The exchange paramete
DX is then fitted to reproduce the calculated exciton ene
levels according to Eq.~19!. The quality of the fit is quite
good, the average error in the exciton energies being abo

-
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meV. Our results are summarized in Table II. We next co
pare our results with previous calculations and with exp
ment.

B. Comparison with previous calculations

In the phenomenological approach used by Norriset al.,6

Nirmal et al.,8 Efros et al.,9 Chamarroet al.,10 and Woggon
et al.,11 the exchange parameterDX was calculated retaining
only the short-range part of the electron-hole exchange in
action and, therefore, assuming that the exchange param
scales as 1/R3 with the nanocrystal size. Also, the crysta
field contribution toDCF was assumed to be size indepe
dent.

The last column of Table II shows the exchange para
eterDX

EMA for CdSe nanocrystals, calculated according to
effective-mass model of Efroset al.9 We see thatDX

EMA is
significantly overestimated compared to the direct pseudo
tential calculation. By fitting thesize dependenceof our cal-
culated exchange energy with the functional formDX(R)
5aR2g, we obtaing51.93 for InP nanocrystals36 and g
51.97 for CdSe nanocrystals. This is in contrast with
conventional assumption6,8–10 that DX scales asR23. The
reason for this discrepancy is the presence of a sizable l
range component in the electron-hole exchange interactio23

Banin et al.12 found experimentally that the exchange sp
ting in InAs nanocrystals scales approximately asR22. They
interpreted their results in the framework of the effectiv
mass approximation by assuming the existence of a sig
cant leakage of the electron wave function outside the na
crystal. The resulting exchange parameter was t
multiplied by an adjustable prefactor and fitted to the exp
mental exchange splitting. This model, however, ignores
long-range contributions toDX , which are responsible fo
the R22 scaling.

C. Comparison with experiment

The exciton splitting of InP nanocrystals calculated us
pseudopotential wave functions is compared in Fig. 5 wit
fit to the experimental results of Micicet al.7 As we can see,
the agreement with experimental results is very good

TABLE II. Crystal-field splitting parameterDCF and exchange
parameterDX of InP and CdSe nanocrystals calculated using
configuration-interaction approach. Also shown is the short-ra
exchange parameterDX

EMA obtained by Efroset al. ~Ref. 9! using
the effective-mass approximation.

Dot radius~Å! DCF (meV) DX (meV) DX
EMA (meV)

ZB InP
10.11 0 5.75
11.84 0 4.68
14.00 0 3.58
17.39 0 2.16
WZ CdSe
10.32 43.3 5.53 16.20
14.63 28.3 2.91 5.69
19.24 28.7 1.51 2.50
-
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indicates that the observed redshift of the emission p
originates from the exciton exchange splitting.

Figure 6 compares the calculated low-energy excito
levels of CdSe nanocrystals with the experimental results
Norris et al.6 The exciton energies are plotted as a functi
of the band-gap energy~corresponding to the energy of th
lowest absorbing state!, as the measured nanocrystal size
subject to significant uncertainty. The two exciton levelsE61

U

andE0
U are not resolved experimentally for small nanocry

tals ~band gap.2.1 eV), so their average is shown in Fi
6. The agreement between theory and experiment is v
good, although some discrepancies seem to exist for la
nanocrystals~band gap<2 eV!. We observe, however, tha
in the bulk limit the exciton levelsE62 and E61

L should
converge toE50, while the levelsE0

L , E61
U , andE0

U should

FIG. 5. The pseudopotential calculated exciton splitting
spherical InP nanocrystals~solid line! is compared with a fit to the
experimental results of Micicet al. ~Ref. 7, dashed line!. The en-
ergy of the lowest spin-allowed optical transition is taken as
zero of the energy scale.

FIG. 6. Comparison of calculated~squares joined by lines! and
measured~circles! excitonic levels of CdSe nanocrystals as a fun
tion of the band-gap energy. The experimental results are ta
from Ref. 6. Solid symbols and solid lines denote optically act
states, while open symbols and dashed lines denote optically i
tive states. The energy of the lowest spin-allowed optical transi
(E61

L ) is taken as the zero of the energy scale.
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converge to the value of the bulk crystal-field splitting,E
526 meV. The experimental exciton energies for lar
nanocrystals do not appear to approach the bulk limit i
consistent way.

V. SUMMARY

Using a many-body expansion based onmicroscopic
pseudopotential wave functions, we have developed a p
tical and accurate method to calculate the excitonic spect
of semiconductor quantum dots in the strong-confinem
regime. We find that~i! the diagonal Coulomb energiesJv,c
depend on the electron and hole orbitals. This effect lead
some cases to level crossing~Fig. 2!. ~ii ! Intraconfiguration
exchange leads to splitting into spin-forbidden and sp
allowed multiplets~Fig. 3!. ~iii ! Configuration mixing leads
to significant energy lowering and possibly to state cross
~Fig. 3!. If configuration interactions are ignored, the ex
tonic energy levels are off by several meV.~iv! Configura-
tion mixing does not significantly affect the oscillato
strength of the lowest, spin-forbidden excitonic multiplet.~v!
The phenomenological single-configuration model of Ef
et al.9 is analyzed. We find that the exchange parame
DX(R) has a different size dependence than previou
assumed.9
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APPENDIX

In this appendix we discuss a practical and accur
method to accelerate the convergence of the reciprocal-s
expansion of Coulomb@Eq. ~6!# and exchange@Eq. ~7!# in-
tegrals with respect to the volumeV of the supercell con-
taining the quantum dot and the surrounding barrier. In
reciprocal-space formalism@see Eqs.~16! and ~17!#, these
integrals have the general form

E~V!5(
G

r1* ~G!g~G!r2~G!, ~A1!

wherer1(G), r2(G), andg(G) are the Fourier transforms o
r1(r ), r2(r ), andg(r2r 8), respectively, and the sum run
over the reciprocal-lattice vectorsG of the supercellV.

The convergence of the Fourier expansion~A1! with the
supercell volumeV is decided by the lowest-order multipo
moments ofr1 and r2. In order to accelerate the conve
gence, we subtract the multipole contributions fromE(V) to
obtain acorrectedenergy integralẼ(V), which approaches
the converged valueE(`)[Ẽ(`) at a much faster rate. Ou
approach is a generalization of the method developed
Makov and Payne37 in the context ofab initio calculations
for finite systems using periodic boundary conditions.

The lowest-order multipole moments ofr1 andr2 are

monopole: q1,25E r1,2~r !dr ,
e
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dipole: D1,25E r1,2~r !rdr , ~A2!

quadrupole: Q1,25E r1,2~r !r 2dr .

Because of the particular form ofr1 andr2 @see Eqs.~6! and
~7!#, the monopole momentsq1 and q2 can only take the
values 0 and 1. Note that for a finite system the dipole a
quadrupole moments are well defined and independent o
choice of the supercellV, provided thatr1(r ) and r2(r )
vanish at the boundaries of the supercell.

The corrected form ofE(V) is then obtained~see Ref. 37!
as

Ẽ~V!5E~V!2
q1q2

e0
dot

amad1
4p

3Ve0
dot

D1•D2

2
2p

3Ve0
dot~q1Q21q2Q1!, ~A3!

where the Madelung parameteramad is given by the Ewald
sum38

amad5 (
RÞ0

erfc~Rh1/2!

R
1

4p

V (
GÞ0

exp~2G2/4h!

G2 2S 4h

p D 1/2

2
p

hV
. ~A4!

Hereh is the~arbitrary! Ewald parameter, and the sums ru
over the nonvanishing direct-lattice vectorsR and the
reciprocal-lattice vectorsG, respectively.

The convergence ofẼ(V) with the supercell size is illus-
trated in Fig. 7 in the case of the diagonal Coulomb ene
Jv,c . We see that even for the smallest supercell size con
ered here, corresponding to the supercell used in the solu
of the single-particle problem, Eq.~11!, the corrected energy
Ẽ has already converged to its asymptotic value~correspond-

FIG. 7. Convergence of the unscreened diagonal Coulomb
ergy Jv,c

0 between the valence-band maximum and the conduct
band minimum of an InP nanocrystal (R514.0 Å), as a function
of the supercell size. The curve labeledE corresponds to the uncor

rected Coulomb integral of Eq.~A1!, Ẽ is the corrected Coulomb
integral of Eq.~A3!, and (E1Madelung term) corresponds to Eq
~A3! where only the first correction term is retained.
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ing to V˜`). The expansion of Eq.~A3! works well when-
ever the electrostatic interaction between the periodic re
cas of the quantum dots—described by the long-range pa
the function g(r2r 8)—is essentially Coulombic. This in
cludes the cases where the screening functionē(r2r 8) of
Eq. ~12! is a constant or converges rapidly~within a few
lattice constants! to its asymptotic (ur2r 8u˜`) limit.

In the presence of strong ionic screening, however,
long-range part ofg(r2r 8) can deviate considerably from
simple 1/r function. In this case the corrected integrals~A3!
converge slowly with the supercell size, particularly wh
q15q251. It is then more convenient to use a truncat
.
.

s.

A.

,

.

A

v

P.

ev
li-
of

e

d

form of the screened Coulomb interaction

gcut~r !5
g~r !

11exp~ ur 2Scutu/l!
, ~A5!

whereScut is a cutoff radius, andl is a smoothing paramete
~of the order of a few Å!. Provided that~i! the cutoff radius
Scut is larger than the quantum-dot diameterD, and ~ii ! the
supercell size is larger thanD1Scut, the truncated Coulomb
potential effectively eliminates the electrostatic interactio
between periodic replicas of the quantum dot, while correc
describing the intradot Coulomb and exchange interactio
l,
o,

ev.
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