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Modern crystal-growth techniques, such as molecular beam
epitaxy or metal±organic chemical-vapour deposition, are cap-
able of producing prescribed crystal structures, sometimes even
in de®ance of equilibrium, bulk thermodynamics. These tech-
niques open up the possibility of exploring different atomic
arrangements in search of a con®guration that possesses given
electronic and optical properties1. Unfortunately, the number of
possible combinations is so vast, and the electronic properties are
so sensitive to the details of the crystal structure, that simple trial-
and-error methods (such as those used in combinatorial
synthesis2) are unlikely to be successful. Here we describe a
theoretical method that addresses the problem of ®nding the
atomic con®guration of a complex, multi-component system
having a target electronic-structure property. As an example, we
predict that the con®guration of an Al0.25Ga0.75As alloy having the
largest optical bandgap is a (GaAs)2(AlAs)1(GaAs)4(AlAs)1 super-
lattice oriented in the [201] direction.

Conventional electronic-structure theory of solids, clusters and
molecules proceeds by ®rst specifying the spatial coordinates of all
atomic species involved, and then calculating the ensuing energy
levels and wavefunctions:

Atomic configuration ! Electronic structure �1�

We are interested in the counterpart to this direct approach: the
`inverse approach' of ®nding the atomic con®guration that pro-
duces a prescribed electronic structure:

Electronic structure ! Atomic configuration �2�

In the context of optical properties, such a method would provide
answers to questions like `̀ For a given superlattice orientation, what
is the layer sequence that has the maximum bandgap (or a pre-
assigned bandgap, say 2 eV)?''3. In the context of transport proper-
ties, one could ask: `̀ What is the crystal structure whose band
structure maximizes Auger carrier multiplication?''4. Similar
`inverse problems' can be addressed in the context of vibrational
and photonic properties, as well as for molecules and low-dimen-
sional systems.

We describe here a solution to the `inverse band-structure
problem' based on a direct exploration of the space of atomic
con®gurations in search of the con®guration possessing given
electronic properties. The formidable complexity of this problem
is best illustrated by an example. Consider a pseudo-binary sub-
stitutional alloy AxB1-xC of composition x, described by a unit cell of
2N lattice sites, such that each of the N cation sites is occupied by an
A atom or a B atom. The number of possible atomic con®gurations
is Nconfig � N!=��xN�!�N 2 xN�!�. For instance, for x � 0:25 and
2N � 128, Nconfig < 1014. Each con®guration has, in principle, a
different electronic structure, and therefore different electronic and
optical properties. How many atomic con®gurations (Nsearch) is
it necessary to explore in order to ®nd the con®guration that has
the target electronic properties? Clearly, if this approach is to be
successful Nsearch should be small compared to Ncon®g. We search the
con®guration space using a simulated-annealing algorithm that is
able to `learn the system' relatively quickly (N search < 104) by retain-

ing only those con®gurations that are conducive to the target
electronic structure. Coupled with a fast, `̀ Order N'' solution of
the SchroÈdinger equation, this method allows us to determine the
target con®guration of systems containing a few hundred atoms.

We consider substitutional systems described by an underlying
lattice structure of N sites. An atomic con®guration j is de®ned as a
set of N `occupation variables' {S1; S2;¼SN }, where Si denotes the
identity of the atom located at lattice site i. The con®guration
variables {Si} can be restricted to describe a particular experimental
growth sequence, for example an ApBqArBs ¼ superlattice (where p,
q, r, s denote the number of monolayers) oriented in the [001]
direction. We then consider a set of electronic-structure properties
Pa(j), de®ned for every con®guration j, and the corresponding
target properties Ptarget

a . The subscript a identi®es speci®c proper-
ties, such as bandgaps, effective masses or oscillator strengths. The
N-variable object function

O�j� �
â

qajPa�j�2 Ptarget
a j; �3�

where qa is the weight assigned to the property Pa , describes the
`distance' between the electronic structure of the con®guration j
and the target electronic structure. This function O(j) is minimized
by varying the con®guration variables j � {S1; S2;¼SN }, and
calculating at each step Pa(j) from electronic-structure theory.
This approach requires a fast-learning method of sampling the
con®guration space, and a numerically ef®cient yet physically
accurate method of calculating the electronic structure of a given
atomic con®guration. Here we describe these methods.
(1) Exploration of the con®guration space. The simulated-annealing
technique is an ef®cient algorithm for ®nding the global minimum
of a multi-variable, multi-valley function. Given an atomic con®g-
uration j, a trial con®guration jtrial is generated by elementary
Monte Carlo moves, such as changing the identity of one atom, or
swapping the positions of two atoms of different types. The trial
con®guration jtrial is accepted with a probability distribution
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Figure 1 Simulated-annealing search of the maximum-gap con®guration. The bandgap is

shown as a function of the number of elementary Monte Carlo moves. The simulation cell

includes 64 atoms for superlattices oriented in the [001] direction and 128 atoms for

alloys. a, [001] Al0.25Ga0.75As superlattices; b, Al0.25Ga0.75As alloys.
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p�DO� � min�1; exp�2 DO=T�� where DO � O�jtrial�2 O�j� and
T is a ®ctitious temperature parameter. By slowly decreasing the
temperature to zero, the system is allowed to settle into the
con®guration that minimizes the object function O. We use an
exponential temperature pro®le Tn � T0exp�2n=t�, where T0 is
the initial temperature and t is the temperature decay rate. Here n
is the index of the simulated-annealing steps; each simulated-
annealing step includes several elementary moves. The exponential
temperature pro®le allows us to reduce the acceptance ratio in a
nearly linear fashion. If the annealing process is too fast the system
can become trapped in a local-minimum con®guration. We can
detect and avoid local minima by changing the initial con®guration
and/or the temperature pro®le.
(2) Electronic structure of a given atomic con®guration. This is done
in three steps:

First, atomic relaxations: For each elementary Monte Carlo
move the system is relaxed into the local energy minimum
corresponding to the selected con®guration (that is, without
interchange of atoms). This task is accomplished using a
valence-force-®eld method5 whose parameters are ®tted to ab
initio total-energy calculations for various con®gurations. The out-
puts are the equilibrium atomic positions {Rn; n � 1¼Nat} of the
selected con®guration.

Second, realistic hamiltonian: it is well known6 that the conven-
tional ®rst-principle description of optical propertiesÐthe local-
density approximation (LDA) to density-functional theoryÐpro-
duces systematic errors in the bandgap, a quantity that we are
interested in here. We thus do not use the LDA approach. Instead,
the electronic structure of each con®guration is described by a semi-
empirical pseudopotential hamiltonian:

ÃH � 2
~2

2m
=2

� ^
Nat

n�1

vn�r 2 Rn� �4�

where m is the bare electron mass. The total pseudopotential is given
by a linear superposition of local atomic pseudopotentials
vn�r 2 Rn� centred at the atomic positions {Rn; n � 1¼Nat}.
Unlike conventional empirical pseudopotentials7, the atomic

pseudopotentials vn are ®tted8 not only to observed bulk interband
transition energies, but also to (1) effective masses, deformation
potentials, and band offsets, and (2) bulk single-particle wave-
functions calculated using density-functional theory in the local-
density approximation. Since we are dealing here with bulk-like
atomic con®gurations that are free from defects or surfaces (each
cation is coordinated by anions and each anion is coordinated by
cations), the hamiltonian of equation (4) should provide an
accurate description of all the con®gurations reached by the
Monte Carlo sampling. Such modern semi-empirical pseudopoten-
tials have successfully described the electronic and optical properties
of substitutional systems, such as semiconductor alloys and
superlattices9,10.

Third, fast diagonalization: Since we are interested in electro-
nic properties that involve band-edge energy levels and wave-
functions, the hamiltonian of equation (4) is diagonalized using
a computationally ef®cient method that focuses on an energy
window around the bandgap11. In this approach, the band-edge
energies ei and wavefunctions wi are obtained by solving the
`folded-spectrum' equation:

� ÃH 2 eref �
2wi�r� � �ei 2 eref �

2wi�r�; �5�

where eref is an arbitrary reference energy. The `ground state' of
equation (5) coincides with the eigenstate of the hamiltonian in
equation (4) whose energy is closest to the reference energy eref.
Therefore, by choosing the reference energy in the bandgap, the
band edge states can be readily obtained by minimizing the func-
tional A�w� � hwj� ÃH 2 eref �

2jwi. For each Monte Carlo move, the
wavefunctions of the last accepted con®guration are used as initial
guesses for the iterative solution of equation (5).

We consider here AlAs/GaAs and GaP/InP substitutional systems.
The underlying lattice has the zinc-blende structure, with cation
atoms occupying one of the two interpenetrating f.c.c. sublattices
and anion atoms occupying the other f.c.c. sublattice. The AlAs/
GaAs system has a small lattice mismatch, so we assume that, for
every con®guration, the atoms occupy their ideal (zinc-blende)
positions. The GaP/InP system, on the other hand, has a substantial
lattice mismatch (,7%). Thus, for each con®guration the atoms
(both cations and anions) are allowed to relax into their local
equilibrium positions. Note that the AlxGa1-xAs and GaxIn1-xP
random alloys are characterized by a crossover from a direct-gap
semiconductor (with both the valence-band maximum and the
conduction-band minimum located at the G point of the Brillouin
zone) to an indirect-gap semiconductor (with the valence-band
maximum at the G point and the conduction-band minimum near
the X point) as a function of the concentration x. Our approach is
capable of addressing substitutional systems that display such types
of electronic phase transition.
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Figure 2 Maximum-gap con®gurations of AlxGa1-xAs alloys for different Al concentrations

x. Ga atoms are denoted by blue circles, Al atoms by red circles, and As atoms by

white circles. a, For x � 0:25 the maximum-gap con®guration corresponds to a

(GaAs)2(AlAs)1(GaAs)4(AlAs)1 superlattice in the [201] orientation, and the bandgap is

1.86 eV. b, For x � 0:50 the maximum-gap con®guration is a (GaAs)2(AlAs)2 superlattice

in the [201] direction (chalcopyrite structure), and the bandgap is 2.12 eV. c, For

x � 0:75 the maximum-gap con®guration is a (GaAs)1(AlAs)3 superlattice in the [201]

orientation (famatinite structure), and the bandgap is 2.18 eV.

Table 1 Maximum-gap con®gurations of AlxGa1-xAs and GaxIn1-xP super-
lattices oriented in the [001] direction

Concentration x AlxGa1-xAs GaxIn1-xP
.............................................................................................................................................................................

0.250 (AlAs)1 (GaAs)3 (GaP)1 (InP)3
0.333 (AlAs)1 (GaAs)2 (GaP)1 (InP)2
0.500 (AlAs)2 (GaAs)2 (GaP)1 (InP)1
0.666 (AlAs)2 (GaAs)1 (GaP)2 (InP)1
0.750 (AlAs)3 (GaAs)1 (GaP)3 (InP)1
.............................................................................................................................................................................
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The ®rst `inverse problem' we consider is ®nding the con®gura-
tion of AlxGa1-xAs and GaxIn1-xP alloys and superlattices that
maximizes the optical bandgap at a given concentration x. Inter-
estingly, the complementary `̀ minimum-gap problem'' has a trivial
solution for these systems (but not in general, see for example
ref. 12), as the con®guration that minimizes the bandgap corre-
sponds to the phase-separated alloy for any concentration x. The
simulation cell includes 64 atoms for superlattices oriented in the
[001] direction and 128 atoms for alloys. While these unit cells may
be too small to describe the electronic structure of disordered
superlattices or random alloys, we expect that the maximum-gap
con®guration will be attained by an ordered structure with a
relatively small unit cell. Thus, we believe that the structures that
maximize the bandgap are fully described by the present simulation
cells.

Figure 1 shows representative simulation pro®les of the bandgap
as a function of the number of elementary Monte Carlo moves. We
see that only a few thousand moves are required to reach the
con®guration having the maximum bandgap (N search , 10;000).
This should be compared with the number of possible con®gura-
tions, which is of the order of Nconfig < 107 for the 64-atom cell of
Fig. 1a and Nconfig < 1014 for the 128-atom cell of Fig. 1b. The
number of Monte Carlo moves increases superlinearly with the
number of atoms in the simulation cell. However, it increases at a
much slower rate than the number of con®gurations.

The maximum-gap con®gurations of AlxGa1-xAs and GaxIn1-xP
superlattices in the [001] direction are summarized in Table 1. They
correspond to the shortest-period superlattices compatible with the
assigned cation concentration, with one exception: the (GaAs)1

(AlAs)1 superlattice has a smaller bandgap than the (GaAs)2

(AlAs)2 superlattice, because the folding of the X point of the
Brillouin zone into the G point causes a strong coupling between
the G1c and X3c alloy states, pushing the energy of the G1c-derived
conduction-band minimum of the 1 3 1 superlattice down.

The maximum-gap con®gurations of AlxGa1-xAs alloys with
different Al concentrations x are shown in Fig. 2. We ®nd that the
maximum-gap con®guration of the Al0.25Ga0.75As alloy (Fig. 2a)
corresponds to a (GaAs)2(AlAs)1(GaAs)4(AlAs)1 superlattice in the
[201] orientation. Previous ``cluster expansion'' models3 (describing
the bandgap of an arbitrary con®guration by a linear combination
of energies associated with characteristic `̀ ®gures'', such as pairs or
triangles) carried out in the LDA framework had shown that this
con®guration has the largest bandgap among Al0.25Ga0.75As
alloys. However, the value of the bandgap in ref. 3 was affected by
the LDA error. For x � 0:50 the maximum-gap con®guration
(Fig. 2b) is a (GaAs)2(AlAs)2 superlattice in the [201] orientation
(chalcopyrite structure). Finally, for x � 0:75 the maximum-gap
con®guration (Fig. 2c) is a (GaAs)1(AlAs)3 superlattice in the [201]
direction (famatinite structure). All the maximum-gap con®gura-
tions of AlGaAs alloys are predicted to be superlattices in the [201]
direction. This result can be understood in terms of folding
relationships. For [201] superlattices the X and W points of the
bulk Brillouin zone are folded into the G point of the superlattice
Brillouin zone. However, the X- and W-derived states are weakly
coupled to the G-derived band-edge states. As a result, [201]
superlattices are not affected by the band-gap reduction charac-
teristic of other superlattice orientations. Note that while the
(GaAs)2(AlAs)1 (GaAs)4(AlAs)1 structure has a direct bandgap
(large oscillator strength), the chalcopyrite and famatinite struc-
tures have an indirect bandgap (small oscillator strength).

As a second example, we have calculated the con®gurations of
AlAs/GaAs and GaP/InP superlattices in the [001] orientation
having a pre-assigned bandgap (1.8 eV for AlAs/GaAs superlattices
and 1.9 eV for GaP/Inp superlattices) and the largest possible
oscillator strength. In these simulations the concentration x is
allowed to change; the lattice constant, however, is kept ®xed at
the average value of the lattice constants of the binary constituents.

The prescribed bandgap is achieved within a few milli-electronvolts.
The atomic con®gurations having the target electronic properties
are shown in Fig. 3. In the case of AlAs/GaAs (Fig. 3a), the `core' of
the resulting con®guration is a (GaAs)2(AlAs)2(GaAs)9(AlAs)2

(GaAs)2 quantum well embedded in AlAs. The additional Ga
layers in the structure do not affect the electronic properties
signi®cantly. In the case of GaP/InP (Fig. 3b), the resulting con®g-
uration is a superlattice with layer thicknesses ranging from one to
three layers.

It is interesting to speculate whether the structures identi®ed via
an intensive computer search could have been anticipated based on
analytical exploration or physical insight. We suspect that although
in some simple cases, such as the short-period superlattices of
Table 1, one can rationalize the results after the fact in terms of
band-folding relationships, in general the non-intuitive relation
between the reciprocal-space band structure and the real-space
atomic con®guration (equation (2)) makes a priori guesses unlikely.
In fact, some of the structures we predict are unsuspected on the
basis of the normal insights underlying band theory.

Finally, we have applied our method to semiconductor alloys and
superlattices, but the same algorithm could be applied to the
optimization of the electronic structure of complex molecules and
clusters. M
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Figure 3 Atomic con®gurations of superlattices in the [001] orientation having a pre-

assigned bandgap and maximum bandgap oscillator strength. The target bandgap is

1.8 eV for AlAs/GaAs superlattices and 1.9 eV for GaP/InP superlattices. Ga atoms are

denoted by blue circles, Al atoms by red circles, In atoms by grey circles, and As and P

atoms by white circles. a, AlAs/GaAs superlattice; b, GaP/InP superlattice.
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The areal extents of the Laurentide and Fennoscandian ice sheets
during the Last Glacial Maximum (about 20,000 years ago) are
well known1, but thickness estimates range widely, from high-
domed2 to thin3, with large implications for our reconstruction of
the climate system regarding, for example, Northern Hemisphere
atmospheric circulation and global sea levels. This uncertainty
stems from dif®culties in determining the basal temperatures of
the ice sheets and the shear strength of subglacial materials4, a
knowledge of which would better constrain reconstructions of ice-
sheet thickness. Here we show that, in the absence of direct data,
the occurrence of ribbed moraines in modern landscapes can be
used to determine the former spatial distribution of frozen- and
thawed-bed conditions. We argue that ribbed moraines were formed
by brittle fracture of subglacial sediments, induced by the excessive
stress at the boundary between frozen- and thawed-bed conditions
resulting from the across-boundary difference in basal ice velocity.
Maps of glacial landforms from aerial photographs of Canada and
Scandinavia reveal a concentration of ribbed moraines around the
ice-sheet retreat centres of Quebec, Keewatin, Newfoundland and
west-central Fennoscandia. Together with the evidence from relict
landscapes that mark glacial areas with frozen-bed conditions, the
distribution of ribbed moraines on both continents suggest that a
large area of the Laurentide and Fennoscandian ice sheets was
frozen-basedÐand therefore high-domed and stableÐduring the
Last Glacial Maximum.

The glaciological factors controlling the location of thermal zones
(surface temperature, ice thickness, geothermal ¯ux, strain heating)
under ice sheets are well understood5, but because of the absence of
direct subglacial palaeotemperature records, the actual basal
thermal conditions under the Fennoscandian ice sheet (FIS) and
Laurentide ice sheet (LIS) have remained elusive. Wide zones of
subglacial till (glacially transported sediments) deformation have
been invoked in modelling experiments predicting low ice-sheet
pro®les3, but without data on the phase state (frozen or thawed) of
the sediments in deformable bed areas under glacial conditions, the
validity of these models has been dif®cult to verify. The problem is
that the rheology of subglacial till is extremely sensitive to the phase
state of the interstitial water; frozen subglacial till is much stronger
than ice, whereas thawed till under high water pressures can be
deformed by overriding ice6. We focus here on the landform record

interpreted to result from the phase-state control on soil strength
(and thereby landform-building processes) and perform an inver-
sion of the record: that is, we use the spatial distribution of
diagnostic landforms to gain insight into the former subglacial
phase- and temperature-regime under the FIS and LIS.

The two main subglacial landform groups resulting from reshap-
ing of subglacial sediments are: (1) drumlins and ¯utings (¯ow-
parallel streamlined till ridges, 0.1±20 km in length), created by
particle-by-particle entrainment and lodgement processes or plastic
deformation of till masses7, and (2) ribbed moraines or Rogen
moraines (®elds of till ridges, 0.1±1 km in length, formed transverse
to ice ¯ow), with a debated mode of formation8. Drumlins and
¯utings cover 90% of the terrestrial parts of the LIS9,10 and FIS areas,
but ribbed moraines less than 10%, with a spatial distribution that is
extremely selective when compared to the lineation distribution.
There is a third important group of subglacial landscapes: those
which have been left essentially unmodi®ed by the last ice sheet due
to sustained frozen-bed conditions and absence of basal sliding11.

Previous formation hypotheses for ribbed moraine suggested
compressive ¯ow (caused by topography, that is, by bedrock
depressions)12, or the type and amount of basal debris load13 as
the primary controls on its formation. As hilly topography and
coarse-grained tills are widespread in areas of Precambrian base-
ment rocks (shown yellow in Fig. 1a and b), these hypotheses imply
that ribbed moraines would occur geographically dispersed, wher-
ever local topographic or substratum conditions were favourable.
The concentration of ribbed moraines in the four retreat centres of
Quebec, Keewatin, Newfoundland and west-central Fennoscandia
(Fig. 1a and b), and their absence in other areas of hilly relief and
coarse-grained tills, indicates that some other type of primary
control on their distribution exists.

Ribbed moraines are conspicuously lacking in the southern parts
of both ice-sheet areas where thawed-bed conditions prevailed after
the Last Glacial Maximum (LGM), and it thus appears unlikely that
ribbed moraine formed under completely thawed-bed conditions.
The concentric arrangement of ribbed moraines around late-glacial
retreat centres, and their af®nity to frozen-bed areas, indicates that
the primary control is a time-dependent basal thermal evolution.
The stratigraphical and structural composition of ribbed moraine is
highly variable (from laminated silt to shattered bedrock), and
generally follows local variations in the till composition8,14. Hence,
ribbed moraines cannot be linked to any speci®c depositional facies.
Rather, the deposition of the sediments in ribbed moraine ridges
appears to be genetically unrelated to the actual landform-shaping
process8,15, predating it. Morphological evidence (Fig. 2a; detailed
till block outline matching, grating patterns, strike-slip faulting of
till slabs, rotation of discrete till blocks) indicate that individual
ridges were once part of a coherent drift sheet, and we thus infer that
formation of ribbed moraine occurred by brittle fracture of drift
sheets. Such brittle behaviour cannot occur in unfrozen drift (due to
its low cohesive strength), and we therefore argue for a primary
thermal control on ribbed moraine formation, by fracturing of
frozen drift sheets during the transition from frozen to thawed
conditions in an extensional basal regime (Fig. 3). Extreme stress
concentrations develop at frozen±thawed boundaries16, because of
the abrupt increase in basal ice ¯ow velocity, and we infer brittle
fracture of drift sheets to have occurred at migrating frozen±thawed
boundaries. The often observed lack of material between ribbed
moraine ridges15 is not compatible with alternative formation
processes of glaciotectonic stacking and sediment thickening12. The
typical 150±600 m spacing of individual ribbed moraine ridges
contrasts sharply with the observed tightly folded ``wrinkled-
carpet'' morphology of subglacial compressional ridges17.

Relict landscapes are de®ned by ground surfaces and landforms
essentially unmodi®ed during overriding by the last ice sheet18

(Fig. 2b and c). In these landscapes glacial meltwater traces from
the last deglaciation (that is, meltwater channels and ice dammed


