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Fitting of accurate interatomic pair potentials for bulk metallic alloys
using unrelaxed LDA energies
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We present a general and simple method for obtaining accurate, local density approxiin2#en quality
interatomic potentials for a large class of bulk metallic alloys. The method is based on our analysis of atomic
relaxation, which reveals that the energy released in the relaxation process can be approximated by calculating
the epitaxially constrained energies of the constituéntad B. Therefore, the pair potential is fitted to the
LDA-calculated epitaxial energies of the constituefidscapture the relaxation energigand to the unrelaxed
energies of ordered,,B,,, compoundgto capture the fixed-lattice “chemical” energyThe usefulness of our
approach is demonstrated by carrying out this procedure for the Bu, alloy system. The resulting pair
potential reproduces the relaxed LDA formation energies of ordered compounds rather accurately, even though
we used only unrelaxed energies as input. We also predict phonon spectra of the elements and ordered
compounds in very good agreement with the LDA results. From the calculatiors01000 atom supercells
representing the random alloy, we obtain the bond lengths and relaxation energies of the random phase that are
not accessible to direct LDA calculations. We predict that, while in Cu-rich alloys the Cu-Cu bond is shorter
than the Cu-Au bond, at higher Au compositions this order is switched. Furthermore, we find that Au-rich
Cuy,_,Au, alloys have ground states that correspon@f@l) superlattices oh monolayers of fcc Au stacked
on m monolayers of thé-1, CuAu-I structure. The potential developed in this work is available at the site
http://www.sst.nrel.gov/data/download.html for interested ug&@163-182609)03525-7

[. INTRODUCTION proximation (LDA) calculations,(b) how can the conver-
gence of the series E¢Ll) be accelerated by combining real
This paper deals with the energies of atomic configuraand reciprocal space representatidrasd, once the cluster
tions needed in constructing a thermodynamic description oihteractions{J} are given,(c) how can Eq(1) be subjected
substitutional alloys. Such a thermodynamic description conto Monte Carlo simulations, yielding both zero temperature
cerns the energies of various ordered, random, partially orground state structures and finite-temperature thermody-
dered, and partially disordered configurations @ik alloy ~ namic quantities of the nonvibrating lattice’
(not a surfack with full site occupanciegno vacancies (i) The interatomic potential approachHere one con-
There are currently two general approaches to describing th&ructs a “force field” (FF), expressing the total energy
energies of such general substitutional lattice configuration€E(o,{R;}) of a “spin” configurationo explicitly in terms
(i) The cluster expansion (CE) methbtiHere one expands of the positiongR;} of all atoms, i.e., its Born-Oppenheimer
the total energy of an atomically relaxed lattice configurationsurface. Usually the force field is cast in terms of simple

o in a set of “effective cluster interactions{J} interatomic potentials, such as
i ik :
(1) 5
The lattice sites=1---N are occupied by am atom (in I R

which case the spin variablg takes the value-1) or by a whereU(0) is a volume ) term,V;; are pair potentials,

B atom (§=+1), andJ;; are pair energies];; are three- v/, are three-body potentials, etc. Since the atomic positions
body energies, etc. A set of spin valugs(i=1,... N)}  {R;} are included explicitly, Eq(2) contains both geometric
defines a lattice configuratioa. In this approachEcg(o) and phonon information. There is no general theory of what
represents the configurational energy in which all atoms aranalytic forms should the functiod¥/;; ,Vij, . . .} assume,
relaxed to their nearest local equilibrium positions for theand so one uses guessed forms inspired by specific theoreti-
particular configuratiorr. Since explicit atomic position co- cal frameworks, e.g., density functiorra tight-binding**2
ordinates are thereby integrated away, no geoméisic, or pseudopotential theofyExamples of force-fields for me-
atomic positions or dynamic(i.e., phononsinformation is  tallic systems include the embedded atom metH&AM),
obtainable from the knowledge &.g(c). Instead,o repre-  the effective medium theoty (EMT), the tight-binding
sents the symmetry and the crystal type alone. In recent yeaisspired'2 classic potentials, while examples in semicon-
it has been shown(a) how can the effective cluster interac- ductor systems include the valence force fiéldhe shell
tions {J} be obtained from first-principles local density ap- model*the Tersoff potential® and others?® In recent years,
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it has been shown how the interatomic potentials can be fisystems, such as surfaces. On the other hand, our three pair
from experiment and theory, and how Eg) can be used in interaction functiond/,A(R), Vgg(R), andV4g(R), are de-
continuous space Monte Carlo simulatiditesolving simul-  termined with precision for a very broad range of interatomic
taneous spin-flips and atomic displacemgmtsobtain ther-  distancesR. Thus, as long as only pairs are needed to de-
modynamic informatiort! scribe the dense atomic configurations, our FF can be used in

A major problem in deriving force fields or cluster expan- all sorts of dense atomic arrangements, either face-centered
sions from the local denisty approximatighDA) is the  cubic, bcc, or noncubic configurations. The claim is partially
need to obtain and fitelaxedenergies for numerous struc- verified in this work, where we deal with fcc and some bcc
tures, since it has been sholfrihat the atomic relaxation based configurations, and in our previous work on the system
can sensitively control alloy phase stability. In the presenNi-Al, where fcc and bcc had to be dealt with
work we aim to derive a force field from the LDA data that simultaneously®
are easily obtainable in direct calculations: energies of the Previous constructions of force fields differ widely in the
elemental solid constituens and B in different strain con- type of physical quantities used to fit the potential. In fact,
figurations andinrelaxedenergies of a set of simple ordered there seems to be no general consensus on which collection
compounds{A,B,,}. Our strategy can be easily applied to of physical properties should be fitted to construct a good
any metallic alloy, providing accurate, LDA-quality poten- bulk alloy force field: cohesive energies, lattice constants,
tials from a few inexpensivé.e., unrelaxeffirst-principles  bulk moduli, defect formation energies, etc. Therefore, we
calculations. The resulting force field has the following start our theoretical development by establishing which type
simple form: of physical input should be used to obtain a bulk force field

that accurately describes bulk relaxation enerdfes.
1

Err(o {RH=U M+ ; E. Vii([Ri=R; +1)). IIl. DESCRIBING THE ATOMIC RELAXATION

(3 IN COMPOUNDS

In this expressionEg is the total energy per atom,andj Having selected a rather general form of a pair potential
label atoms in the unit cell\l is the number of atoms in the in Egs.(3)—(5), its free parameters could be fitted to numer-
cell, | is the superlattice vector, and the sum ovextends ous choices of physical quantities. Since we are interested in
over all cells of the crystal. The first term in E() is the  accurate energetidSc(o,{R;}) for arbitrary bulk configu-
homogeneous electron gas téfrand depends on the aver- rations, let us first examine the physical content of such en-
age atomic volumé) and the composition.?° It is written  ergies. The formation enthalpy of configuratierwith com-

as positionx,
Q(x) Q(x)2 Q(x)? AH(o)=E(o)—xE(A)—(1-x)E(B), (6)
Uix.0)=alx)—5=+b(x) 02 +e(x) R “ can be expressétlas a sum of three terms
while the pair interactiorfS are written as cubic splines: AH(0)=AEyp(X)+AH¢hend o) + AE (o). )

3 R\3 Here, the volume-deformatiofyD) energyAE,p(Xx) is the
Vi (R)=> POl 1- —| o(RV-R). (5)  energy required to bring the pure elemeAtandB (with the
: = ) . equilibrium lattice constanta, and ag, respectively to a

. o common lattice constai@ The change in the energy is given
For a binaryA, _,B, alloy there are only three pair interac- by

tion functionsVj; , corresponding to=A-A, A-B, andB-B

pairs. The range of the interaction is given by the cutoff radii  AE,5(x)=min[(1—X)AEp W A,a) + XAEp,(B,a)].
R . Within the region limited by the cutoff, the expansion a

represents a complete set of basis functions. These functions (8)

have continuous first and second derivatives, which are esr captureAE,p one needs to emulate the bulk moduli of

sential for calculating the elastic constants and phonon freﬁureA andB. SecondAH (o) is the energy change due
. . chel

quencies. , to intermixing of the pure\ andB solids already prepared at

method and the effective medium theot§in all three cases
the main problem is to find good pair interactidisThe
other termgthe embedding energy in EAM or EMT, or the
termU(x,Q) in the present cageare obtained as the differ-
ence between the total energy and the energy of the pairs, by AHpenf 0)=AHUR (o) = AEyp(X). (9)
making very simple assumptions. Qu(x,{}) is much sim-

pler than what is commonly used in EAM work, yet it is Finally, AE. (o) is the relaxation energy gained by allowing
sufficient for the treatment of dense metallic alloys. As is thethe atoms in structur&B(o,UR,a) to relax from the ideal
case in all methods of force field generation, a crucial poinsites to minimize the total energy. The energy change is
is to assess to what extent the pair potentials can be used given by

very different atomic configurations. In our case, the adopted ®) (UR)

format for U(x,Q) would exclude its use in low density AEe((0)=AH|pa(0) —AH{pA(0). (10

atoms at the ideal unrelaxg@R) lattice sites. To capture
AHghen{o) we need to emulate the unrelaxed LDA forma-
tion energy of a compound:
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FIG. 1. (8 The LDA relaxation energAE,. (o) as a function of the major wave number for ordered Cu-Au struciisseabols. Solid
line is from Eq.(18). (b) Comparison between the directly calculated LDA relaxation enetgigs(o) and those obtained using the simple
formula of Eq.(18).

We aim to develop a general method for constructing force .
fields that treats all the contributions in E€7) simulta- S(o,q)=2, STREE (14)
neously. We note that the volume deformation energy, :
AEyp(x) can be easily obtained from LDA equations-of- The pair interactiorV,(q) is given by
stateAEy, (@) calculations for the pure constituemsand
B. The chemical contributionAHnen{o) requires only * _
knowledge of the energies of compounwigshout relaxation Viel(@) = az;g Ka(a)[D l(q)]a,BKﬂ(q)’ (19
which are easily obtainable from LDA calculations. Thus,
our fit will use as input both the elastic properties of thewhereD(q) is the lattice Fourier transform of the force con-
constituents and the unrelaxed chemical energies of constant matrix®, i.e., it is proportional to the dynamical ma-
pounds. The behavior of th®E (o) term in Eq.(7) is less  trix, and
well understood, and it has proven to be difficult to repro-
duce using fitted force fields. To understand which type of _ . A—igR
input quantities should be fitted so as to reprodi&g. (o), Kg(@)= 2 Kijpe ™. (16
consider the classical elasfiels) energy Hamiltoniaff-%° _ _ _ o _
The inverse of the dynamical matrix appearing in Ep) is
R N nonanalytic at the zone-centErpoint since the acoustic fre-
SEed{S 'Uia}):igﬁ PiajpUiaUjp +% KijigSiUjg, quencies tend to zero and the sound velocity depends on the
’ ' 11y  direction ofg—0. This leads to a nonanaliticity &f(q) at

wherei,j label the lattice sites, Greek indices denote thether point, i.e., Vie(q) depends on the direction of the

Cartesian components of vectors, ang are the atomic dis- wave vector at the origifi: **Equation(13) suggests that the
pong » an relaxation energy is a simple function of the structure factor
placenjentssl.)ia,jﬁ IS the_harmonlc forc_e cocrgtant betweenin reciprocal space. One could obtain the paramekers
atoms[ and'J, and Kijg IS t'he Kanzaki for a".”.‘g the and®;, ;4 directly from the LDA, as done in the combuta-
C_Zarte5|an directiorg on site] due_to an e_ltom at site The _tional alchemy linear response mettdddowever, such a
first term represents the harmonic elastic energy due to d'%?eatment alone is not always satisfactory since the LDA re-

placements of atoms, while the Sfecond term gives a COUIOIIn%xation energies exhibit several features that are beyond the
between the spin configurationahj and elastic §i,) de-  simple second order expansion of Egl): (i) Direct LDA
grees of freedom. For a given configurationthe atomic  cajculations of relaxation energies predict nonzero relax-
displacements are found from the equilibriuaero forcé  ations of thec/a ratio in tetragonale.g.,L1,) and trigonal
condition (L1,) structures, whileAE, obtained from Eq(13) is zero
5E,, ) for both L1, and L1,.28 (ii) The Hamiltonian(11) does not
- eszz Ki,jBSi+22 ®j,pUia=0, (120  include higher-order(e.qg., anharmon}ceffe_cts, ie., terms
Ujg i ia involving higher powers of5; andu;, . For instance, it has
which can be solved in reciprocal sp&# to give the re- been. showﬁf[hat apharmonic elastic relaxations are impor-
laxation energy in terms of the spin variables only tant in the size mlsmatcht_ed noble metal alloy system_s. To
see the form of the “effectiv®/,¢(q)” produced by explicit
1 LDA energy minimizationdi.e., not limited by(i) and (ii)
ABw(0)==5 > Viel(@)|S(e,0)[?, (13 abovd, we plotted in Fig. 1a) as solid symbols the ratio
d AERA(0)/|S(0,q)|? as a function of the major structure
whereS(o,q) is the structure factor of configuratian wave number, i.e., thag for which |S(c,q)|? is maximal.
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Our task is to model this “effectiv¥/,,(q)” in a simple way ~ 087TABLE I. Formation enthalpiegin meV/atom of ordered
that goes beyond the harmonic response (Efl), and re- Cu-Au compou_nds calcula_ted dir_ectly from the LOBee Ref. ¥
veals which type of physical quantities we should include inand from the fitted force field using unrelaxed and a few relaxed
a FF fit to accurately capture atomic relaxation. SingularityStuctures (Fbrr), as describd in Sec. IV B 1. Structures are de-
of the functionV,.(q) at the origing—0 leads to a direc- S¢'iPed in Table Iil of Ref. 7.
tional dependence of the relaxation energies for Iong—periogtmcture

superlattice A),/(B),. This is illustrated in Fig. (& by
many data points aj=0 corresponding to different super-

Unrelaxed Relaxed
LDA  FFursr LDA  FFursr

lattice orientationgs. This long-period limit is given by the L1, (CuAu) —36.1 —321 —482 544
“constituent strain* energy, which can be calculated from B2 (CuAu) —-299 -315 -299 -33.0
the following expression: L1; (CuAu) +60.3 +628 +325 +33.3
“40” (CuAu) —19.0 —-183 —-23.0 -—26.3
AEcgX,G)=min[(1-X)AEqp(A,a5,G) V2 (CuAu) +170.6 +180.0 +52.2 +47.3
as W2 (CuAu) +157 +176 —209 -249
~ Y2 (CuAu) +59.5 +59.3 —4.2 —-4.5
+XAEe(B,a5,G)]. A7 25 (cuau +136.4 +131.7 -67 -78
Herex is the composition of structure andAEepi(A,as,é)
is the epitaxial deformation energydescribing the solid L1z (CusAu) —373 -373 -373 373
. . o A DO0,, (CuzAu) -327 -329 -—328 -334
constituent strained epitaxially on a substrate pl@n&ith
. ) E DO0,; (CuzAu) -333 -351 —336 —358
lattice constantg and allowed to relax in the direction or- LPS 30, ( CuA _341 —358
thogonal to the substrate plane. Equatidi) states that the a (CyAu) : :
SQY4, (CuAu) +56.5 +48.0 +55 +45

strain energy of a long-period superlattice alddgs given

by the sum of the strain energies of the pure constituent\ll1 ((%i':lg) 1232661 12322; 778(')6 251'8
deformed to a common in-plane lattice constant perpendiCL&-(1 (CuAv) 21.8 20'2 _1'3 _3'9

lar to G. The important anharmonic effects on the elastic,, (ClAu) 76.5 214 106 27

energies are included via the epitaxial functions

AEepi(A,as,G). The long-period superlattice limit fixes the | 1, (cuau,) 2) 173 -173

functional form ofVi¢(q) nearq=0 to be used in Eq813).  po,, (cuaw,) ~106 -109 -118 -109
To determine its behavior at finitg we note in Fig. 1a) that SQS4, (CuAus) 37.8 373 _52 -103
the relaxation energy is generally a decreasing function of,5 (CuAuw,) 795 86.9 5.1 6.7

the major wave number lengilp and reaches the smallest W3 (CuAw,) 211 223 78 6.8

values in the structures with all their weight at the Brillouin Y3 (CuAw,) 194 198 10 83

zone boundarye.g.,L1y, L1,, L1, in Table ). Thus, it is 73 (CuAw) 500 483 -282 —31.0

possible to approximately reproduce the LDA values of

fAuEE?[Ii(gn): using Eqg.(13) but changingV,(q) to a simple Zi Egiﬁﬂ; 15213?60 1427252 _631.5'34 _2_32'0
y1 (CwAu) -142 -55 —184 —182
Veel(@)= ABvo(X,) ~ ABcdl X, ) exd — (a/q0)2]. a2 (CuAw) 86.4 92.7 2.1 13.4
MXo(1=X,) B2 (CuAw) 40.1 376 —408 —36.0
(18) y2 (CuAw) 1.7 4.5 -6.7 —138
The wave vector cutoff. is the only adjustable parameter,
which we find to be approximately 0.6¢Zay) for both  NigNb-type (CigAu) 9.3 3.0 -91 -47
Cu-Au and Ni-Au. The functional form of Eq18) is shown  NigNb-type (CuAy) 30.9 8.4 182 31
as solid line in Fig. a). Figure Xb) compares the LDA
relaxation energieAE (o) with the results obtained via D1 (CwAu) 6.8 3.2 6.8 3.2
Eq. ( 13) with V(q) from Eq.(18). This simple expression D7 (CuAw) 12.9 8.4 12.9 8.3

is applied to~40 structures yielding an rms error of 10
meV/atom. Figure (b) shows that even though E¢L8) is

constructed using only the epitaxial deformation energies ogerves as a basis for the present approach to constructing
the constituents puré and pureB (i.e., like-atom interac-  force fields for bulk metallic alloys using as input chemical
tions A-A andB-B) and, therefore, does not have informa- energies from unrelaxed compounds and relaxation energies
tion about unlike-atomA-B) interactions, it provides a rea- from epitaxial constituents.

sonable description of the relaxation energies AfB, For the present study we have chosen Cu-Au as the pro-
compounds. This suggests that the ingredients of BBJ.[or  totypical binary alloy system with a largel2% in lattice
equivalent physical quantitigsare important inputs to any constant size mismatch. Cu-Au is a challenging test case for
FF that needs to reproduce atomic relaxatibnerefore, the — any force field that strives to reproduce all the terms in Eq.
force fields should be fitted to reproduce the elastic responsgz), since the formation enthalpiesH (o) are very small in
functionsAEy (A, a) andAEepi(A,aS,G). This conclusion this system, and we expect that the relaxation energy
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1154 Molar Volumes )

1
i =AHBA(0) = 2 2 Vi(R-R*+ID. - (19

110

-

o

(5]
1

To obtain the equilibrium volumé),=Q(x,), we equate

100 the derivative of the enthalpy with respect(to zero:

ax,)  blxs)  c(xs)
Q Q, Q0

©
o
1

(o8 o (o8

Volume/atom (a.u.)?
[{e]
(5]

[o=3
(4]
1

i _l d
_NHZ > Vi (IRi=Rj+1)). (20

o L

T T
0.0 0.2 0.4 0.6 0.8 1.0

. . To obtain the bulk moduluB,,, we note that there are two
Cu Atomic Fraction x Au ways to determine the elastic constant: from the acoustic
FIG. 2. VolumeQ(x) as a function of the compositiax (full phonons near the zone center and from the second deriva-
line), Vegard’s rule(dashed ling and the atomic volumes obtained tives of the total energy with respect to the strain compo-
by fully relaxing all structures with the FEircles. nents. Though not well knowfbut shown in Ref. 19 any

force field model that has pair interactions and a volume-
dependent term requires a vanishing second derivative of the

AEq(0) plays a significant role. Furthermore, accurateyojyme termU(x,0), if the two approaches to define elastic
LDA data"*** are available for many ordered configura- constants are to coincide. This gives

tions, both relaxed and unrelaxed, and there are accurate ex-
perimental data on interatomic distances and thermodynamic dU  a(x,) _b(x,) c(X,)
j— . j—

functions. dQ?T— 02 02 LQ?T =0. (21)

Equationg19)—(21) allow us to solve foa(x,), b(x,), and

Ill. GENERATING THE FORCE FIELD c(X,) in linear terms of the parametel?éj') contained in the
expansion forV;;(|R;—R;+1|). Then interpolating inx we
obtain the functions(x), b(x), andc(x) also linear inP{}’ .

As discussed in the previous section, the LDA input used (iii) Fit the bulk moduli of the solid elementhe expres-
in our procedure are as follow&a) The unit cell volumes for  sjon for the bulk modulus is also linear witR{’. It is
N compoundgin practice we usedll, =4, namely the two  equated to the LDA value
elements plusAzB (L1,) and AB; (L1,)]. (b) The bulk
moduli of the solid elements so as to capture the volume 1
deformation energAE,p of Eq. (7). (c) The Np energies 90 4

AEepi(A,aS,G) for the epitaxially deformed solid elements

along a few direction& and substrate lattice parametacs

SO as to capture the relaxation energy Bd). These corre- o . _
spond to pure solid elemeAtwith a fixed lattice constare, (iv) Fit unrelaxed enthalpies of ordered compounefsie

erpendicular ta5 and relaxed lattice constants parallel to retaining a maximum smoothness of the FF. In this step we
Perp HUR P require that our FF values for the enthalpies of various com-

G. (d) The unrelaxedformation enthalpies\H pa(o) for  pounds match the LDA values in the RMS sense. We would
NE structures (26 30), so as to capture the chemical forma-jike to this while having at the same time the smoothest
tion energiesAEgpem of Eq. (7). possible potential of the shortest range consistent with the

data. Longer range interactions should be introduced only if

this improves the fit. Thus, with the constraints given by Eq.
B. The force field generation steps (22) we minimize

A. Input data used in constructing the force field

2d2v 2Rdv
drz 7 dR

R
These equations for the two elements will be added con-
straints for the parameteR).

|r=1=Bipa - (22

Our method of generating the force field consists of 4

steps. )\E fx(ﬂ 2RndR
(i) Obtain an interpolation form for the volume(x). For T Jo | dR®

this purpose we make a polynomial interpolation of the vol-

umes of theNg=4 structuresA (fcc), AzB (L1,), ABs o e R ,

(L1,), andB (fcc). This is shown in Fig. 2. + 2 [EF(0)-Efa(0)]?=min. (23
(i) Expand the homogeneous gas term linearly in the pa- 7

rameters B! . For the aforementionel =4 structuresr, ~ This is a very simple process becawsg; andEgF are both

the equilibrium volumeQ,, equals the interpolated volume linear in the paramete!) . In Eq.(23) the sum inl is over
QO(x,) at the compositiorx,, of o. Then from Eqs(4) and  the pair interaction®\-A, B-B, andA-B. The powem of R
(3), now written for the enthalpy of formatiofEq. (6)], we  in the integrand acts to force a short range potential while the

obtain minimization of the derivative ofV,; acts to enforce a
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FIG. 3. The force field pair potentialg;(r) (in meV). Arrows FIG. 4. Root mean square errors of unrelaxed and relaxed ener-
denote the first and second nearest neighbor bond lengths in fcc Gijes as function of the fitting parametersX) in Eq. (23). We used
and fcc Au. The inset shows the largebehavior. interaction cutoff distanc®,,=11.3 Bohr.

smooth potential. The weighting paramekercontrols how ) _
much of the fit value is determined by the maximum smooth-als’ two (110, two (201, and one(111); Au = one (100,

ness and the shortest range condifitive first integral in Eq. one (110, one (201), and.one(lll). During the ep|t§1X|aI
(23)], or the enthalpy fifthe second sum in Eq23)]. The fitting process we approximate the out—of_—plane 2Iattlce con-
interaction cutoff radiR®) must be chosen optimally: if they Stantg from the volume-conserving conditiaa)- ag=a,

are too small, we cannot fit aMg energies{ELFJFR(U)} to  9ivenQ, andag, instead of obtainingy by minimizing the
{EL,_’SA(U)} because many structures could become IinearI)}Otal energy for each set of parameters.

dependent leading to the divergence of the determinative

equations used in the fit. On the other hand, if the cutoffs are

too large, there may be too many parameR{$[Eq. (5)] to IV. RESULTS
be adjusted. A. The resulting force field
_ The resulting FF is available via the World Wide Web at
C. Details URL http://www.sst.nrel.gov/data/download.html The func-

We use equal grids of radR{j’ for the three interactions tions V;;(R) are plotted in Fig. 3. The zero of the potential
(ij)=A-A, B-B, andA-B. The maximum radius of the grid corresponds to infinite interatomic separation. One observes
Ruax , that is the cutoff, was varied between 11.3, 13.3that the interaction¥;; are purely repulsive. The attractive
15.3, 17.3, and 19.3 Bohr. We could obtain equivalent fittingPart being taken care of by the homogeneous gas term
quality for all cutoffs, and for the same values of the param-U(X,{2) in Eq. (3). Observe thaVg(R) is very different
etersn and\. Only for the very small cutofR,,,,=9.3 Bohr ~ from the geometric mean betwe#&f,(R) and Vgg(R), as
the fitting was impossible. To compare the cutoff with theimplied by the simple model often used in alloy studiés.
interatomic distances, we mention that the first-neighbor dis-
tance is 4.75 Bohr in bulk fcc Cu and 5.47 Bohr in fcc Au 80 R S T S T
(LDA resulty. Therefore, the cutofR,,,=11.3 Bohr corre- ]
sponds to the fifth shell of neighbors in fcc Cu and the fourth 60 - Relaxed enthapies B
in fcc Au. When relaxing the configurations, we found useful ; predicted with FF
to set a hard core radiu8.6 Bohp at which the potentials 40 o -
Vi;(R) became infinite. That way we could avoid spuriously

nthalpy (meV)

relaxing into configurations with very small interatomic dis- 201 a -
tances. After relaxation we find the many interatomic dis- 1 5

tances and verify that they are all much larger than the hard® 2 ® 4 B
core radius. Thus the hard core radius had no effect otherg 1 o

than avoid falling into unphysical energy minima. The struc- E 201 4 i
ture definition of the configurations used here is given in 2 ] o

Table 11l of Ref. 7. We us&z= 32 unrelaxed structureB2 W -407 i
(CsCh, L1y, L1,, al, a2, BLl, B2, y1, y2, DO, -eo. o

(CusAu), “40,” DOy, (CuAwg), V1, V2, V3, W1, W2, 80 40 20 0 20 40 60 80

W3, Y1, Y2, Y3, Z1, Z2, Z3, DO,; (CusAu,), LPS3a
(CwAus), D1, D7, NigNb-type (CyAu), NigNb-type
(CuAug), SQS14, and SQS14. TheNp=11 epitaxial de- FIG. 5. The relaxed enthalpies predicted from thg&R vsthe
formation energies of elements were Euwo (100 epitaxi-  LDA results from Ref. 7.

LDA relaxed enthalpy (meV)
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FIG. 6. FF phonon frequencies compared with those obtained from the(ReA 34 for fcc Cu, fcc Au,L1, (CuzAu), L1, (CuAu),
L1y (CuAu), andL1; (CuAu).

B. Predictions the predictedelaxedenergy is minimum near the valuesrof
We next discuss the predictions of the FF for quantities?"d A where the rms error of the fitteshrelaxedenergy is
that were not fitted in the generation process. also minimum. Thus, fitting unrelaxed energies and epitaxial

deformation energies of the pure elements guides the fit cor-
1. Relaxed enthalpies of ordered compounds and random alloys rectly into predicting relaxed energies of ordered com-

One of the objectives of a good FF is to predict relaxationpounds' Using as input 32 unrelaxed energies plus 11 epitax-
ial deformation energies gives far=12 a prediction error of

energies for a wide range of ordered and disordered configd . . )
rations. We have previously calculated the relaxed LDA en38-0 meV/atom for the relaxed configurations. The predicted

ergies ofNg= 34 ordered configuratiofsWe now test how FF relaxed enthalpies are compared to the LDA relaxation in
well does our FF predict theelaxed LDA energies of the Fig. 5. We see that our force field fitted to unrelaxed energies
compounds? given that the only input used in its construc- Predicts very well the relaxed LDA energies of all configu-
tion is unrelaxed energies. Note that in Cu-Au the relaxatiorfations. If we fitboth the relaxed and unrelaxed LDA ener-
energies are very large and strongly configuration dependegies (a total of 63 structurgsthe rms error for the relaxed
(Table |). Figure 4 shows théttedrms error of the unrelaxed configurations drops to 6.1 meV/atom, while the quality of
energies and thpredictedrms error for the relaxed enthalp- the fit for the unrelaxed energies is the same. In what follows
ies, both plotted as functions of the smoothing parameter we refer to this force field as gk, r. In the FRr, g fit we

and powem in Eqg. (23). Observe that, as long as the cutoff used the geometries that were obtained from thgzFF to
Rmax (defined in Sec. 11l Cis not too large, the rms error of the unrelaxed LDA energies. As seen in Table I, the Au-rich
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1.2 1 1

figurations. The mixing enthalpXH ,,.{X) at compositiorx
] X = 0.25| can be written as the sum of the unrelax&tR) energy of
.09 i the random configuration plus the energy loweriig,. due
o6 unrelaxed I to atomic relaxation
06 I AH and X) = AEyR(X) + AE (). (24)
0 4_' For the principal compositions, the resuiits meV/atom are
0.0 I AH 4 d 0.25 =50.4- 45.9= 4.5,
g.g . . : . AH 4nd 0.50 =57.4-54.5=2.9,
0.71 o x=0.50 |t AH 20d 0.75 = 35.5-34.0=1.5. (25)
] © % Cu-Au
0'6'_ N [ Note that in Cu-Au the relaxation energy is as large as the
0.5 Y |

chemical(=unrelaxedl fixed-lattice energy. We find that the
i relaxation energy oscillates as a function of the supercell

T vy Au-Au size, converging rather slowly. For the cell size used to ob-
0.31 i tain our results the oscillations are already negligible, but it
0.1 | does take a few thousands of atoms to achieve this.

0.11

\ 2. Phonons of ordered compounds
~unrelaxe

One of the advantages of the FF with respect to the cluster

Bond Length Distribution

ge=J
>l

i

. expansions is its ability to deal with atomic motion. The
1.04 x =0.75 i phonon frequencies are the eigenvalues of the following
I eigenvalue problent®
0.8 unrelaxed ;| i
06 I w2<q>em<q>=% Dis(Q)€)5(0), (26)
0.47 ," i whereD;, ;5(q) is the dynamical matrix given by
0.21 / - 2V
. i) = (MiM;) ™23, 2 —extlia(Ri—Ry )],
4.5 . . 6.0 (27)
First Neighbor Distance (a.u.)
. 9V Sup XoXg
FIG. 7. Random alloy bond lengths calculated by fully relaxing —_—=-2 —Vi’j(R)— 3 Vi’j(R)
8000 supercells. IR IR p R R
. - . . XoXg
side exhibits very large relaxation, especially for structures

+
with (001) ordering, e.g.Z3 (CuAw), B2 (CuAw), and R?

L1, (CuAu) (see Table )l This can be understood on the

basis of our earlier workFig. 5 in Ref. 29 where it was ande;,(q) are phonon displacement eigenvectors. Using our
showed that the strain energy required to bring the constituFF the force constants are given explicitly by E2j7), where
ents to a common lattice constant alof@01] is anoma- i,j denote the atoms within the unit ceM; are the atomic
lously low due to strong anharmonic lattice softening of Cu.masses, Greek indices, 8 label the Cartesian components
For instance, starting from a high unrelaxed ene#fy,re-  of the position vectorsR;. The other symbols have their
laxes to lower its energy slightly below the cubicl, usual meaning. We have calculated the phonon spectra of
(CuAug) structure. The relaxation energies of random con-Cu, Au, CuyAu (L1,), CuAy (L1,), CuAu (L1,), and
figurations are difficult to calculate by direct methods sinceCuAu (L1,) using our FF and Eq$26)—(27), and compared
they require large supercells. We have calculated the relaxthe results with the LDA phonon frequencies obtained pre-
ation energy of Eq(10) for random alloys with composition viously in Ref. 34 using the density functional perturbation
x=0.5 by relaxing the energy of large supercells and avertheory. The excellent agreement of our FF phonon frequen-
aging the resulting total energies over different random areies with the LDA resultgFig. 6) is very reassuring because
rangements of atoms. The largest supercell had 8000 atonm® explicit phonon data were used in the fit. No imaginary
(20 times larger than the primitive cell in each direcjioft phonon frequency was found in FF, indicating that all the
this size, the results are almost equal for the different constudied compounds are dynamically stable.

Vii(R) , (28)

R=R,~R;+I
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3. Bond lengths of the random alloys (CuAu) structure has a tetragonal distortiofa~0.9, i.e., a

We used the 8000 atom supercell to determine the neareSpntraction along the axis and an expansion in the basal
neighbor bond lengths in random alloys. The results ar@lane. This results in a in-plane lattice parameter of 7.55
shown in Fig. 7 for the compositions=0.25, 0.50, and Bohr, which is only 2.3% smaller than the lattice parameter
0.75. It is interesting that at=0.75 the Cu-Cu bond length ©f unstrained fcc Au. Thereforé,1, (CuAu) can be depos-
becomes longer than the Cu-Au bond length. This finding!€d on Au with small epitaxial strain energy, and the total
agrees well with the LDA predictionfsand the results ob- €Nergy is approximately the weighted average betwesp
tained from EMT-type force fiel® but disagrees with the and fcc Au. Th|_s also suggests that it should be possible to
study of Mousseau and Thorfewho used a simple alloy 9roW such multilayers experimentally.

EAM modef” fitted for the pure elements only. This bond
length inversion phenomenon has been established
experimentall§® in the Ni-Au system, and there are indica- V. SUMMARY

tions that it may be true also frCu;_xAu. We have showed that pair interaction potentials are able

to describe the Cu-Au alloy system, which has a large con-
4. Ground state search stituent size mismatch. Significantly, the knowledge of the
. unrelaxed formation enthalpies, together with the epitaxial
The ground state search was made differently on the Cus . X ’ ; - :
rich and on the Au-rich sides of the phase diagram: On théjeformatlon energies of the elements, is sufficient to predict

. ) ; relaxation and even the phonon spectra of the intermetallic
Au—rlch_3|de, we considered up to .16 plgnes: of Cu and plalneéompounds No knowledge of compound relaxation has to be
of Au, in any order. On the Cu-rich side, it was clear that '

only the small supercell configuratiohsl,, “40,” DOy, assumed. To attain a good predictive power one rfijgit

. : the pair potentials to a large number of unrelaxed enthalpies,
and the like had a chance of being the ground state. Thus, w ) fit the pair potentials to a large number of epitaxially

considered up to 8 planes such #&Su,Cu, (Cu,Au), d

. eformed elements, artil ) add a volume-dependent term to
gﬁg?ﬁé \IivDe Al_JﬁSt?ed d bgch t:)h?j(:tgﬁr_\?nfigeduf;ﬁgjxsagtneéslocs"ﬁ the Cauchy restrictive relations. We found that the unlike
composition. We find that both a roacheg agree on the esz’a_toms pair interactioV,_g could not be guessed from the
sentipal featu.res of the phase dia prra)(imAt x=095 theL1 pair interactions of like atom¥,. and Vg_g but is an
structure has the IowesF; formatiog energy amc.m’g all thg Conipdependent function that must be extracted from the data
figurations in both methodsii) On the Cu-rich side, the set. For this reason we used an unusually large number of

configurationL1, (CusAu) has the lowest formation en unrelaxed compound energies in the data set. In a certain
) - i ) . ; ;
thalpy. Therefore, the ground state line is simple on the Cuy &, bar potentials compete with cluster expansions in the

. S ; . description of an alloy. The pair potentials have the advan-
rich side: it consists of a line from Cu b1, (CusAu) at tage of describing chemical and elastic properties simulta-
x=0.25 and then to Ld (CuAu) at x=0.5. These features o, ‘¢ at the cost of a more complicate fitting. Unlike
are common to CE and FFiii) FOF _the Au-rich side we find the cluster expansion, the present potentials show that the
that within the Cy_,Au, composition range 0'&X<0'87 interaction is short ranged indeed, physically consistent with
t_he grpund states are formed by a quasicontinuum of COMthe heavy screening of atoms by the free electrons of the
figurations that may be thought of B4, (CuAu) stacked on

. . metal. The potential developed in this work is available at
Au. For instance, the ground §tate><at0.75 with 16 planes the site http://www.sst.nrel.gov/data/download.html
is a (Au)g/(CuAu), superlattice along/001). Our LDA
cluster expansion also predit{®01) superlattices as ground
states in the Au-rich region: (Cu)/(Ap)at x=2 and
(Cu)/(Au),/(Cu)/(Au),/(Cu)/(Au),/(Cu)/(Au), at x=3.
The energy differences with respect to otli@dl) superlat- This work was supported by the Office of Energy Re-
tices are very smallonly a few meV/atom The surprising search, Basic Energy Sciences, Materials Science Division,
prediction of Au-on-CuAu superlattices alon@01) as U.S. Department of Energy, under Contract No. DE-AC36-
ground states has a simple explanation: the relaxég  83CH10093.
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