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Fitting of accurate interatomic pair potentials for bulk metallic alloys
using unrelaxed LDA energies

L. G. Ferreira,* V. Ozoliņš, and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 4 September 1998!

We present a general and simple method for obtaining accurate, local density approximation~LDA- ! quality
interatomic potentials for a large class of bulk metallic alloys. The method is based on our analysis of atomic
relaxation, which reveals that the energy released in the relaxation process can be approximated by calculating
the epitaxially constrained energies of the constituentsA and B. Therefore, the pair potential is fitted to the
LDA-calculated epitaxial energies of the constituents~to capture the relaxation energies!, and to the unrelaxed
energies of orderedAnBm compounds~to capture the fixed-lattice ‘‘chemical’’ energy!. The usefulness of our
approach is demonstrated by carrying out this procedure for the Cu12xAux alloy system. The resulting pair
potential reproduces the relaxed LDA formation energies of ordered compounds rather accurately, even though
we used only unrelaxed energies as input. We also predict phonon spectra of the elements and ordered
compounds in very good agreement with the LDA results. From the calculations for'10 000 atom supercells
representing the random alloy, we obtain the bond lengths and relaxation energies of the random phase that are
not accessible to direct LDA calculations. We predict that, while in Cu-rich alloys the Cu-Cu bond is shorter
than the Cu-Au bond, at higher Au compositions this order is switched. Furthermore, we find that Au-rich
Cu12xAux alloys have ground states that correspond to~001! superlattices ofn monolayers of fcc Au stacked
on m monolayers of theL10 CuAu-I structure. The potential developed in this work is available at the site
http://www.sst.nrel.gov/data/download.html for interested users.@S0163-1829~99!03525-0#
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I. INTRODUCTION

This paper deals with the energies of atomic configu
tions needed in constructing a thermodynamic description
substitutional alloys. Such a thermodynamic description c
cerns the energies of various ordered, random, partially
dered, and partially disordered configurations of abulk alloy
~not a surface! with full site occupancies~no vacancies!.
There are currently two general approaches to describing
energies of such general substitutional lattice configuratio
~i! The cluster expansion (CE) method.1,2 Here one expands
the total energy of an atomically relaxed lattice configurat
s in a set of ‘‘effective cluster interactions’’$J%

ECE~s!5J01J1x1(
i , j

Ji j Ŝi Ŝj1(
i , j ,k

Ji jk Ŝi Ŝj Ŝk1•••.

~1!

The lattice sitesi 51•••N are occupied by anA atom ~in
which case the spin variableŜi takes the value21) or by a
B atom (Ŝi511), andJi j are pair energies,Ji jk are three-
body energies, etc. A set of spin values$Ŝi( i 51, . . . ,N)%
defines a lattice configurations. In this approach,ECE(s)
represents the configurational energy in which all atoms
relaxed to their nearest local equilibrium positions for t
particular configurations. Since explicit atomic position co
ordinates are thereby integrated away, no geometric~i.e.,
atomic positions! or dynamic~i.e., phonons! information is
obtainable from the knowledge ofECE(s). Instead,s repre-
sents the symmetry and the crystal type alone. In recent y
it has been shown3 ~a! how can the effective cluster interac
tions $J% be obtained from first-principles local density a
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-
of
-
r-

he
s:

n

re

rs

proximation ~LDA ! calculations,~b! how can the conver-
gence of the series Eq.~1! be accelerated by combining re
and reciprocal space representations,4 and, once the cluste
interactions$J% are given,~c! how can Eq.~1! be subjected
to Monte Carlo simulations, yielding both zero temperatu
ground state structures and finite-temperature thermo
namic quantities of the nonvibrating lattice.5–7

(ii) The interatomic potential approach.8 Here one con-
structs a ‘‘force field’’ ~FF!, expressing the total energ
EFF(s,$Ri%) of a ‘‘spin’’ configurations explicitly in terms
of the positions$Ri% of all atoms, i.e., its Born-Oppenheime
surface. Usually the force field is cast in terms of simp
interatomic potentials, such as

EFF~s,$Ri%!5U~V!1(
i , j

Vi j ~Ri ,Rj !

1(
i , j ,k

Vi jk~Ri ,Rj ,Rk!1•••, ~2!

whereU(V) is a volume (V) term, Vi j are pair potentials,
Vi jk are three-body potentials, etc. Since the atomic positi
$Ri% are included explicitly, Eq.~2! contains both geometric
and phonon information. There is no general theory of w
analytic forms should the functions$Vi j ,Vi jk , . . . % assume,
and so one uses guessed forms inspired by specific theo
cal frameworks, e.g., density functional,9,10 tight-binding,11,12

or pseudopotential theory.8 Examples of force-fields for me
tallic systems include the embedded atom method9 ~EAM!,
the effective medium theory10 ~EMT!, the tight-binding
inspired11,12 classic potentials, while examples in semico
ductor systems include the valence force field,13 the shell
model,14 the Tersoff potential,15 and others.16 In recent years,
1687 ©1999 The American Physical Society
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1688 PRB 60L. G. FERREIRA, V. OZOLIŅŠ, AND ALEX ZUNGER
it has been shown how the interatomic potentials can be
from experiment and theory, and how Eq.~2! can be used in
continuous space Monte Carlo simulations~involving simul-
taneous spin-flips and atomic displacements! to obtain ther-
modynamic information.17

A major problem in deriving force fields or cluster expa
sions from the local denisty approximation~LDA ! is the
need to obtain and fitrelaxedenergies for numerous struc
tures, since it has been shown18 that the atomic relaxation
can sensitively control alloy phase stability. In the pres
work we aim to derive a force field from the LDA data th
are easily obtainable in direct calculations: energies of
elemental solid constituentsA andB in different strain con-
figurations andunrelaxedenergies of a set of simple ordere
compounds$AnBm%. Our strategy can be easily applied
any metallic alloy, providing accurate, LDA-quality pote
tials from a few inexpensive~i.e., unrelaxed! first-principles
calculations. The resulting force field has the followin
simple form:

EFF~s,$Ri%!5U~x,V!1
1

N (
i , j

(
l

Vi j ~ uRi2Rj1 lu!.

~3!

In this expression,EFF is the total energy per atom,i and j
label atoms in the unit cell,N is the number of atoms in th
cell, l is the superlattice vector, and the sum overl extends
over all cells of the crystal. The first term in Eq.~3! is the
homogeneous electron gas term19 and depends on the ave
age atomic volumeV and the compositionx.20 It is written
as

U~x,V!5a~x!
V~x!

V
1b~x!

V~x!2

V2
1c~x!

V~x!3

V3
, ~4!

while the pair interactions21 are written as cubic splines:

Vi j ~R!5(
I 51

3

Pi j
(I )S 12

R

Ri j
(I )D 3

u~Ri j
(I )2R!. ~5!

For a binaryA12xBx alloy there are only three pair interac
tion functionsVi j , corresponding toI 5A-A, A-B, andB-B
pairs. The range of the interaction is given by the cutoff ra
Ri j

(I ) . Within the region limited by the cutoff, the expansio
represents a complete set of basis functions. These func
have continuous first and second derivatives, which are
sential for calculating the elastic constants and phonon
quencies.

Our FF can be compared with the embedded at
method9 and the effective medium theory:10 In all three cases
the main problem is to find good pair interactions.22 The
other terms@the embedding energy in EAM or EMT, or th
term U(x,V) in the present case# are obtained as the differ
ence between the total energy and the energy of the pairs
making very simple assumptions. OurU(x,V) is much sim-
pler than what is commonly used in EAM work, yet it
sufficient for the treatment of dense metallic alloys. As is
case in all methods of force field generation, a crucial po
is to assess to what extent the pair potentials can be use
very different atomic configurations. In our case, the adop
format for U(x,V) would exclude its use in low densit
fit
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systems, such as surfaces. On the other hand, our three
interaction functionsVAA(R), VBB(R), andVAB(R), are de-
termined with precision for a very broad range of interatom
distancesR. Thus, as long as only pairs are needed to
scribe the dense atomic configurations, our FF can be use
all sorts of dense atomic arrangements, either face-cent
cubic, bcc, or noncubic configurations. The claim is partia
verified in this work, where we deal with fcc and some b
based configurations, and in our previous work on the sys
Ni-Al, where fcc and bcc had to be dealt wit
simultaneously.19

Previous constructions of force fields differ widely in th
type of physical quantities used to fit the potential. In fa
there seems to be no general consensus on which colle
of physical properties should be fitted to construct a go
bulk alloy force field: cohesive energies, lattice constan
bulk moduli, defect formation energies, etc. Therefore,
start our theoretical development by establishing which ty
of physical input should be used to obtain a bulk force fie
that accurately describes bulk relaxation energies.18

II. DESCRIBING THE ATOMIC RELAXATION
IN COMPOUNDS

Having selected a rather general form of a pair poten
in Eqs.~3!–~5!, its free parameters could be fitted to nume
ous choices of physical quantities. Since we are intereste
accurate energeticsEFF(s,$Ri%) for arbitrary bulk configu-
rations, let us first examine the physical content of such
ergies. The formation enthalpy of configurations with com-
positionx,

DH~s!5E~s!2xE~A!2~12x!E~B!, ~6!

can be expressed23 as a sum of three terms

DH~s!5DEVD~x!1DHchem~s!1DErel~s!. ~7!

Here, the volume-deformation~VD! energyDEVD(x) is the
energy required to bring the pure elementsA andB ~with the
equilibrium lattice constantsaA and aB , respectively! to a
common lattice constanta. The change in the energy is give
by

DEVD~x!5min
a

@~12x!DEbulk~A,a!1xDEbulk~B,a!#.

~8!

To captureDEVD one needs to emulate the bulk moduli
pureA andB. Second,DHchem(s) is the energy change du
to intermixing of the pureA andB solids already prepared a
the lattice constanta and forming the structures with all
atoms at the ideal unrelaxed~UR! lattice sites. To capture
DHchem(s) we need to emulate the unrelaxed LDA form
tion energy of a compounds:

DHchem~s!5DHLDA
UR ~s!2DEVD~x!. ~9!

Finally, DErel(s) is the relaxation energy gained by allowin
the atoms in structureAB(s,UR,a) to relax from the ideal
sites to minimize the total energy. The energy change
given by

DErel~s!5DHLDA
(R) ~s!2DHLDA

(UR)~s!. ~10!
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FIG. 1. ~a! The LDA relaxation energyDErel(s) as a function of the major wave number for ordered Cu-Au structures~symbols!. Solid
line is from Eq.~18!. ~b! Comparison between the directly calculated LDA relaxation energiesDErel(s) and those obtained using the simp
formula of Eq.~18!.
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We aim to develop a general method for constructing fo
fields that treats all the contributions in Eq.~7! simulta-
neously. We note that the volume deformation energ
DEVD(x) can be easily obtained from LDA equations-o
stateDEbulk(a) calculations for the pure constituentsA and
B. The chemical contributionDHchem(s) requires only
knowledge of the energies of compoundswithout relaxation,
which are easily obtainable from LDA calculations. Thu
our fit will use as input both the elastic properties of t
constituents and the unrelaxed chemical energies of c
pounds. The behavior of theDErel(s) term in Eq.~7! is less
well understood, and it has proven to be difficult to rep
duce using fitted force fields. To understand which type
input quantities should be fitted so as to reproduceDErel(s),
consider the classical elastic~els! energy Hamiltonian24,25

dEels~$Ŝi ,uia%!5 (
ia, j b

F ia, j b uia uj b 1(
i , j b

Ki , j b Ŝi uj b ,

~11!

where i , j label the lattice sites, Greek indices denote
Cartesian components of vectors, anduia are the atomic dis-
placements.F ia, j b is the harmonic force constant betwe
atoms i and j, and Ki , j b is the Kanzaki force24 along the
Cartesian directionb on site j due to an atom at sitei. The
first term represents the harmonic elastic energy due to
placements of atoms, while the second term gives a coup
between the spin configurational (Ŝi) and elastic (uia) de-
grees of freedom. For a given configurations the atomic
displacements are found from the equilibrium~zero force!
condition

dEels

]uj b
5(

i
Ki , j b Ŝi12(

ia
F ia, j b uia50, ~12!

which can be solved in reciprocal space25,26 to give the re-
laxation energy in terms of the spin variables only

DErel~s!52
1

2 (
q

Vrel~q!uS~s,q!u2, ~13!

whereS(s,q) is the structure factor of configurations
e

,

,

-

-
f

e

is-
g

S~s,q!5(
j

Ŝje
2 iqRj . ~14!

The pair interactionVrel(q) is given by

Vrel~q!5(
a,b

Ka* ~q!@D21~q!#a,bKb~q!, ~15!

whereD(q) is the lattice Fourier transform of the force co
stant matrixF, i.e., it is proportional to the dynamical ma
trix, and

Kb~q!5(
j

Ki , j be2 iqRj . ~16!

The inverse of the dynamical matrix appearing in Eq.~15! is
nonanalytic at the zone-centerG point since the acoustic fre
quencies tend to zero and the sound velocity depends on
direction ofq˜0. This leads to a nonanaliticity ofVrel(q) at
the G point, i.e.,Vrel(q̂) depends on the directionq̂ of the
wave vector at the origin.25,26Equation~13! suggests that the
relaxation energy is a simple function of the structure fac
in reciprocal space. One could obtain the parametersKi , j b
andF ia, j b directly from the LDA, as done in the computa
tional alchemy linear response method.27 However, such a
treatment alone is not always satisfactory since the LDA
laxation energies exhibit several features that are beyond
simple second order expansion of Eq.~11!: ~i! Direct LDA
calculations of relaxation energies predict nonzero rel
ations of thec/a ratio in tetragonal~e.g.,L10) and trigonal
(L11) structures, whileDErel obtained from Eq.~13! is zero
for both L10 andL11.28 ~ii ! The Hamiltonian~11! does not
include higher-order~e.g., anharmonic! effects, i.e., terms
involving higher powers ofSi anduia . For instance, it has
been shown7 that anharmonic elastic relaxations are impo
tant in the size mismatched noble metal alloy systems.
see the form of the ‘‘effectiveVrel(q)’’ produced by explicit
LDA energy minimizations@i.e., not limited by~i! and ~ii !
above#, we plotted in Fig. 1~a! as solid symbols the ratio
DErel

LDA(s)/uS(s,q)u2 as a function of the major structur
wave number, i.e., thatq for which uS(s,q)u2 is maximal.
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Our task is to model this ‘‘effectiveVrel(q)’’ in a simple way
that goes beyond the harmonic response Eq.~ 11!, and re-
veals which type of physical quantities we should include
a FF fit to accurately capture atomic relaxation. Singula
of the functionVrel(q) at the originq˜0 leads to a direc-
tional dependence of the relaxation energies for long-pe
superlattice (A)n /(B)n . This is illustrated in Fig. 1~a! by
many data points atq50 corresponding to different supe
lattice orientationsĜ. This long-period limit is given by the
‘‘constituent strain’’4 energy, which can be calculated fro
the following expression:

DECS~x,Ĝ!5min
as

@~12x!DEepi~A,as ,Ĝ!

1xDEepi~B,as ,Ĝ!#. ~17!

Herex is the composition of structures andDEepi(A,as ,Ĝ)
is the epitaxial deformation energy29 describing the solid
constituent strained epitaxially on a substrate planeĜ with
lattice constantas and allowed to relax in the direction or
thogonal to the substrate plane. Equation~17! states that the
strain energy of a long-period superlattice alongĜ is given
by the sum of the strain energies of the pure constitue
deformed to a common in-plane lattice constant perpend
lar to Ĝ. The important anharmonic effects on the elas
energies are included via the epitaxial functio
DEepi(A,as ,Ĝ). The long-period superlattice limit fixes th
functional form ofVrel(q) nearq50 to be used in Eqs.~13!.
To determine its behavior at finiteq, we note in Fig. 1~a! that
the relaxation energy is generally a decreasing function
the major wave number lengthq, and reaches the smalle
values in the structures with all their weight at the Brillou
zone boundary~e.g.,L10 , L12 , L11 in Table I!. Thus, it is
possible to approximately reproduce the LDA values
DErel(s) using Eq.~13! but changingVrel(q) to a simple
function:

Ṽrel~q!5
DEVD~xs!2DECS~xs ,q̂!

4xs~12xs!
exp@2~q/qc!

2#.

~18!

The wave vector cutoffqc is the only adjustable paramete
which we find to be approximately 0.6(2p/a0) for both
Cu-Au and Ni-Au. The functional form of Eq.~18! is shown
as solid line in Fig. 1~a!. Figure 1~b! compares the LDA
relaxation energiesDErel(s) with the results obtained via
Eq. ~ 13! with Ṽrel(q) from Eq. ~18!. This simple expression
is applied to'40 structures yielding an rms error of 1
meV/atom. Figure 1~b! shows that even though Eq.~18! is
constructed using only the epitaxial deformation energies
the constituents pureA and pureB ~i.e., like-atom interac-
tions A-A and B-B) and, therefore, does not have inform
tion about unlike-atom (A-B) interactions, it provides a rea
sonable description of the relaxation energies ofAnBm
compounds. This suggests that the ingredients of Eq.~18! @or
equivalent physical quantities# are important inputs to any
FF that needs to reproduce atomic relaxation.Therefore, the
force fields should be fitted to reproduce the elastic respo

functionsDEbulk(A,a) and DEepi(A,as ,Ĝ). This conclusion
y
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serves as a basis for the present approach to constru
force fields for bulk metallic alloys using as input chemic
energies from unrelaxed compounds and relaxation ener
from epitaxial constituents.

For the present study we have chosen Cu-Au as the
totypical binary alloy system with a large~12% in lattice
constant! size mismatch. Cu-Au is a challenging test case
any force field that strives to reproduce all the terms in E
~7!, since the formation enthalpiesDH(s) are very small in
this system, and we expect that the relaxation ene

087TABLE I. Formation enthalpies~in meV/atom! of ordered
Cu-Au compounds calculated directly from the LDA~see Ref. 7!
and from the fitted force field using unrelaxed and a few relax
structures (FFUR1R), as describd in Sec. IV B 1. Structures are d
scribed in Table III of Ref. 7.

Structure Unrelaxed Relaxed
LDA FFUR1R LDA FFUR1R

L10 ~CuAu! 236.1 232.1 248.2 254.4
B2 ~CuAu! 229.9 231.5 229.9 233.0
L11 ~CuAu! 160.3 162.8 132.5 133.3
‘‘40’’ ~CuAu! 219.0 218.3 223.0 226.3
V2 ~CuAu! 1170.6 1180.0 152.2 147.3
W2 ~CuAu! 115.7 117.6 220.9 224.9
Y2 ~CuAu! 159.5 159.3 24.2 24.5
Z2 ~CuAu! 1136.4 1131.7 26.7 27.8

L12 (Cu3Au) 237.3 237.3 237.3 237.3
D022 (Cu3Au) 232.7 232.9 232.8 233.4
D023 (Cu3Au) 233.3 235.1 233.6 235.8
LPS3a (Cu3Au) 234.1 235.8
SQS14a (Cu3Au) 156.5 148.0 15.5 14.5
V1 (Cu3Au) 136.1 132.2 78.6 65.8
W1 (Cu3Au) 22.0 22.8 7.0 8.1
Y1 (Cu3Au) 21.8 20.2 21.3 23.9
Z1 (Cu3Au) 76.5 71.4 10.6 7.7

L12 (CuAu3) 2! 217.3 217.3
D022 (CuAu3) 210.6 210.9 211.8 210.9
SQS14a (CuAu3) 37.8 37.3 25.2 210.3
V3 (CuAu3) 79.5 86.9 5.1 6.7
W3 (CuAu3) 21.1 22.3 7.8 6.8
Y3 (CuAu3) 19.4 19.8 21.0 28.3
Z3 (CuAu3) 50.0 48.3 228.2 231.0
a1 (Cu2Au) 123.0 122.2 61.4 63.0
b1 (Cu2Au) 51.0 47.5 23.8 22.2
g1 (Cu2Au) 214.2 25.5 218.4 218.2

a2 (CuAu2) 86.4 92.7 2.1 13.4
b2 (CuAu2) 40.1 37.6 240.8 236.0
g2 (CuAu2) 1.7 4.5 26.7 213.8

Ni8Nb-type (Cu8Au) 9.3 3.0 29.1 24.7
Ni8Nb-type (CuAu8) 30.9 8.4 18.2 23.1

D1 (Cu7Au) 6.8 3.2 6.8 3.2
D7 (CuAu7) 12.9 8.4 12.9 8.3
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DErel(s) plays a significant role. Furthermore, accura
LDA data7,29,30 are available for many ordered configur
tions, both relaxed and unrelaxed, and there are accurate
perimental data on interatomic distances and thermodyna
functions.

III. GENERATING THE FORCE FIELD

A. Input data used in constructing the force field

As discussed in the previous section, the LDA input us
in our procedure are as follows.~a! The unit cell volumes for
NV compounds@in practice we usedNV54, namely the two
elements plusA3B (L12) and AB3 (L12)]. ~b! The bulk
moduli of the solid elements so as to capture the volu
deformation energyDEVD of Eq. ~7!. ~c! The ND energies
DEepi(A,as ,Ĝ) for the epitaxially deformed solid elemen
along a few directionsĜ and substrate lattice parametersas ,
so as to capture the relaxation energy Eq.~10!. These corre-
spond to pure solid elementA with a fixed lattice constantas

perpendicular toĜ and relaxed lattice constants parallel
Ĝ. ~d! The unrelaxedformation enthalpiesDHLDA

UR (s) for
NE structures (20230), so as to capture the chemical form
tion energiesDEchem of Eq. ~7!.

B. The force field generation steps

Our method of generating the force field consists o
steps.

(i) Obtain an interpolation form for the volumeV(x). For
this purpose we make a polynomial interpolation of the v
umes of theNV54 structures:A ~fcc!, A3B (L12), AB3
(L12), andB ~fcc!. This is shown in Fig. 2.

(ii) Expand the homogeneous gas term linearly in the
rameters Pi j

(I ) . For the aforementionedNV54 structuress ,
the equilibrium volumeVs equals the interpolated volum
V(xs) at the compositionxs of s. Then from Eqs.~4! and
~3!, now written for the enthalpy of formation@Eq. ~6!#, we
obtain

FIG. 2. VolumeV(x) as a function of the compositionx ~full
line!, Vegard’s rule~dashed line!, and the atomic volumes obtaine
by fully relaxing all structures with the FF~circles!.
ex-
ic

d

e

-

-

-

a~xs!1b~xs!1c~xs!

5DHLDA
UR ~s!2

1

N (
i , j

(
l

Vi j ~ uRi2Rj1 lu!. ~19!

To obtain the equilibrium volumeVs5V(xs), we equate
the derivative of the enthalpy with respect toV to zero:

a~xs!

Vs
12

b~xs!

Vs
13

c~xs!

Vs

5
1

N

d

dVs
(
i , j

(
l

Vi j ~ uRi2Rj1 lu!. ~20!

To obtain the bulk modulusBs , we note that there are two
ways to determine the elastic constant: from the acou
phonons near the zone center and from the second de
tives of the total energy with respect to the strain comp
nents. Though not well known~but shown in Ref. 19!, any
force field model that has pair interactions and a volum
dependent term requires a vanishing second derivative o
volume termU(x,V), if the two approaches to define elast
constants are to coincide. This gives

d2U

dVs
2

52
a~xs!

Vs
2

16
b~xs!

Vs
2

112
c~xs!

Vs
2

50. ~21!

Equations~19!–~21! allow us to solve fora(xs), b(xs), and
c(xs) in linear terms of the parametersPi j

(I ) contained in the
expansion forVi j (uRi2Rj1 lu). Then interpolating inx we
obtain the functionsa(x), b(x), andc(x) also linear inPi j

(I ) .
(iii) Fit the bulk moduli of the solid elements. The expres-

sion for the bulk modulus is also linear withPi j
(I ) . It is

equated to the LDA value

1

9V (
l

S R2
d2V

dR2
22R

dV

dRD uR5 l5BLDA . ~22!

These equations for the two elements will be added c
straints for the parametersPi j

(I ) .
(iv) Fit unrelaxed enthalpies of ordered compoundswhile

retaining a maximum smoothness of the FF. In this step
require that our FF values for the enthalpies of various co
pounds match the LDA values in the RMS sense. We wo
like to this while having at the same time the smooth
possible potential of the shortest range consistent with
data. Longer range interactions should be introduced onl
this improves the fit. Thus, with the constraints given by E
~22! we minimize

l(
I
E

0

`S d3VI

dR3 D 2

Rn dR

1 (
s

ND1NE

@EFF
UR~s!2ELDA

UR ~s!#2 5 min. ~23!

This is a very simple process becauseVab andEFF
UR are both

linear in the parametersPi j
(I ) . In Eq. ~23! the sum inI is over

the pair interactionsA-A, B-B, andA-B. The powern of R
in the integrand acts to force a short range potential while
minimization of the derivative ofVab acts to enforce a
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smooth potential. The weighting parameterl controls how
much of the fit value is determined by the maximum smoo
ness and the shortest range condition@the first integral in Eq.
~23!#, or the enthalpy fit@the second sum in Eq.~23!#. The
interaction cutoff radiiR(I ) must be chosen optimally: if the
are too small, we cannot fit allNE energies$EFF

UR(s)% to
$ELDA

UR (s)% because many structures could become linea
dependent leading to the divergence of the determina
equations used in the fit. On the other hand, if the cutoffs
too large, there may be too many parametersPi j

(I ) @Eq. ~5!# to
be adjusted.

C. Details

We use equal grids of radiiRi j
(I ) for the three interactions

( i j )5A-A, B-B, andA-B. The maximum radius of the grid
RMAX , that is the cutoff, was varied between 11.3, 13
15.3, 17.3, and 19.3 Bohr. We could obtain equivalent fitt
quality for all cutoffs, and for the same values of the para
etersn andl. Only for the very small cutoffRmax59.3 Bohr
the fitting was impossible. To compare the cutoff with t
interatomic distances, we mention that the first-neighbor
tance is 4.75 Bohr in bulk fcc Cu and 5.47 Bohr in fcc A
~LDA results!. Therefore, the cutoffRmax511.3 Bohr corre-
sponds to the fifth shell of neighbors in fcc Cu and the fou
in fcc Au. When relaxing the configurations, we found use
to set a hard core radius~3.6 Bohr! at which the potentials
Vi j (R) became infinite. That way we could avoid spurious
relaxing into configurations with very small interatomic di
tances. After relaxation we find the many interatomic d
tances and verify that they are all much larger than the h
core radius. Thus the hard core radius had no effect o
than avoid falling into unphysical energy minima. The stru
ture definition of the configurations used here is given
Table III of Ref. 7. We useNE532 unrelaxed structures:B2
~CsCl!, L10 , L11 , a1, a2, b1, b2, g1, g2, DO22
(Cu3Au), ‘‘40,’’ DO22 (CuAu3), V1, V2, V3, W1, W2,
W3, Y1, Y2, Y3, Z1, Z2, Z3, DO23 (Cu6Au2), LPS3a
(Cu9Au3), D1, D7, Ni8Nb-type (Cu8Au), Ni8Nb-type
(CuAu8), SQS14a , and SQS14b . TheND511 epitaxial de-
formation energies of elements were Cu5 two ~100! epitaxi-

FIG. 3. The force field pair potentialsVi j (r ) ~in meV!. Arrows
denote the first and second nearest neighbor bond lengths in fc
and fcc Au. The inset shows the largeR behavior.
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als, two ~110!, two ~201!, and one~111!; Au 5 one ~100!,
one ~110!, one ~201!, and one~111!. During the epitaxial
fitting process we approximate the out-of-plane lattice c
stantai from the volume-conserving conditionai•as

25VA ,
givenVA andas , instead of obtainingai by minimizing the
total energy for each set of parameters.

IV. RESULTS

A. The resulting force field

The resulting FF is available via the World Wide Web
URL http://www.sst.nrel.gov/data/download.html The fun
tions Vi j (R) are plotted in Fig. 3. The zero of the potenti
corresponds to infinite interatomic separation. One obse
that the interactionsVi j are purely repulsive. The attractiv
part being taken care of by the homogeneous gas t
U(x,V) in Eq. ~3!. Observe thatVAB(R) is very different
from the geometric mean betweenVAA(R) and VBB(R), as
implied by the simple model often used in alloy studies.31

Cu
FIG. 4. Root mean square errors of unrelaxed and relaxed e

gies as function of the fitting parameters (n,l) in Eq. ~23!. We used
interaction cutoff distanceRmax511.3 Bohr.

FIG. 5. The relaxed enthalpies predicted from the FFUR1R vs the
LDA results from Ref. 7.
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FIG. 6. FF phonon frequencies compared with those obtained from the LDA~Ref. 34! for fcc Cu, fcc Au,L12 (Cu3Au), L12 (CuAu3),
L10 ~CuAu!, andL11 ~CuAu!.
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B. Predictions

We next discuss the predictions of the FF for quantit
that were not fitted in the generation process.

1. Relaxed enthalpies of ordered compounds and random allo

One of the objectives of a good FF is to predict relaxat
energies for a wide range of ordered and disordered confi
rations. We have previously calculated the relaxed LDA
ergies ofNE534 ordered configurations.7 We now test how
well does our FF predict therelaxedLDA energies of the
compounds,32 given that the only input used in its constru
tion is unrelaxed energies. Note that in Cu-Au the relaxat
energies are very large and strongly configuration depen
~Table I!. Figure 4 shows thefittedrms error of the unrelaxed
energies and thepredictedrms error for the relaxed enthalp
ies, both plotted as functions of the smoothing parametel
and powern in Eq. ~23!. Observe that, as long as the cuto
Rmax ~defined in Sec. III C! is not too large, the rms error o
s

n
u-
-

n
nt

the predictedrelaxedenergy is minimum near the values ofn
andl where the rms error of the fittedunrelaxedenergy is
also minimum. Thus, fitting unrelaxed energies and epita
deformation energies of the pure elements guides the fit
rectly into predicting relaxed energies of ordered co
pounds. Using as input 32 unrelaxed energies plus 11 ep
ial deformation energies gives forn512 a prediction error of
8.0 meV/atom for the relaxed configurations. The predic
FF relaxed enthalpies are compared to the LDA relaxation
Fig. 5. We see that our force field fitted to unrelaxed energ
predicts very well the relaxed LDA energies of all config
rations. If we fitboth the relaxed and unrelaxed LDA ene
gies ~a total of 63 structures! the rms error for the relaxed
configurations drops to 6.1 meV/atom, while the quality
the fit for the unrelaxed energies is the same. In what follo
we refer to this force field as FFUR1R. In the FFUR1R fit we
used the geometries that were obtained from the FFUR fit to
the unrelaxed LDA energies. As seen in Table I, the Au-r
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side exhibits very large relaxation, especially for structu
with ^001& ordering, e.g.,Z3 (CuAu3), b2 (CuAu2), and
L10 ~CuAu! ~see Table I!. This can be understood on th
basis of our earlier work~Fig. 5 in Ref. 29! where it was
showed that the strain energy required to bring the cons
ents to a common lattice constant along@001# is anoma-
lously low due to strong anharmonic lattice softening of C
For instance, starting from a high unrelaxed energy,Z3 re-
laxes to lower its energy slightly below the cubicL12
(CuAu3) structure. The relaxation energies of random co
figurations are difficult to calculate by direct methods sin
they require large supercells. We have calculated the re
ation energy of Eq.~10! for random alloys with composition
x50.5 by relaxing the energy of large supercells and av
aging the resulting total energies over different random
rangements of atoms. The largest supercell had 8000 a
~20 times larger than the primitive cell in each direction!. At
this size, the results are almost equal for the different c

FIG. 7. Random alloy bond lengths calculated by fully relaxi
8000 supercells.
s

u-

.
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e
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figurations. The mixing enthalpyDH rand(x) at compositionx
can be written as the sum of the unrelaxed~UR! energy of
the random configuration plus the energy loweringDErel due
to atomic relaxation

DH rand~x!5DEUR~x!1DErel~x!. ~24!

For the principal compositions, the results~in meV/atom! are

DH rand~0.25!550.4245.954.5,

DH rand~0.50!557.4254.552.9,

DH rand~0.75!535.5234.051.5. ~25!

Note that in Cu-Au the relaxation energy is as large as
chemical~5unrelaxed! fixed-lattice energy. We find that th
relaxation energy oscillates as a function of the super
size, converging rather slowly. For the cell size used to
tain our results the oscillations are already negligible, bu
does take a few thousands of atoms to achieve this.

2. Phonons of ordered compounds

One of the advantages of the FF with respect to the clu
expansions is its ability to deal with atomic motion. Th
phonon frequenciesv are the eigenvalues of the followin
eigenvalue problem:33

v2~q!eia~q!5(
j ,b

Dia, j b~q!ej b~q!, ~26!

whereDia, j b(q) is the dynamical matrix given by

Dia, j b~q!5~MiM j !
21/2(

l

]2V

]Ria]Rj b
exp@ iq~Ri2Rj1 l!#,

~27!

]2V

]Ria]Rj b
522Fdab

R
Vi j8 ~R!2

xaxb

R3
Vi j8 ~R!

1
xaxb

R2
Vi j9 ~R!G

R5Ri2Rj 1 l

, ~28!

andeia(q) are phonon displacement eigenvectors. Using
FF the force constants are given explicitly by Eq.~27!, where
i , j denote the atoms within the unit cell,Mi are the atomic
masses, Greek indicesa,b label the Cartesian componen
of the position vectorsRi . The other symbols have the
usual meaning. We have calculated the phonon spectr
Cu, Au, Cu3Au (L12), CuAu3 (L12), CuAu (L10), and
CuAu (L11) using our FF and Eqs.~26!–~27!, and compared
the results with the LDA phonon frequencies obtained p
viously in Ref. 34 using the density functional perturbati
theory. The excellent agreement of our FF phonon frequ
cies with the LDA results~Fig. 6! is very reassuring becaus
no explicit phonon data were used in the fit. No imagina
phonon frequency was found in FF, indicating that all t
studied compounds are dynamically stable.
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3. Bond lengths of the random alloys

We used the 8000 atom supercell to determine the nea
neighbor bond lengths in random alloys. The results
shown in Fig. 7 for the compositionsx50.25, 0.50, and
0.75. It is interesting that atx50.75 the Cu-Cu bond length
becomes longer than the Cu-Au bond length. This find
agrees well with the LDA predictions,7 and the results ob
tained from EMT-type force field,35 but disagrees with the
study of Mousseau and Thorpe,36 who used a simple alloy
EAM model37 fitted for the pure elements only. This bon
length inversion phenomenon has been establis
experimentally38 in the Ni-Au system, and there are indic
tions that it may be true also for39 Cu12xAux .

4. Ground state search

The ground state search was made differently on the
rich and on the Au-rich sides of the phase diagram: On
Au-rich side, we considered up to 16 planes of Cu and pla
of Au, in any order. On the Cu-rich side, it was clear th
only the small supercell configurationsL12, ‘‘40,’’ DO22,
and the like had a chance of being the ground state. Thus
considered up to 8 planes such as~Cu,Cu!, ~Cu,Au!,
~Au,Cu!. We used both the LDA-based cluster expansio7

and the LDA-fitted FF to determine the ground states
composition. We find that both approaches agree on the
sential features of the phase diagram.~i! At x50.5, theL10
structure has the lowest formation energy among all the c
figurations in both methods.~ii ! On the Cu-rich side, the
configurationL12 (Cu3Au) has the lowest formation en
thalpy. Therefore, the ground state line is simple on the
rich side: it consists of a line from Cu toL12 (Cu3Au) at
x50.25 and then to L10 ~CuAu! at x50.5. These feature
are common to CE and FF.~iii ! For the Au-rich side we find
that within the Cu12xAux composition range 0.63,x,0.87
the ground states are formed by a quasicontinuum of c
figurations that may be thought of asL10 ~CuAu! stacked on
Au. For instance, the ground state atx50.75 with 16 planes
is a (Au)8 /(CuAu)4 superlattice alonĝ 001&. Our LDA
cluster expansion also predicts7 ~001! superlattices as groun
states in the Au-rich region: (Cu)/(Au)2 at x5 2

3 and
(Cu)/(Au)4 /(Cu)/(Au)4 /(Cu)/(Au)2 /(Cu)/(Au)2 at x5 3

4 .
The energy differences with respect to other~001! superlat-
tices are very small~only a few meV/atom!. The surprising
prediction of Au-on-CuAu superlattices alonĝ001& as
ground states has a simple explanation: the relaxedL10
e
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~CuAu! structure has a tetragonal distortionc/a'0.9, i.e., a
contraction along thec axis and an expansion in the ba
plane. This results in a in-plane lattice parameter of 7
Bohr, which is only 2.3% smaller than the lattice param
of unstrained fcc Au. Therefore,L10 ~CuAu! can be depos
ited on Au with small epitaxial strain energy, and the to
energy is approximately the weighted average betweenL10
and fcc Au. This also suggests that it should be possib
grow such multilayers experimentally.

V. SUMMARY

We have showed that pair interaction potentials are
to describe the Cu-Au alloy system, which has a large
stituent size mismatch. Significantly, the knowledge of
unrelaxed formation enthalpies, together with the epita
deformation energies of the elements, is sufficient to pre
relaxation and even the phonon spectra of the interme
compounds. No knowledge of compound relaxation has t
assumed. To attain a good predictive power one must~i! fit
the pair potentials to a large number of unrelaxed enthal
~ii ! fit the pair potentials to a large number of epitaxia
deformed elements, and~iii ! add a volume-dependent term
lift the Cauchy restrictive relations. We found that the un
atoms pair interactionVA2B could not be guessed from t
pair interactions of like atomsVA2A and VB2B but is an
independent function that must be extracted from the
set. For this reason we used an unusually large numb
unrelaxed compound energies in the data set. In a ce
way, pair potentials compete with cluster expansions in
description of an alloy. The pair potentials have the ad
tage of describing chemical and elastic properties sim
neously, but at the cost of a more complicate fitting. Un
the cluster expansion, the present potentials show tha
interaction is short ranged indeed, physically consistent
the heavy screening of atoms by the free electrons o
metal. The potential developed in this work is available
the site http://www.sst.nrel.gov/data/download.html
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7V. Ozoliņš, C. Wolverton, and A. Zunger, Phys. Rev. B57, 6427
~1998!.

8W. A. Harrison,Electronic Structure and the Properties of Solids
~Freeman, New York, 1980!.



n

.
d

n-

r-

s.

ts
s.
ir
e

d
FF
vari-

.

roni,

pace

.

u.

1696 PRB 60L. G. FERREIRA, V. OZOLIŅŠ, AND ALEX ZUNGER
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