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A first principles approach to the pseudopotential method is developed in the local density formalism (LDF). Asan
example, tests on the carbon and tungsten atom potentials are given. Comparison of the energy eigenvalues and total
energy differences obtained in accurate self-consistent numerical solutions of the allclectron problem with those of the
pseudopotential problem reveals an error smaller than 103 au for a very wide range of clectronic configuration and exci-
tation states. Charge density observables such as moments of r and X-ray scattering factors are also accurately obtained.
Apllications to large-scale electronic structure calculations as well as comparison of the results with the empirical pseudo-

potential scheme are discussed.

1. Introduction

The Hartree—Fock (HF) model provides a widely
used and well accepted scheme for obtaining all-elec-
tron density matrices and related observables for
atoms, molecules and recently for periodic solids
(1-3], which correlate favorably with many ground
and excited state observables. A huge body cf chemi-
cal evidence as well as extensive experience with elec-
tronic structure calculations indicates that the
changes in the first-order density matrices due either.
to bonding or to low-energy excitations, relative to
some standard reference level (e.g. the electronic
ground state or the non-interacting atoms limit in a
molecule or solid) are mainly brought about by the
outer “valence” orbitals while the inner *“core-like”
orbitals remain largely unchanged. These latter orbi-
tals are not only of little direct interest for many
electronic-structure problems, but also necessitate an
additional substantial computational effort particu-
larly in methods that expand the wavefunctions in a
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fixed basis set (e.g. linear combination of atomic orbi-
tals or LCAO). Although for many electronic struc-
ture problems it is desirable from the computational
point of view to eliminate these core orbitals (the
computation time increasing as about the third to
fourth power of the basis set size), it is impossible
simply to discard these orbitals and the electrons
occupying them due to their indistinguishability from
all other electrons. To overcome this difficulty the
pseudopotential scheme is often introduced [4]. The
basic idea is then to remove the constraint of the
standard canonical HF theory which requires the
valence orbitals to be orthogonal to the core orbitals.
This is accomplished by adding to the hamiltonian a
term (Phillips—Kleinman pseudopotential [4]), which
projects out the core components of a valence type
wavefunction. This permits the use of smooth and
nodeless valence “‘pseudo-orbitals” which are usually
obtained by a transformation of the atomic HF orbi-
tals. A second term, approximating the coulombic
and exchange effects of the missing core electrons
(without having explicitly to introduce core orbitals
into the problem) is then added and the core elec-
trons are removed. This transformation on the wave-
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function is not unique since there is an infinite num-
ber of ways one can transform the HF eigenfunctions
to obtain nodeless orbitals. One then chooses a useful
transformation of the HF orbitals that results in
pseudo-orbitals having, say, a maximum similarity to
the original orbitals, in some preferred parts of space
[5-8].

The HF pseudopotential scheme involves three ma-
jor assumptions: (i) the core orbitals entering the
density matrix and the pseudopotential are “frozen”
in a given reference electronic state and are taken as
such for all excited states as well as for all the differ-
ent bonding situations (e.g. atoms in molecules and
solids) *. This “frozen-core” pseudopotential scheme
for HF calculations has been tested extensively in the
past [8,9—12] and seems to be useful for evaluating
electronic properties that do not sample directly the
core region. (ii) Unlike the situation encountered in
the all-electron HF model, it is assumed that a radi-
ally local equivalent to the core part of the non-local
Fock operator arising from the Coulomb and
exchange terms exists. This assumption is needed in
the HF pseudopotential theory due to the explicit
occurrence of all valence orbitals in the non-local HF

- exchange operator and yields reasonably accurate
results in practical calculations when the spacial
behavior of all valence orbitals belonging to the same
I-value and different excitation states is similar in the
core region. (iii) The pseudopotentials for all [-states
not appearing in the core (or for the next higher !/
value) are assumed to be identical. Although this
approximation can be relaxed, it appears to be useful
in practical applications. Accurate pseudopotential
HF calculations have been recently applied to numer-
ous atoms [6] and molecules [7—12] with con-
siderable saving in computational effort.

Parallel with the development of first-principles
HF pseudopotentials, substantial effort has been

¥ The elimination of the core orbitals from the electronic
structure problem in the pseudopotential method should be
contrasted with standard frozen-core appreximations in -
LCAO model: while in the latter the porential is unchanged
relative to the all-electron problem and only the wavefunc-
tions are orthogonalized to the core (and hence matrix ele-
ments of core basis functions still need to be evaluated), in
the pseudopotential scheme both the potential and the core
orbitals of the allelectron problem are replaced and hence
the consideration of core integrals is not necessary.

directed in the past towards the construction of both
semi-empirical pseudopotential schemes aimed at
simulating observed quantities [13] and paramerrized
model pseudopotential schemes [14—17] which
attempt to simulate HF results via model potentials

* with adjustable parameters. While being useful in

practical applications [13—17] both schemes show a
substantial dependence of the potential parameters
on the basis set used. ‘

The local density functional (LDF) formalism
developed by Hohenberg and Kohn [18] and by
Kohn and Sham [19] offers a different route to the
solution of electronic structure problems in that it
provides an effective (all-electron) Schrédinger equa-
tion which in principle incorporates all exchange and
correlation effects in the form of a single-particle po-
tential. [t has been widely used in one form or
another (including the simplified Hartree—Fock—
Slater method) by the vast majority of electronic
solid-state band structure practitioners [20,21) as
well as for many molecular [22,23] and atomic [24]
studies. The difficulties in having to include the core
orbitals in electronic structure calculations are similar
here to those pertaining to the HF model. The Phil-
lips—Kleinman pseudopotential approach [4] offers
here a straightforward simplification of the problem by

‘including in the local potential a term projecting out
explicitly the core orbitals. This enables one to use
smooth nodeless valence wavefunctions instead of the
original all-electron wavefunctions that have pro-
nounced nodal character due to the core orthogonal-
ity requirement. There are, however, practical diffi-
culties involved in using the Phillips—Kleinman
scheme. In addition to the usual non-uniqueness of
the definition of the pseudo-orbitals, this scheme is
hard to carry out in practice due to the need to use
exact core orbitals (which require a full solution of
some related allelectron problem), and the need to
recalculate the projection operators for each excited
state. More importantly, one is still faced with the
problem of evaluating all the Coulomb and exchange
integrals describing valence-core interactions. This
pseudopotential model has consequently become
more useful in its semi-empirical modification, in
which the various Fourier components of the crystal
pseudopotential are used as adjustable parameters
modified to obtain agreement with some observed
eigenvalue differences [13].
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In this paper we present a first-principles approach
to the pseudopotential problem in the local density
formalism. This approach has several advantages
compared to the analogous procedure within the HF
model. In particular, we shows that due to the jocal-
ity of the allclectron potential appearing in the
“standard” LDF formalism (i.e. in which only the
non-gradient electron correlation functionals {19,25)
are included), approximations (ii) and (iii) which are
pertinent to the HF pseudopotential model become
unnecessary. The resulting pseudopotential is there-
fore exact for the reference state, while for states dif-
ferent from the prescribed “reference state™ it con-
tains inaccuracies proportional to the change in the
core contribution to the density matrix. These
changes are very small for many electronic structure
problems of interest. For example, the nth moment
of the vector r within the Is orbital density p,4(r) of
carbon: fp,(r)F'dr equals in atomic units 64.1056;
5.5995;0.27303;0.10104 forn=—-2,—1,1 and 2
respectively in the ground 1s22s22p? configuration
and 64.1942;5.6036;0.2728:0.10089 for the
excited 1522s!2p3 configuration where all the quanti-
ties are calculated using all-electron LDF. In addition,
the use of the pseudopotential approach for atoms,
molecules and solids within the LDF formalism is
conceptually more appealing than in the Hartree—
Fock method, due to the suitability of the slowly-
varying-density approximation [19,25,26] used in the
expansion of the total exchange and correlation
energy [25] to the present theory involving only
smooth and nodeless valence orbitals. As in any pseu-
dopotential scheme, the LDF pseudopotentials may
be defined in several arbitrarily chosen ways. This
seeming arbitrariness is, however, less serious than
first appears. We show that although many useful
(but non-unique) transformations of the original
valence orbitals into the pseudo-orbitals can be con-
veniently defined, the differences among these dis-
appear if the pseudo-orbitals are orthogonalized to
the core orbitals after the self-consistent pseudo-
hamiltonian has been solved.

Section 2 is devoted to the derivation of our LDF
pseudopotential and to discussion of some of its
properties. Section 3 contains details of the calcula-
tional procedure, while section 4 gives numerical
applications for both eigenvalues and total energy dif-
ferences as well as wavefunction related properties for

the carbon and tungsten atoms. Section 5 consists of
general remarks and a brief discussion of the relation
of this work to previous work on pseudopotentials in
the density functional approach.

2. Development of the local density pseudapotential

Our development of the local density pseudopo-
tential proceeds as follows: one first solves the local
density (N, + N,)-electron problem for an atom in
some electronic configuration (say, the ground state),
where NV, and &V, denote the number of core and val-
ence electrons, respectively. For each angular mo-
mentum species a rotation of the ground state orbi-
tals is performed such that one obtains new valence
orbitals (pseudo-orbitals) which are deorthiogonalized
to the core, smooth and nodeless. One then concen-
trates on the variational local density solutions of a
fictitious Vy-electron atom (pseudo-atom) having the
pseudo-orbitals as its eigenvectors and the exact all-
electron-orbital energies as its eigenvalues. Such a
pscudo-atom experiences the Coulomb and exchange-
correlation field of its My-electrons plus some yet un-
specified external static potential (which can be dif-
ferent for different angular momenta). This pseudo-
potential is then solved for in terms of the known all-
electron eigenvalues, the pseudo-orbitals and the cor-
responding local density potentials. [t is then fixed at
its value obtained for the chosen reference electronic
state and appliet as such (static core approximation)
to the study of any other electronic state of the
pseudo-atom. The properties calculated for the
pseudo-atom in these other states will parallel those
of the real atom (i.e., approximately equal orbital
energies and excited state pseudo-orbitals whose
changes from the ground state pseudo-orbitals match
the changes that the real atomic orbitals would have
undergone had the core orbitals of the real atom been
frozen in their ground state). By orthogonalizing
these pseudo-orbitals to the ground state core orbi-
tals of the real atom, one would recover the orbitals
for the real atom in the corresponding state subject to
a frozen core approximation.

We write the local-density one-particle eigenvalue
equation for the electronic states ¥3; of an atom with
nuclear charge Z (in atomic units) as:

HYy ()= {*%Vz + Viot [0s()1} U5i(P) = €5, 054(P)
(12)
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where the one-body potential is given by:

Vioa (0] = =ZJr + Veou[osD)] + Vielos@)] - (1)

Here Veoui [os(r)] and Vi [ps(r)] are respectively the
electronic Coulomb and the exchange- and-correla-
tion local potentials [26] due to the allelectron
charge density p(r),and ¥7,(r) and €5, denote the
central-field (n, {) eigenfunction and eigenvalue,
respectively (square brackets denote functional
dependence; s is a running index). The Coulomb po-
tential is given by the Poisson equation as

Veoulos®) == ”‘(') )

and incorporates the effect of all ¥ electrons in the
system (including the self-interaction term). The
exchange and correlation potential is given to the
lowest order of the gradient expansion [19] as:

Veelos(n)] = Vx[ps(r)] + Velos(r)] (3)

where V, [p(r)] is the well known [19,25] “p'/3”
term:

Velos(D) = -3/ [oy(N]'/3 4

and V_[ps(r)] is likewise a local function of r, which
was worked out by several authors [26,27] in numer-
ical form and given by Hedin and Lundqyist [25] in
an analytically fitted form. The total charge density
is related to the eigenvectors of all the o, occupied
states by:

%o0c

py(r) = 23 N Vi) ©

where Vj,; are the occupation numbers for the elec-
tronic configuration s. Eq. (1) is solved self-consis-
tently by iteratively updating the potential functional

on the basis of the wavefunction-dependent diagonal

density matrix [eq. (5)]. Since only the total wave-
function {and not the individual orbitals ¥5,(r) of
eq. (1)} is invariant under point-group rotation, the
orbitals themselves are not determined uniquely by
that equation and hence one usually requires ortho-
gonality between them. This results in the familar
nodal behavior of the higher eigenfunctions (due to
core character) and to the need to use a large number
of basis functions tc adequately describe them in
LCAO type expansion models. :

We now divide the eigenvectors and the charge
density into two parts: the “core” part (with eigen-
vectors ¥ 57 (r) containing V2 electrons) and a “val-
ence” part (with eigenvectors Y 7(r) and density
ng(r) with vy electrons). We will denote all-electron
(core + valence) densities by p(r) and valence pseu-
do-densities by n(r). By valence electrons we mean
those given by the aufbau principle as outside a rare
gas core (2s, 2p for row 1, 3s, 3p for row 2, 4s,4p, 3d
for row 3, etc.). It would hence suffice for our pur-
poses to label these orbitals by the angular momen-
tum quantum number ! It is noted that this partition-
ing of orbitals is rather arbitrary and based essentially
on the relative insensitivity of the bonding character-
istics to dynamic electron—electron interagtions in
the above-defined core; it does not imply any distin-
guishability between core and valence electrons. A
generalization of our formalism to a more flexible
definition of core is straightforward but will not
concern us here. (Such a generalization is presented in
ref. [28].) Since we will be interested in a smooth
and nodeless representation for the valence orbitals
Ui (r), we generate these by relaxing the orthogonal-
ity constraint to the core orbitals. Concentrating on a
chosen reference electronic state e of the atom, we
generate the smooth orbitals for this state by a deor-
thogonalization procedure, namely:

core

oni(r) = ;rl.nl\-’nle(’) * E nI w ¥R
or
ont(r) = Z;Cn I, aVri(r) 6

where W5 ,(r) stands for both core and valence orbi-
tals and the sum over n'l includes one valence (r, /)
state only. The coefficients C; ', are chosen so that

" onf(r) is normalized and nodeless. This would leave

(for an atom belonging to the second or higher rows
in the periodic table) some unused degree of freedom
in constructing Cpy ;. (See ref. [23] for details.)

We will now be interested in the local-density
variational problem for a “pseudo-atom’ having only
N electrons arranged in the electronic configuration
¢ with a probability density given by the smooth orbi-
tals {u2°(")}. To obtain the NV -electron one-body po-
tential that would yield such variational solutions we
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congider first the local- density total enerev E. of such

...................................... sy E; of s
an electronic system subject to the Coulomb and
exchange-correlation interactions among its V,-elec-
trons plus an additional static external field Ve, (r) =
—Nyfr + V()

Er = [no(r) Vealr) dr +1 [ner) Veou () dr

+ Exe[ne(r)] + Tolnr)], N
where n¢(r) is the variational density for the system in
state e and Ty[r.(r)] is the non-interacting Kinetic
energy of the electron system with density ng(r).
Eyc[ne(r)] is the total exchunge and correlation
energy of the interacting N&-electron system. For suf-
ficiently slowly varying densities, one obtains {19]:

e [1d0)] = [ 1) exelne®)] ar , (8)

where €,.[n.(r)] is the homogeneous exchange and
correlation energy per particle [19]. Following the
Kohn and Sham treatment, one performs a variation
on E, with respect to the density n.(r) and replaces
the functional derivative of the non-interacting
kinetic energy To[n.(r)] with respect to n.(r) by the
laplacian operator to obtain the effective one-particle
equation:

{3V + Vegr (O} 01 () = Nidenr () 9)
where
ngf(r) = "‘NV/r + Vle(') + VCoul [ne(r)] + ch ["c(’)] B

and the exchange and correlation potential is given by:

Vie[ne(r)] = d(n(r) exc[nn])/dn () (10)

and leads to the forms similar to those used in egs.
(3) and (4). The charge density n,(r) is given by the
self-consistent solutions to (9) as:

Qcc

ner) = I NGOV an

The solution of eq. (9) involves iterative refinements
of the functionals Fggy) [He(r)] and Vyc[ne(r)] with
fixed V5(r). (Note that the quantum numbers #, /in
eqs. (9) and (11) refer to the lowest central-field
states that are not present in the core of the real atom
and that therefore wi(r) is nodeless for the lowest
state of a given ) The effective one-particle equation

(9) with the density given in (11) is now used to
define the external potentml Nyfr+ Vi(r) in terms
of the eigenvalues {7’} and eigenvectors {py°}. We

require that the pseudo-hamiltonian in eq. (9):
HPgif(r) = N () (12)

have the same eigenvalues as the exact all-electron

hamiltonian [eq. (1)] for the reference state e (ie.

r = ey°). Hence for a single chosen reference state

e,.it is possible to define an external potential:

V() = —Nyfr + V@) = ey + 5 V2 0ol )
— Veoulme(] — Viclnen] , @13)

which when added to the (dynamic) Coulomb and

exchange-correlation field of a N-electron pseudo-
atom would yield via the self-consistent solution of
the LDF equations smooth and nodeless eigenfunc-
tions [related to the corresponding all-electron solu-
tions by eq. (6)] and the exact eigenvalues ey’ The
pseudopotential ¥(r) can be expressed more conve-
niently by using the fact that ¥&,(r) are solutions to
the all-electron hamiltonian —3V? + Vi, [o(n)] [eq.
(1)], yielding

Zar Capntr Var(@) ey

Vi) =€ — .
Zir Gunr¥nr()

+ {Vtot [0e(N)] — Viot [”e(")]} ) (14)

where Vo [p(r)] is the total potential of the all-elec-
tron density po(r) [eq. (1)] and V,q¢ [1.(r)] is the cor-
responding total potential of the pseudo (valence)
charge density. One has hence replaced the (¥, + N -
electron equation (1) with a simpler V,-¢iectron
equation which does not necessitate a large number
of basis functions in its LCAQ solution on account of
the nodeless character of its occupied orbitals.
Obviously, this simplification by itself does not
offer sufficient flexibility in practical applications to
arbitrary electronic configurations of the atom or to
molecular and solid-state problems where the atom is
in a bonding environment, since the solution of the
pseudopotential problem for a given state requires the
construction of ¥{(r) for this state. However, to the
extent that the dynamic effects of the core electrons
on the valence field of the real atom can be replaced
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by an external potential (which replaces these effects
exactly for ane chosen reference electronic state)
acting statically on the electrons in any arbitrary
state, such a pseudopotential transformation becomes
useful. Qur basic approximation (“static core’ pseu-
dopotential approximation) is hence that the external
potential Vg, (r) defined for some reference state e,
replaces the dynamic core effects for any electronic
arrangement of the valence electrons. The pseudopo-
tential ¥3(r) is calculated directly from (14) for sev-
eral [-values using the exact reference state eigenval-
ues €5y, cigenvectors ¥5,(7), the total potential

Viot [p(r)] and expansion coefficients {Cyy; ;). This

v t tha rafar,
fixes ¥V, [\l} at the reference state ¢ and from this point

on V(r) is treated as a static external field acting on
the electrons of the pseudo-atom via eq. (9) for any
arbitrary electronic state s # e. In the general case,
the eigenvalues €5, and the total energy [eq. (6)] dif-
ferences AEy; (corresponding to different electronic
states fand j) would not equal exactly those ob-
tained from the all-clectron problem [eq. (1)] (#H}>
(12) does not commute with the all-electron hzmul
tonian in (1a)). The usefulness of our present
approach hence depends entirely on the question of
whether our static external potential ¥(r) is capable
of simulating the dynamic effects of the core elec-
trons for any arbitrary electronic state of the atom or
the atom placed in a bonding environment (e.g. the
validity of our static core approximation). This can
be tested by solving both (1) and (9) self-consistently
for a series of states, using for the latter a fixed pseu-
dopotential generated, say, from the ground state. We
will show in the next section by means of particular
examples that remarkably high accuracy is indeed ob-
tained in solving (9) with the pseudopotential (14},
hence confirming the insensitivity of the valence field
to the small core changes attendant on such proces-
ses.

We note that our static core approximation is
exactly equivalent to the “frozen-core” approxima-
tion common in quantum-chemical electronic strue-
ture calculations in that the results obtained with the
pseudopotential defined in eq. (14) when solving eq.
(9) for an arbitrary excited state are exactly the same
as those obtained by pre-orthogonalizing the valence
orbitals to some “frozen” core orbitals and solving
the fiell hamiltonian.

The distinct advantage of our rseudupotential

method over the frozen-core approach is that with
the former method no core matrix ¢lements need to
be computed whatsoever. We note that the equiva-
lence cf the presently developed static core approxi-
mation to the frozen-core approximation does not
occur in the HF pseudopotential method [8] and that
in the latter scheme additional approximations to the
all-electron problem are necessary {see introduction)
to reduce the all-electron problem into a pseudopo-
tential problem; this difference stems essentially from
the non-local effect of the core electrons on the
valence field in the HF scheme, while in the local den-
sity model the diagonal first-order density matrix

determinec th
determines the potential field uniquely.

It is obvious from eq. (14) that the effective po-
tential in the pseudo-atom Vee(r) is weaker than the
full core + valence potential in the real atom
Viot[0s(r)] due to the cancellation with the first two
terms on the rhs of eq. (14). This is a manifestation
of the “Phillips cancellation theorem” [4] and is
brought about by the balancing of the attractive
Coulomb singularity that a valence electron feels in
the core region and the repulsive kinetic terms arising
from the nodal behavior of the allelectron valence
orbitals. It is noted that for valence orbitals that do
not have a matching /-counterpart in the core orbitals
(and are therefore nodeless), the sum in the second
term in (14) reduces to one term (over the nodeless
valence orbital only) and hence cancels with the first
term, leaving a relatively “‘strong” external potential.
Hence, while the “‘s” total effective potential in first-
row atoms is relatively weak and can be treated per-
turbationally in solid-state pseudopotential calcula-
tions [13] (the terms strong and weak used apply for
radial distances larger than 1.5 bohr) the p and d total
effective potentials are not amenable to such treat-
ments and indeed give rise to serious convergence dif-
ficulties in their plane-wave expansions {29].

We note that the presently developed pseudopo-
tential differs distinctly from many other pseudopo-
tential schemes [30—32] in that in the latter case
atoms with more than one valence electron are not
treated as such but replaced with a corresponding ion
with a single valence electron and then screened
linearly say, by some free-electron dielectric function
[13]. Instead, our pseudopotential is constructed
from the ground state of the real atom, so that the
effective valence field includes the indirect valence-
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core-valence type effects. (The core of, say, an O5*
ion is not very much like that of the O atom.) Similar
" advantages are enjoyed by the Hartree—Fock poten-
tials which have been constructed by an analogous
procedure [5—8].

We may briefly discuss some properties of the
pseudopotential in eq. (14). When one considers the
lowest nodeless valence orbitals in an atom (e.g. 2p,
3d) the transformation in (6) is trivial since no core
orbitals have to be mixed into the valence orbitals to
produce a nodeless functions and hence o=
U (r) and as mentioned above, the sum in eq. (14)
reduces to one term. For such / values (denoted L),
the pseudopotential is -independent and given by:

Vi) = Viot[oe(r)] — Vtot[”e(’)] . (15)
Hence, for a first row-atom only /=0 and /=1 pseu-
dopotentials have to be computed since V, equals
exactly V', etc. This is distinctly different from the
situation encountered in the HF pseudopotential
theory [8] in which, due to the non-locality of the
exchange, ¥, is only approximately equal to ¥;.
(Similarly, if one is to use the exact all-electron orbi-
tal U5,(r) in eq. (14) instead of the pseudo-orbital .
(eq. (6)) the pseudopotential would reduce to the
form (15) for all -components.) Hence, when the
pseudopotential is used in molecular or solid-state cal-
culations in the form:

VES(r) = IZ:)O Vi, ;Z) Uam Xlamp, |, (16)
Al 1A

where I4 and rm;, define the spherical harmonics on
site A, only the lowest members need to be calculated
(e.g..s and p for first row atoms).

We note that we have not so far restricted the
pseudo-orbital expansion coefficients Cjy; ,;y in eq. (6)
except that they yield a normalized and nodeless
orbital. Any choice of these coefficients that fulfills
the above requirements should yield, for the refer-
ence state, eigenvalues that are identical to those of
the all-electron local-density hamiltonian. If, how-
ever, it is desired that expectation values (other than
orbital energies) over the pseudo-orbitals match
closely those yielded by the exact all-electron valence
orbitals, two routes are possible: (a) one can choose
the coefficients {C%y ,1}so that )’(r) would closely

match the real atom valence orbitals ¥)°(r) in the
region of space considered relevant for the observable
of interest. This approach has led to many prescrip- -
tions in HF pseudopotential schemes and leads to .
acceptable but approximate results. In this approach
the expectation value of an operator @ is usually cal-
culated directly from the pseudo-charge density:

. valence

n'(r) = Z,) NaldiO12, an

combined with the frozen-core (reference level) den-
sity of the real atom

nr) = @M,Iw,,l<r) ) (18)
to yield: ‘
0= [y + " @} O dr,, | (19)

with the expectation value over a valence pseudo- -
orbital is given by:

Oh = [ 50) Ote) dr e

We will illustrate in the next section some numerical
results obtained with this “maximum similarity”
approach (b). Alternatively, one can use for the atom
any convenient choice of {C5y 1} (obtaininig in each
case the exact reference state valence eigenvalues) e.g:
minimizing the kinetic energy T[yyy] [5,6,8] but -
after the self-consistent pseudo-equations have been
solved, one orthogonalizes the pseudo-orbitals to the
core orbitals of the real atom. This yields orthogal-
ized pseudo-orbitals ¢y,(r) given by:

core

@;I(r) = [‘{’nl(r) E (‘Pnl(r)lﬁonl(r)) \U,,{(f)]A -

(71)
where 4 is the normalization constant, and the
related orthogonalized valence charge density is:
valence . _
FEO= 20 NGl | (22).

In this case, expectation values are taken dlrectly on
7¥(r) + n(r) or for the valence contribution only, on-
o5i(r). If the pseudo-orbitals gy (r) are found for the
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reference electronic state, this approach leads to

n¥(r) + n(r), while if the equation is solved for a dif-
ferent excited state or for a polyatomic system, the
resulting density matrix is inexact (but expected to
be very accurate). We will illustrate this choice nu-
merically in the next section. We note that the ortho-
gonalization procedure in (21) is easy and straight-
forward to perform since the major time-saving step
has already been utilized in solving a simplified self-
consistent local density equation for the valence elec-
trons only.

3. Details of calculation

The calculations required here contain two essen-
tial steps: (a) development of the pseudopotential
feq. (14)] for all relevant /-components of a chosen
electronic state of the atom, and (b) testing the pseu-
dopotential by solving the pseudo one-particle equa-
tion (9) tor arbitrary electronic states and using the
resulting orbitals to calculate various observables
[eas. (17)—(22)] for these states. Step (a) involves
first the self-consistent solution of the all-electron
local density equation [eq. (1) with the functionals
defined in (2)—(5)] for a chosen reference state. It
has been customary in the HF pseudopotential
approaches [5~7] to carry out this step (as well as to
test the pseudopotential) by expanding the solution
Yha(r) in (1) or @, (r) in (6) in a fixed basis set (e.g.
gaussians) and similarly to represent the pseudopoten-
tial by some analytical fit. Although this procedure is
usually satisfactory [5—8], it represents an unneces-
sary approximation for the atomic problem. We avoid
these approximations by employing a direct numeri-
cal technique with no basis set expansions. We use a
standard predictor—corrector method [33] in an
inwards—outwards integration scheme. The numerical
accuracy in the eigenvalues is 1078 au. The total
energy is calculated from (7) by using the charge den-
sity matrix constructed from the eigenvalue problem,

to yield
()Cc
5:— '__ffﬂ(r).ﬂ(f)
+ f o) fexc 0] = Vielo(O)]} ar (23)

where o(r) indicates the all-electron density when (1)

is solved, and the pseudo-density when (9) is solved.
E} is the total encrgy for the all-electron and for the
valence-<lectron cases, respectively. The sum in the
first term in (23) is carried over all (valence + core)
orbitals in the former casé and on the pseudo-crbital
eigenvalues in the latter case. The two integrals in
{23) are calculated by direct numerical integration.
The accuracy in evaluating the total energy in eq.
(23)is 1077 au

We chose here as a reference state for the atom the
ground electronic state (although, as demonstrated in
the next section, a similar accuracy in the predictions
of the pseudopotential one-particle equations can be
obtained with other choices too). Having solved eq.
(1) for this state, the eigenvalues €5, the eigenfunc-
tions Y5 (r) and the total self<onsistent potential
Viotloe(r)] are used in (14) together with the
Coulomb and exchange integrals V., [n(r)] =
—Nyr + Veou [1e(P)] + Vielne(r)] computed numeri-
cally from the pseudo-orbitals. [n step (b) we use
these pseudopotentials to solve eq. (9) for a series of
electronic configurations using the same integration
technique with identical error tolerances. The pseudo-
charge density and the core density are then calcu-
lated from egs. (17) and (18) and the orthogonality
coefficients required in eys. (21) and (22) are com-
puted numerically.

The operators O [egs. (19) and (20)] chosen for
testing the resulting pseudo wavefunctions are 7" with
—2 <n <3 for the orbital expectation values, and
exp(ig - r) for the charge density expectation values.
The latter quantity {atomic X-ray scattering factor) is
calculated for a series of momentum values g from
the standard form for the central field given by

=[S 0w, (4

where p(r) can be: (a) the all-electron density, (b) the
pseudo-charge density plus frozen core density or (c)
the orthogonalized pseudo-charge density plus frozen
core density.

4. Ilustrative results; carbon and tungsten atoms
4.1. The pseudopotential

We generate the pseudopotential V,(r) and V(r)
for the ground (g) 1s%25%2p? configuration of carbon
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Fig. 1. Allclectron ( ) and pseudo (— — —) 2s wavefunctions for: (a) the s°p? ground state of carbon atom. (b) the ionized

state.

[34]. The exact Y§,(r) orbital obtained from the
solution of (1) is depicted in fig. 1a together with the
pseudo-orbitals ¢8,(r) (the pseudo 2p orbital equals
here the exact 2p orbital as discussed above). The
coefficients of eq. (6) are C§s ;s =0.2213783 and
C8s .25 = 0.9509916 for ¢’ (r)and €5, 1. =0,
C5p 2p = 1 for ¢8,(r). This choice assures that the
pseudo-orbitals have zero amplitude at the origin, are
normalized and show maximum similarity to the
exact valence orbitals (any increased mixing of ¢/§,(r)
into ¢&,(r) will stili assure the absence of the node in
¢85(r) and would hence be a legitimate choice yield-
ing accurate cigenvalues, however this would cause
¢55(r) to deviate more significantly from V5,(r) in
the tail region and would consequently lead to differ-
ences in the observables computed from these orbitals
unless g§(r) is specifically orthogonalized to the core)
[35]. It is seen from fig. la that for distances from
the nucleus larger than about 1 bohr, ¢5,(r) and

V5, (r) are very similar (relative absolute amplitude

differences of less than 3%).
Fig. 2 depicts the pseudopotentials V&r) and -
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VE(r) for carbon. To analyze the various components
appearing in them we rewrite eq. (14) as-

V) =uf(r) + {VE t[pg(’) tct ps[n)1 1,

(252)
where
Viot ps["g(r)] =(—Z,fr+VE DS ["g(")]
+ V%.foul,ps ["g(’)])- (25b)

The /-dependent non-locality appears in the first term

of (25a):

3. BB,
=l Cnl,n Wnieh

Ug(’ ) =€f —

: (26)
Z0 Cur, A1V

while the Jast two terms in (25a) are common to all
the I-components of the pseudopotential. (This last
feature arises from the locality of the LDF exchange,
and does not hold in Hartree—Fock [8].) Here

Viot [pr) contains the Coulomb and exchange-corre-
lation potentials of the carbon atom and
Vic.ps[ng®] and VEqy ps[ng(r)] denote the
exchange-correlation and Coulomb potentials, respec-
tively, associated with the pseudo-charge density. Fig.
3 shows separately the last two terms in eq. (252)
(where each of them was multiplied by r to produce
an effective charge) together with the Coulomb and
exchange correlation components of eq. (25b).
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Fig. 3. Components of the carbon pseudopotential compared
with the allclectron potential Vyq4(r).

Several features are apparent. At large distances,
where the non-local term u§(r) is no longer important,
the decay of the pseudopotential V§(r) is determined
by the small difference Vo, [pg(r)] — Vior,ps [12:(7)]
between the Coulomb, exchange and correlation po-
tentials corresponding to the all-electron and the
pseudo-charge densities, respectively. Past a distance
of about 3 au from the origin, the total Coulomb con-
tributions to both V5, [pg(r)] and Vigy s [ne(r)] are
practically zero, leaving the exchange-correlation of
the valence orbitals (the core contributions being
already negligible at these distances) as a dominant
term. As seen from fig. 3, the pseudo exchange-corre-
lation term ¥y ;s[n5(r)] closely matches Vo [pg(r)]
in the tail region due to the similarity of the all-
electron and pseudo-charge density [c.f. eq. (6)]
in this region. The large r behavior of the pseudo-
potential VHr) is hence determined by the small dif-
ferences between the real and pseudo exchange-corre-
lation potentials (which can be arbitrarily reduced
through a minimization of the differences between
the real and pseudo-orbitals at the tail region) [35].
The pseudopotential F§(r) is hence shorter range than
the full all-electron potential Viot [0e(r)] *.

At short distances, the non-local term u§(r) is
strongly repulsive for the J-<components present in the
core and decays rapidly to small values. For all the
[-components not present in the core, the sum in eq.
(26) reduces to n'l = nl (since no core orbitals need
to mix into this nodeless valence state) and hence
uf(r) =0, leaving a simple -independent pseudopo-
tential for these states with a —V/r dependence at
small r.

In fig. 4 we display the carbon effective potential
in a form more familiar in solid-state applications, i.e.

T we have repeated the construction of the pseudopotential
excluding the exchange-correlution potential both from the
solution of the all-electron eigenvalue probiem (1) and
from the pseudopotential expression (14). The results indi-
cated that in this case the behavior of ¥j(r) at long range is
entirely governed by the ditferent decays of the valence
Coulomb term in (25a) and the pscudo-valence Coulomb
term VE Coul ps(r) of (25b). In the presence of exchange-cor-
relation, on the other hand, the long-range behavior is dic-
tated by the small differences between the valence
exchange in Vyq:[py(r)] and the pseudo-valence exchange

V& ps®) in (25).
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Fig. 4, Effective potential form factors Vi(g) = fexp(-iq - r)
X fof(r)dr for carbon.

in Fourier space. The effective potential form factor

ua) = fexp(-ig- Vi (r)dr

where V}""(r) is given in eq. (9), is seen to be diver-
gent (i.e., %) at ¢ = 0 with a cross-over (v(qo) = 0)
at qg = 1.86 ;! for the s-potential and-a maximum
(Vs(q) = max) at g = 4 ag . It is more common to
define these quantities relative to the Fermi wave-
number k- (= 1.4594 a5 for carbon) [13],i.e. qof
2ke=0.64 and {2k = 1.37. Numerous empirical
calculations done on diamond (i.e. adjusting u,(G) to
obtain agreement with experiment for some low-lying
interband transition energies, where G is a reciprocal
lattice vector) yield widely scattered values for the
parameters of u(g) (e.8-qo/2kp =0.725,0.92 and
0.76 in refs. [36—38], respectively and q,/2kg =
1.09 in ref. [38]. Our present, calculation yields the
direct first-principle values for v,(q) as predicted by
the local density model! for carbon (atomically
screened) subject to the static 1s core approximation.
In particular, we notice that our calculations show a
larger pseudopotential core (i.e. smaller ) and more
noticeably a slower decay of y)(g) with momentum at

1 This would facilitate the use of these pseudopotentials in
solid-state real-space band calculations (e.g., LCAO) since
lattice sums of V;(r) converge much more rapidly than the
corresponding sums on the real atomic potentials. On the
other hand, in calculations carried out in Fourier space
(e.g., orthogonalized plane waves-OPW or pseudopotential-
OPW) slower convergence is expected.

large ¢ * than the semi-empirically adjusted results
[36—38]. The I # 0 components (“‘non-local pseudo-
potential™) have been neglected in many solid state
applications and simulated semi-empirically by the
—Are~ %" form (4, &> 0) by Hemstreet et al. [39]
this is qualitatively similar to the form shown in fig. 4.

4.2. Eigenvalues and total energy differences

Tables 1 and 2 show the energy eigenvalues and
the differences in total energy (excitation energies)
for a series of electronic configurations for carbon [34]
and tungsten [28] as obtained in an all-electron SCF
calculation (“full SCF”) and with the pseudopoten-
tial calculation (“effective potential’). The errors in
the ground state (<10 ~7 au) reflect the numerical un-
certainty in the calculation.

It is seen that a remarkably high accuracy is ob-
tained over a large range of electronic configurations
including excited and ionic species, using the ground
state pseudopotential. As described above, these dis-
crepancies are a measure of the errors introduced by
frozen core approximation. To test the sensitivity of
the results to the assumed reference level we recom-
puted the carbon pseudopotential using the s'p* con-
figuration as reference. The numerical error in the
eigenvalues of the tested s'p3 cigenvalues dropped
from 2 X1073 au to 5 X 1078 au, while the errors in
all other tested configurations did not exceed 2 X
1073 au for the eigenvalues and 10™% au for the total
energy differences, confirming thereby the relative
insensitivity of the valence state to the form of the
static core. The test for the extravalence excitation
(the highly excited 2522p%3s? configuration) similarly
shows good agreement with the exact results [35].

4.3. Wavefunctions and charge densities

In table 3 we compare the calculated orbital mo-
ments using the all-electron wavefunctions [“‘exact
orbital”, ¥3,(r) of eq. (1)], the pseudo-orbitals [gp(r)
of eq. (9)] and the orthogonalized pseudo-orbitals
[75:(r) of eq. (21)] for the carbon 2s orbital. We note
that the pseudo wavefunction introduces substantial
errors in the moments — a factor of 4.3 in the n = -2
carbon moment (being sensitive to the small-r behav-
ior) and about up to 5% error in the high moments.

" Hence, although the pseudo-orbital wy°(r) was con-
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Table 1

Comparision between all-clectron (full SCF) and pscudopotential (effective potential) results for the carbon atom m different elec-
tronic configurations. Ey is the total energy and AFE| is the difference in total energy relative to the ground sratc s? p?. Energics in

atomic units

Configuration Full SCF Effective Error Configuration Full 3CF Effective Error
potential potential
0:s2p2 ey, —0.4573838 -04573838 7x 1078 CUZ*:g2plS o0 06590256 -0.6601143  0.001
€2p  —0.1579533 —0.1579534  1x 1077 ey —0.3525969 03520554 0.0005
E, -37.0536044 52037811 - Ey  -36.9274553 —5.0777439 —
PN 0.0 - aF, 01261490 0.1260370  0.0001
CO:slp? &y, 04744846 -0.172654  0.002 Cl2+ 51502 o0 -0.6648014 —0.6676590  0.003
ep  —0.1734399  -0.1755639  0.002 e3p  —0.3579445 03593705  0.001
S Ep  -36.7533314 —4.9035473 - S, —36.7741344  _4.9236569 —
aE, 03002530  0.3002337  0.0002 AE; 02794699 0.2801240  0.001
cl¥is2pl o —0.8899874 —0.8924453  0.002 C02:22p03s2 &5 —~0.0943490 -0.094219¢  0.00014
e2p  —-0.5799256 -0.5781562  0.002 e3s  —0.0093509 —0.0093402  0.00001
E,  —36.6955825 -4.8464138 - £y -36.3706176 -4.520895 -
AE, 03580219  0.3573672  0.0006 AE,  0.6829869  0.6828861  0.0001

structed to have the maximum possible similarity
with the exact wavefunction in the region past the
node, still the accuracy of orbital observables is fun-
damentally Himited [e.f. eq. (6}]. This point should be
emphasized in the context of discussing bonding
effects and core-sensitive observables in molecules
and solids using pseudo wavefunctions, see also ref.
{40] *. On the other hand, once the pseudo-orbital is
orthogonalized to the (frozen) core orbital (last col-
umn in tables 2 and 3) a remarkably high accuracy is
obtained in the 2s orbital moments (errors less than
107%% for the ground state and less than 1% for the
excited species). This orthogonalization is simple to
perforni even in polyatomic systems once the all-elec-
tron SCF problem has been replaced by the simpler

I The nuclear magnetic shiclding constant = 4 a?
XU | jr,“l &) {(where « is the fine- structure constant, ¥ is
the all-electron wavefunction and the sum extends on all elec-
trons) is 25.8320 X 1075 au~! using the exact LDF car-
bon wavetunctions and, 25.4254 x 105 au~! using the
pseudo wavefunctions (1.6% error) and 25.8320 % 10—>
au~1 using the orthogonalized pscudo wavefunctions, Sim-

- ilarly mc use of the pseudo wavefunctions introduces
1.49% crror m the calculated diamagnetic susceptibility
xded p‘,;!
ture constant @ga(y lSir-_z‘ &} while no error is introduced
if the orthogonaiized orbitals are used.

143 and 4% error in the magnetic hyperfine struc-

pseudopotential eigenvalue problem and should be
undertaken if a meaningful discussion of wavefunc-
tion-dependent effects is sought.

In table 4 we present the X.ray structure factors of
carbon calculated from the ground state (frozen) core
density plus the all-clectron valence density (column
2), the pseudo-orbital valence density column 3) and
the orthogonalized pseudo-orbital valence density
(column 4). Again it is observed that while the use of
the pseudo-orbital valence density introduces sub-
stantial errors iIn the structure factors, the orthogonal-
zed pseudo-orbitals give rise to the correct structure
factors¥. (At sin 3/}\ 0 the error is forced to be zero
due to the normalization requirement while for very
large sin 8/X all results should be identical since the

* This is in contrast with the results obtaincd by Euwema
and Green [14] in their pseudopotential calculation on
diamond structure factors in which the use of pseudo-orbi-
tals produced structure factors in very good agreement with
these obtained from the all-clectron orbitals while consider-
ably poorer agreement was obtained when orthogonalized
pseudo-orbitals were used. From our discussion in section 2
as well as from our present results it is clear that if a first-
principle ground-state pscudopotential is used, the ortho-
gonalized pseudo-orbitals should match exaetly the ground-
state all-electron orbital {used to construct the pseudopo-
tential).

i

¢



A. Zunger et al. { First-principles pseudopotential in the LDF 87
Table 2 Table 3
Results for 7*W in hartrecs; () in bohr. Core: Moments of the 2s orbital density in carbon (in units of
152252 2p®3523p®3a" 04524p6aa ! Carl 45525 p6 ag" for the nth moment)
Energies Pseudo- All- QOrtho- Moment Pseudo- Exact Orthogonalized
potential electron gonalized orbital orbital pseudo-orbital
pseudo -

co: 2522p2
WO: 6526p054% r—2y 0.8214358 3.5499372 3.5494371
c6s ~0.1478 -0.1478 o=b 0.7990946 0.9135809 0.9135808
€6p ~0.0327 -0.0327 rly 1.5625877 1.5938337 1.5938337
€sq -0.1783 -0.1783 r? 2.9787695 3.0896185 3.0896183
(Mgs 3.4241 3.5756 3.5756 o) 6.7936328 7.1030495 7.1030496
(Mgp 5.1157 5.2435 5.2435 Clt: 2522p1
(Nsd 1.9296 1.9996 1.9996 2 0.9051024 4.0291539 4.0570634
wO: gslgplsa® o=hH 0.8456368 0.9771805 0.9796634
(AE; = 3.25 V) rly 1.4495504 1.4815605 1.4793120
€6s -0.1801 ~0.1793 s 2.5132019 2.6221502 2.6142221
c6p ~0.0561 ~0.05579 ) 5.1059245 5.3930103 5.3681710
esd -0.2252 —0.22387 cl=: 26223
{Mgs 3.3134 3.4805 3.4699 oY 0.7967260 3.4205884 3.4260397
Nep 4.7351 4.8984 4.8781 b 0.7825223 0.8919433 0.8919970
rsd 1.8913 1.9652 1.9611 oh 1.6227521 1.6551629 1.6558959
WO: 6506p0546 igit) 3.2845658 3.4036979 3.4066762
(AE; = 0.04 eV) 3 8.1686368 8.5248036 8.5353401
€6s -0.1039 -0.1023 COZ 252352
€6p —0.01326 -0.01278 r=2 0.9860846 4.5376364 45885756
€5d -0.07001 -0.0666 ) 0.8870820  1.0382943  1.0417387
res 3.8003 3.9468 3.9384 b 1.3694056 1.3994561 1.3985313
tep . 6.4531 6.7574 6.6556 ) . 2.22643%7 2.3252487 2.3733574
{risg 2.2403 2.3089 2.3152 3 47719507 44611905  4.4581860
wht: 6326p9sd CO: 2512p3
(aEy=9.35 ¢V r—2) 0.8293108 3.5802110 3.5972737
€65 ~0.4125 -0.4049 o~ b 0.8035044 0.9177704 0.9197704
€6p —0.2527 —0.2471 b 1.5514342 1.5855766 1.5825911
€sd -0.5200 -0.5156 o 2.9313405 3.0535451 3.0413864
{rgs 2.9707 3.1553 3.1217 r® 6.6152805 6.9637727 6.9199654
Mep 3.1722 3.9016 3.8469
Nsq 1.7657 1.8434 1.8317
W3+: 6526p9541
(AE; = 60.22eV) that the errors introduced by using the nonortho-
€6s —~1.0521 —1.0386 gonalized pseudo-orbitals are quite sizable and sub-
259 :(1)23879 _?'gégé stantially larger than the accuracy of most experimen-
("5;25 24690 2.6886 26142 tal structure factor measurement techniques.
rep 2.8443 3.0638 2.9659 Although one has broad latitude in choosing the
Msd 1.5617, 1.6471 1.6234 coefficients C,,, ,;, particular choices may have

structure factor reflects then only the core density.
Consequently the error is negative at small sin 6/X,
e.g. ~1.6%at sin /A =2.1 ag! and positive at medi-
um sin /2, e.g. 5.4% at sin 6/A = 13.6 a5'.) We note

special advantages or disadvantages [5—8,35,41—44].
The choice actually made above (adding just enough
core to remove the first node) or suggested later
(adding enough core to make the pseudo-valence
exchange nearly cancel the valence exchange in the
larger region) are obvious ones; as long as the final
valence orbitals are reorthogonalized to the core, no
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Table 4
X-ray structure factors for the ground state carbon atom

Table 5
Carbon ground state eigenvalues and moments of r in the 2s
state, computed with the pseudopotential of eq. (27). The

Sin 6/A fexact fpseudo fpseudo-orth results are compared with the exact all-electron solutions,
egh eq. (1). Energies in atomic units and ') in 2}

0.0 6.000000 6.000000 6.000000 Effective Full SCF

0.3 5.778677 5.781887 5.778679 potential

0.6 5.210876 3.222423 5.210886

1.0 4.254419 4.279708 4.254418 €7g —0.4573829 ~0.4573838

1.5 3.199111 3.236315 3.199107 €2p —0.157951 —0.1579534

2.1 2.374506 2.411824 2.374506 =2 64.1055643 3.5499372

2.8 1.879442 1.902297 1.879443 =l 5.5995528 0.9135809

3.6 1.614311 1.614498 1.614311 (rz 0.2730326 1.5938337

4.5 1.442790 1.421250 1.442791 (re) 0.10104083 3.0896185

55 1.282316 1.246075 1.282316

7.8 0.925535 0.883754 0.925535
10.5 0.591291 0.560647 0.591291 .
13.6 0.348089 0.3293553 0.348089 of Cy vy is arbitrary and unimportant in some limits,
19.0 0.146508 0.138699 0.146508 extreme choices like this one can lead to poor results
30.0 0.035460 0.633669 0.035461

particularly serious errors in the calculated charge dis-
tribution occur (table 3). This will be true, generally,
so long as the C,; 7y are chosen with reasonable cau-
tion. One extreme choice of the C,; ,,»; permits com-
parison with the Phillips—Kleinman pseudopotential.
If one were to choose, in (6), g% = ¥y, then (26)
gives ug(r) = e85 — €§. Thus we obtain

VE(r) = (625 — €4s)l{ = 0N = 0}
+ VE [og)] = Vi s 1e(N] - 27

Notice that this result has the form of the Phillips—
Kleinman potential [4]: the first (pseudopotential)
term accounts for the orthogonality and drives the
orbital energy up to the correct value, while the last
iwo terms account for valence interactions. We would
expect this potential to yield quite good orbital ener-
gies, and, as tuble 5 shows, it does. On the other
hand, the ¥ is not very much like ¢ in the tail
region, so that the resulting pseudopotential (27)
would be expected to yield rather poor wavefunc-
tions and orbital densities; again, table 5 shows this
expectation to be coreect. In this case, however (un-
like the choices taken previously for the C,,y ,7), we
cannot simply reorthogonalize the valence to the
core, since we choose v, = Y, so that the valence
orbital is the core orbital. Thus, although the choice

for wavefunction quantities, even though the orbital
energies are very satisfactory. This must be kept in
mind when using empirically-derived pseudopoten-
tials for calculating such observables as charge densi-
ties, oscillator strengths or Compton profiles.

Table 2 presents additional results, for the tung-
sten atom [28]. Again, the first-principles pseudopo-
tential reproduced energy quantities to extremely
high accuracy, while the pseudo wavefunction reor-
thogonalized to the frozen core yields excellent mo-
ments of the charge distribution. We note that even
for W3* witha energy 60 eV above the reference
state, the errors are no larger than 2%. Thus even for
this stringent test, on a large system with occupied
high angular momentum states and at high excitation
energies, our pseudopotential performs admirably.

5. Remarks

The established utility of the pseudopotential con-
cept has led to proposal of several pseudopotential
procedures for use in the LDF context [34,35,45—-48].
Several of these pseudopotential methods are semi-
empirical [36—38] and are subject to some errors, par-
ticularly for wavefunction-related quantities [49,50];
we feel that these failures are due to both the failure
to include the full angular momentum dependence
and the absence of explicit constraints of wavefunc-
tion similarity. More recently, several first-principles
pseudopotential-LDF procedures have been proposed
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[34,35,45,46], some of which have been successfully
“tested in molecular [50] or solid-state {51] calcula-
tions. We feel that our method [28,34,35,51] which
retains the symmetry of the spherical harmonic
expansion about each center, enjoys some efficiency
advantages, particularly for band-structure studies
employing plane-wave or gaussian basis sets [S1] over
procedures {45] which actually employ the differen-
ces between pseudo-densities and true valence densi-
ties in the calculation of the local-exchange potential.
For molecular studies, the situation is not so clear,
and the method employing density differences may
actually be preferable. Both our method and those
developed by Snijders and Baerends [45] and by
Moriarty [46] employ a first-principles approach to
definition of the potential, are not dependent upon
fitting of experimental data, and do not make (often
unjustifiable) oversimplifications in the treatment of
the higher I-components of the pseudopotential; as
expected on the basis of our formal arguments, first-
principles potentials of the present type seem notice-
ably superior to earlier semi-empirical potentials for
calculation of wavefunction-related quantities.

We have presented here a first-principle method of
obtaining atomic pseudopotentials in the local-den-
sity formalism subject to the static core approxima-
tion [34,35]. The pseudopotentials are straightfor-
ward to calculate once an exact solution to the all-elec-
tron local density problem for the chosen reference
state of the atom is dvailable, and should offer great
economies in electronic structure calculations for
polyatomic systems. Tests for the performance of the
atomic pseudopotential for the C and W atoms in pre-
dicting excited-state properties show accuracy better
than 2 X 10~3 au for eigenvalues and 1073 au for
total energy differences for an excitation energy
range up to 10 eV. While the direct use of the self-
consistent pseudo-orbitals to compute orbital mo-
ments and X-ray scattering factors introduces non-
negligible errors, a simple orthogonalization proce-
dure was shown to produce excellent agreement with
the exact all-electron results. Energy results for other
first-row atoms are equally satisfactory, and are pres-
ented elsewhere [34]. Band structure studies [51]
and some calculations on diatomic molecules [52]
indicate that the present method does indeed produce
a useful, viable, efficient, accurate first-principles
LDF pseudopotential.
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