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A first principles approach to the pseudopotential method is developed in the local density formalism (LDF). As an 
example, tests on the carbon and tungsten atom potentials are given. Comparison of the energy eigcnvalues and total 

energy differences obtained in accurate self-consistent numerical solutions of the allzlcctron problem with those of the 
pseudopotential problem reveals an error smaller than 1O-3 au for a very wide range of electronic configuration nnd exci- 

tation states. Charge density observables such r~.s moments ofr and X-ray scattering factors nre also accurately obtained. 
Apllications to large-scale electronic structure calcuhtions BS well as compnrison of the results lvith the empirical pscudo- 

potential scheme are discussed. 

1. Introduction 

The Hartree--Fock (HF) model provides a widely 
used and well accepted scheme for obtaining allelec- 
tron density matrices and related observables for 
atoms, molecules and recently for periodic solids 
[l-3], which correlate favorably with many ground 
and excited state observables. A huge body of chemi- 
cal evidence as well as extensive experience with elec- 
tronic structure calcuiations indicates that the 
changes in the first-order density matrices due either. 
to bonding or to low-energy excitations, relative to 
some standard reference level (e.g. the electronic 
ground state or the non-interacting atoms limit in a 
molecule or solid) are mainly brought about by the 
outer “valence” orbit& while the inner “core-like” 
orbita!s remain largely unchanged. These latter orbi- 
tals are not only of little direct interest for many 
electronic-structure problems, but also necessitate an 
additional substantial computational effort particu- 
larly in methods that expand the wavefunctions in a 

$ Present address: Department of Physics, University of Cali- 
fornis, Berkeley, California 94720, USA. 

fared basis set (e.g. linear combination of atomic o:bi- 
tals or LCAO). Although for many electronic struc- 
ture problems it is desirable from the computational 
point of view to eliminate these core orbit& (the 
computation time increasing as about the third to 
fourth power of the basis set size), it is impossible 
simply to discard these orbitals and the electrons 
occupying them due to their indistinguishability from 
all other electrons. To overcome this difficulty the 
pseudopotential scheme is often introduced [4]. The 
basic idea is then to remove the constraint of the 
standard canonical HF theory which requires the 

valence orbitals to be orthogonal to the core orbitals. 
This is accomplished by adding to the hamiltonian a 
term (Phillips-Kleinman pseudopotential [4]), which 
projects out the core components of a valence type 
wavefunction. This permits the use of smooth and 
nodeless valence “pseudo-orbitals” which are usually 
obtained by a transformation of the atomic HF orbi- 
tals. A second term, approximating the coulombic 
and exchange effects of the missing core electrons 
(without having explicitly to introduce core orbit& 
into the problem) is then added and the core elec- 
trons are removed. This transformation on the wave- 
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function is not rlrrique since there is an infinite num- 
ber of ways one can transform the I-IF eigenfunctions 
to obtain nodeless orbit&. One then’chooses a rtsefilI 

transformation of the HF orbit& that results in 
pseudourbitsls having, say, a maximum similarity to 
the original orbitals, in some preferred parts of space 
[5-S]. 

The HF pseudopotential scheme involves three ma- 
jor assumptions: (i) the core orbitals entering the 
density matrix and the pseudopotential are “frozen” 
in a given reference electronic state and are taken as 
such for all excited states as weli as for all the differ- 
ent bonding situations (e.g. atoms in molecules and 
solids) z. This “frozen-core” pseudopotential scheme 
for HF calculations has been tested extensively in the 
past [8,9-l 21 and seems to be useful for evaluating 
electronic properties that do not sample directly the 
core region. (ii) Unlike the situation encountered in 
the ah-electron HF model, it is assumed that a radi- 
ally IocaZ equivalent to the core part of the non-local 
Fock operator arising from the Coulomb and 
exchange terms exisrs. This assumption is needed in 
the HF pseudopotential theory due to the explicit 
occurrence of all valence orbitals in the non-local HF 
exchange operator and yields reasonably accurate 
results in practical calculations when the spatial 
behavior of all valence orbitals belonging to the same 
I-value and different excitation states is similar in the 
core region, (iii) The pseudopotentials for all I-states 
not appearing in the core (or For the next higher I 
value) are assumed to be identical. Although this 
approximation can be relaxed, it appears to be useful 
in practical applications. Accurate pseudopotential 
HF calculations have been recently applied to numer- 
ous atoms [6] and molecules [7-121 with con- 
siderable saving in computational effort. 

Parallel with the development of first-principles 
HF pseudopotentials, substantial effort has been 

x The elimination of the core orbit& from the electronic 
structure problem in the pseudopotential method should be 
contrasted with standard Frozencore apprcximations in 
LCAO model: while in the latter the poietffial is unchanged 
relative to the all-electron problem and only the wuavefirnc- 
riom are orthogonalized to the COIC (and hence mhtrix ele- 
ments of core basis functions still need to be evaluntcd), in 
tfle pscudopotential scheme both the potential nnd the core 
orbitals of the alI-eIcctron problem are replaced and hence 
the consideration of core integrals is not necessary. 

directed in the past towards the construction of both 
semi-empirical pseudopoterttkzl schemes aimed at 

simulating observed quantities [ 131 and paranretrized 
model pseuduporenrial schemes [14-l 71 which 
attempt to simulate HF results via model potentials 
with adjustable parameters. While being useful in 
practical applications [13-171 both schemes show a 
substantial dependence of the potential parameters 
on the basis set used. 

The local density functional (LDF) formalism 
developed by Hohenberg and Kohn [ 181 and by 
Kahn and Sham [ 191 offers a different route to the 
solution of electronic structure problems’in that it 
provides an effective (all-electron) SchrGdinger equa- 
tion which in principle incorporates all exchange and 
correlation effects in the form of a single-particle po- 
tential. It has been widely used in one form or 
another (including the simplified Hartree-Fock- 
Slater method) by the vast majority of electronic 
solid-state band structure practitioners [20,21] as 
well as for many molecular [22,23] and atomic [24] 
studies. The difficulties in having to include the core 
orbitals in electronic structure calculations are similar 
here to those pertaining to the HF model. The Phil- 
lips-Kleinman pseudopotential approach [4] offers 
here a straightforward simplification of the problem by 
including in the local potential a term projecting out 
explicitly the core orbitals. This enables one to use 
smooth nodeless valence wavefunctions instead of the 
original all-electron wavefunctions that have pro- 
nounced nodal character due to the core orthogonal- 
ity requirement. There are, however, practical diffi- 
culties involved in using the Phillips-Kleinman 
scheme. In addition to the usual non-uniqueness of 
the definition of the pseudo-orbitals, this scheme is 
hard to carry out in practice due to the need to use 
exact core orbitals (which require a full solution of 
some related all-electron problem), and the need to 
recalculate the projection operators for each excited 
state. More importantly, one is still faced with the 
problem of evaluating all the Coulomb and exchange 
integrals describing valence-core interactions. This 
pseudopotential model has consequently become 
more useful in its semi-empirical modification, in 
which the various Fourier components of the crystal 
pseudopotential are used as adjustable parameters 
modified to obtain agreement with some observed 
eigenvalue differences [ 131. 
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In this paper we present 3 first-principles approach 
to the pseudopotential problem in the local density 
formalism. This approach has several advantages 
compared to the analogous procedure within the HF 
model. In particular, we shows that due to the iocal- 
ity of the all-electron potential appearing in the 
“standard” LDF formalism (i.e. in which only the 
non-gradient electron correlation functionals [ 19,251 
are included), approximations (ii) and (iii) which are 
pertinent to the HF pseudopotential model become 
unnecessary. The resulting pseudopotential is there- 
fore exact for the reference state, while for states dif- 
ferent from the prescribed “reference state” it con- 
tains inaccuracies proportional to the change in the 
core contribution to the density matrix. These 
changes are very small for many electronic structure 
problems of interest. For example, the nth moment 
of the vector r within the 1 s orbital density p,&) of 
carbon: Jp,,(r)Pdr equals in atomic units 64.1056; 
5.5995; 0.27303; 0.10104 for II = -2, -1, 1 and 2 
respectively in the ground ls22s2~p2 configuration 
and 64.1942; 5.6036; 0.~723;0.10089 for the 
excited ls’2s12p3 configuration where all the quanti- 
ties are calculated using all-electron LDF. In addition, 
the use of the pseudopotential approach for atoms, 
molecules and solids within the LDF formalism is 
conceptually more appealing than in the Hartree- 
Fock method, due to the suitability of the slowly- 
varying-density npproximation [19,X,26] used in the 
expansion of the total exchange and correlation 
energy [15] to the present theory involving only 
smooth and nodeless valence orbitals. As in any pseu- 
dopotential scheme, the LDF pseudopotentials may 
be defined in several arbitrarily chosen ways. This 
seeming arbitrariness is, however, less serious than 
first appears. We show that although many useful 
(but non-unique) transformations of the original 
valence orbitals into the pseudo-orbitals can be con- 
veniently defined, the differences among these dis- 
appear if the pseudo-orbitals are orthoyonalized to 
the core orbitals after the self-consistent pseudo- 
hamiltonian has been solved. 

Section 2 is devoted to the derivation of our LDF 
pseudopotential and to discussion of some of its 
properties. Section 3 contains details of the calcula- 
tional procedure, while section 4 gives numerical 
applications for both eigenvalues and total energy dif- 
ferences as well as wavefunction related properties for 

the carbon and tungsten atoms. Section 5 consists of 
general remarks and a brief discussion of the relation 
of this work to previous work on pseudopotentials in 

the density functional approach. 

2. Development of the local density pseudopotential 

Our development of the local density pseudopo- 
tential proceeds as follows: one first solves the local 
density (IV, +N,)-electron probleni for an atom in 
some electronic configuration (say, the ground state), 
where NC and N, denote the number of core and val- 
ence electrons, respectively. For each angular mo- 
mentum species a rotation of the ground state orbi- 
tals is performed such that one obtains new valence 
orbitals (pseudo-orbitals) which are deorthogonalized 
to the core, smooth and nodeless. One then concen- 
trates on the variational local density solutions of a 
fictitious Nv-electron atom (pseudo-atom) having the 
pseudo-orbitals as its eigenvectors and the exact all- 
electron-orbital energies as its eigenvalues. Such a 
pseudo-atom experiences the Coulomb and exchange- 
correlation field of itsN,-electrons plus some yet un- 
specified external static potential (which can be dif- 
ferent for different angular momenta). This pseudo- 
potential is then solved for in terms of the known all- 
electron cigenvalues, the pseudo-orbitals and the cor- 
responding local density potentials. It is then fixed at 
its value obtained for the chosen reference electronic 
state and applied as such (static core approximation) 
to the study of any other electronic state of the 
pseudo-atom. The properties calculated for the 
pseudo-atom in tl1ese other states will parallel those 
of the real atom (i.e., approximately equal orbital 
energies and excited state pseudo-orbitals whose 
changes from the ground state pseudo-orbitals match 
the changes that the real atomic orbitals would have 
undergone had the core orbitals of the real atom been 
frozen in their ground state). By orthdgonalizing 
these pseudo-orbitals to the ground state core orbi- 
tals of the real atom, one would recover the orbitals 
for the real atom in the corresponding state subject to 
3 frozen core approximation. 

We write the local-density one-particle eigenvalue 
equation for the eIectronic states $;I of an atom with 
nuclear charge Z (in atomic units) as: 

WM) = I+* + v,,, b,Wl~ GM) = ET,Itis,,(r) I 

(13) 
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where the one-body potential is given by: 

Here VcoUl [p,(r)] and vXc[pg(~)J are respectively the 
electronic Coulomb and the exchange- and-correla- 
tion local potentials [2G] due to the allelectron 
charge density p,(r),and I& and & denote the 
central-field (II, r) eigenfunction and eigenvalue, 
respectively (square brackets denote functional 
dependence; s is a running index). The Coulomb po- 
tential is given by the Poisson equation as 

vcd [p&)1 =Js d+ 

and incorporates the effect of all N electrons in the 
system (including the self-interaction term). The 
exchange and correlation potential is given to the 
lowest order of the gradient expansion [ 191 as: 

~&,(r)l = ~XIIp~(~)l + ~&ml > (3) 

where V, [p,(r)] is the well known [ 19,251 “p’/3r’ 
term: 

YX IPSW = -(3/FY b,(r)1 “3 (4) 

and Y,[pJr)] is likewise a local function ofr, which 
was worked out by several authors [X,27] in numer- 
ical form and given by Hedin and Lundqvist [25] in 
an analytically fitted form. The total charge density 
is related to the eigenvectors of all the u,, occupied 
states by: 

aoc 

(5) 

where #,, are the occupation numbers for the elec- 
tronic configuration s. Eq. (1) is solved self-ccnsis- 
rrntly by iteratively updating the potential functional 
on the basis of the wavefuncticn-dependent diagonal 
density matrix [eq. (5)]. Since only the total wave- 
function [and not the individual orbitals G;/(r) of 
eq. (I)] is invariant under point-group rotation, the 
orbitals themselves are not determined uniquely by 
that equation and hence one usually requires crthc- 
gonality between them. This results in the familar 
nodal behavior of the higher eigenfunctions (due to 
core character) and to the need to use a large number 
of basis functions to adequately describe them in 
LCAO type expansion models. 

We now divide the eigenvectors and the charge 
density into two parts: the “core” part (with eigen- 
vectors G:;(r) containingMe electrons) and a “val- 
ence” part (with eigenvectors G;:(r) and density 
n:(r) withgelectrons). We will denote all-electron 
(core + valence) densities by p(r) and valence pseu- 
do-densities by n(r). By vaIence electrons we mean 
those given by the a&au principle as outside a rare 
gas core (2s; 2p for row 1,3s, 3p for row 2,4s, 4p, 3d 
for row 3, etc.). It would hence suffice for our pur- 
poses to Iabe these crbitals by the angular momen- 
tum quantum number 1. It is noted that this partition- 
ing of orbitals is rather arbitrary and based essentially 
on the relative insensitivity of the bonding character- 
istics to dynamic electron-electron interacrions in 
the above-defined core; it does not imply any distin- 
guishability between core and valence electrons. A 
generalization of our formalism to a more flexible 
definition of core is straightforward but will not 
concern us here. (Such a generalization is presented in 
ref. [X3] .) Since we will be interested in a smooth 
and ncdeless representation for the valence orbitals 
$2;(r), we generate these by relaxing the crthcgcnal- 
ity constraint to the core crbitals. Concentrating on a 
chosen reference electronic state e of the atom, we 
generate the smooth orbitals for this state by a decr- 
thcgonalizaticn procedure, namely: 

or 

s@(r) = @%.,,&M , (6) 

where ~Jir,(r) stands for both core and valence orbi- 
tals and the sum over n’l includes one valence (n, 1) 
state only. The coefficients Ce&ll are chosen so that 
&e(r) is normalized and nodeless. This would leave 
(for an atom belonging to the second or higher rows 
in the periodic table) some unused degree of freedom 
in constructing C&p,. (See ref. [28] for details.) 

We will now be interested in the local-density 
variational probIem for 3 “pseudo-atom” having cnIy 
N,‘electrcns arranged in the electronic configuration 
e with a probability density given by the smooth orbi- 
tals {&F(r)}. To obtain the &electron one-body pc- 
tentiat that wcuId yield such variational solutions we 
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consider first the local-density total energy Et of such 
an electronic system subject to the Coulomb and 
exchange-correlation interactions among its&-elec- 
trons plus an additional static externalfield P’&,(r) = 
-Iv,/r + Vf(r): 

Et = jd) K&t(r) b + : j-d, vcoul [n,(r)] dr 

+ EXC MN + To beW1 , (7) 

where II,(~) is the variational density for the system in 
state e and To[n,(r)] is the non-interacting kinetic 
energy of the electron system with density II,(T). 
E,,[n,(r)] is the total exchzange and correlation 
energy of the interactingN:-electron system. For suf- 
ficicntly slowly varying densities, one obtains [ 191: 

&, b,Wl =,/hO 4cdT)l df , (8) 

where ~,,[n,(r)] is the homogeneous exchange and 
correlation energy per particle [ 191. Following the 
Kohn and Sham treatment, one performs a variation 
on E, with respect to the density PI,(~) and replaces 
the functional derivative of the non-interacting 
kinetic energy To[n,(r)] with respect to )I,@) by the 
laplacian operator to obtain the effective one-particle 
equation: 

0) 

v:ffW = -K/r + YW + VW M4l + v,, Mdl , 

and the exchange and correlation potential is given by: 

vX, be@)1 = d@,(r) ~xcEM)lYd~ze@~ 00) 
and leads to the forms similar to those used in eqs. 
(3) and (4). The charge density I&) is given by the 
self-consistent solutions to (9) as: 

(11) 

The solution of eq. (9) involves iterative refinements 

of the functionals V~ou~[n,(r)] and v&,(r)] with 
fured q(r). (Note that the quantum numbers n, 1 in 
eqs. (9) and (11) refer to the lowest central-field 
states that are not present in the core of the real atom 
and that therefore lpi)‘(r) is nodeless for the lowest 
state of a given 1.) The effective one-particle equation 

(9) with the density given in (1 1) is now used to 
define the external potential - N,lr t q(r) in terms 
of the eigenvalues {Xz,e} and eigenvectors (~2;). We 
require that the pseudo-hamiltonian in eq. (9): 

@%X(~) = G$&Br) (12) 

have the same eigenvalues as the exact all-electron 
hamiltonian [eq. (l)] for the refermce state e (i.e. 

A$; = EY). Hence for a single chosen reference state 
e, it is possible to define an external potential: 

- VMI Mr>l - ~xcbk@)l , (13) 

which when added to the (dynamic) Coulomb and 
exchange-correlation field of a N,-electron pseudo- 
atom would yield via the self-consistent solution of 
the LDF equations smooth and nodeless eigenfunc- 
tions [related to the corresponding all-electron solu- 
tions by eq. (6)] and the exact eigenvalues ~2:. The 
pseudopotential V,(r) can be expressed more conve- 
niently by using the fact that t/&(r) are solutions to 
the all-electron hamiltonian -$V* + V,,,[p(r)] [eq. 
(I)] , yielding 

+ Wtot be(r)1 - Vtot be(r)11 I (14) 

where Vtot [&r)] is the total potential of the all-elec- 
tron density &) [eq. (I)] and Vtot [n,(r)] is the cor- 
responding total potential of the pseudo (valence) 
charge density. One has hence replaced the (NV + NJ 
electron equation (1) with a simpler N&ectron 

equation which does not necessitate a large number 

of basis functions in its LCAO solution on account of 
the nodeless character of its occupied orbitals. 

Obviously, this simplification by itself does not 
offer sufficient flexibility in practical applications to 
arbitrary electronic configurations of the atom or to 

molecular and solid-state problems where the atom is 
in a bonding environment, since the solution of the 
pseudopotential problem for a given state requires the 
construction of q(r) for this state. However, to the 
extent that dze dynamic effects of the core electrons 
on the valence field of the real atom can be replaced 
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by an exterrral potential (which replaces these effects 
exactly for one chosen reference electronic state) 
acting statically on the electrons in any arbitrary 
state, such a pseudopotential transformation becomes 
useful. Our basic approximation (“static core” pseu- 
dopotential approximation) is hence that the external 
potential c&(r) delined for some reference state e, 
replaces the dynamic core effects for any electronic 
arrangement of the valence electrons. The pseudopo- 
tential G(r) is calculated directly from (14) for sev- 
eral Adues using the exact reference State eigenval- 
ues ez~, eigenvectors $&(r), the total potential 
l~‘,,~ [p(r)] and expansion coefficients {c,~,,~*r}. This 
fixes r’l(r) at the reference state e and from this point 
on V,(r) is treated as a static external field acting on 
the electrons of the pseudo-atom via eq. (9) for any 
arbitrary electronic state s #e. In the general case, 
the eigenvalues Ef,, and the total energy [eq. (6)] dif- 
ferences AEii (corresponding to different electronic 
states iand j) would not equal exactly those ob- 
tained from the all-electron problem [eq. (l)] (HIPS in 
(I 2) does not commute with the alI-elec?ron hamil- 

tonian in (la))_ The usefulness of our present 
approach hence depends entirely on the question of 
whether our static external potential V,(r) is capabIe 
of simulating the dynamic effects ofthe core elec- 
trons for any arbitrary electronic state of the atom or 
the atom placed in a bonding enviromnent (e.g. the 
validity of our static core approximation). This can 
be tested by solving both (1) and (9) self-consistently 
for a series of states, using for the latter a fixed pseu- 
dopotential generated, say, from the ground state. We 
will show in the next section by means of particular 
examples that remarkably high accuracy is indeed ob- 
taincd in solving (9) with the pseudopotential (14), 
hence confirming the insensitivity of the valence field 
to the small core changes attendant on such proces- 
ses. 

We note that our static core approximation is 
exactly equivalent to the “frozen-core” approxima- 
tion common in quantum-chemical electronic struc- 
ture calculations in that the results obtained with the 
pseudopotential defined in eq. (14) when solving eq. 
(9) for an arbitrary excited state are exactly the same 
as those obtained by pre-orthogonalizing the valence 
orbitals to some “frozen” core orbitals and solving 
the frril hamiltonian. 

The distinct advantage of our r,seudopotential 

method over the frozen-core approach is that with 
the former method no core matrix elements need to 
be computed whatsoever. We note that the equiva- 
lence of the presently developed static core approxi- 
mation to the frozencore approximation does not 
occur in the HF pseudopotential method [8] and that 
in the latter scheme additional approximations to the 
all-electron problem are necessary (see introduction) 
to reduce the all-electron problem into a pseudopo- 
tential problem; this difference stems essentially from 
the non-local effect of the core electrons on the 
valence field in the HF scheme, while in the local den- 
sity model the diagonal first-order density matrix 
determines the potential field uniquely. 

It is obvious from eq. (14) that the effective po- 
tential in the pseudo-atom V&r) is weaker than the 
full core + valence potential in the real atom 
Vtot [p,(r)] due to the cancellation with the first two 
terms on the rhs of eq. (14). This is a manifestation 
of the “Phillips cancellation theorem” [4] and is 
brought about by the balancing of the attractive 
Coulomb singularity that a valence electrqn feels in 
the core region and the repulsive kinetic tern!s arising 
from the nodal behavior of the allelectron valence 
orbitals. It is noted that for valence orbitals that do 
not have a matching Z-counterpart in the core orbitals 
(and are therefore nodeless), the sum in the second 
term in (I 4) reduces to one term (over the nodeless 
valence orbital only) and hence canceIs with the first 
term, leaving a relatively “strong” external potential. 
Hence, while the “s” total effective potential in first- 
row atoms is reIatively weak and can be treated per- 
turbationally in solid-state pseudopotential calcula- 
tions [IS] (the terms strong and weak used apply for 
radial distances larger than 1.5 bohr) the p and d total 

effective potentials are not amenable to such treat- 
ments and indeed give rise to serious convergence dif- 
ficulties in tfieir plane-wave expansions [29] _ 

We note that the presently developed pseudopo- 
tential differs distinctly from many other pseudopo- 
tential schemes [30-321 in that in the latter case 
atoms witi: more than one valence electron are not 
treated as such but replaced with a corresponding ion 
with a single valence electron and then screened 
linearly say, by some free-electron dielectric function 
[13]. Instead, our pseudopotential is constructed 
from the ground state of the real atom, so that the, 
effective valence field includes the indirect valence- 
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core-valence type effects. (The core of, say, an OS+ 
ion is not very much like that of the 0 atom.) Similar 
advantages are enjoyed by the Hartree-Fock poten- 
tials which have been constructed by an analogous 
procedure [S-S] _ 

We may briefly discuss some properties of the 
pseudopotential in ccl. (14). When one considers the 
lowest nodeless valence orbitals in an atom (e.g. 7p, 
3d) the transformation in (6) is trivial since no core 
orbitals have to be mixed into the valence orbitals to 
produce a nodeless functions and hence &t(r) = 
+!~::(r) and as mentioned above, the sum in eq. (14) 
reduces to one term. For such I values (denoted L), 
the pseudopotential is Z-independent and given by: 

(15) 
Hence, for a first row-atom only I = 0 and I = 1 pseu- 
dopotentials have to be computed since VZ equals 
exactly I/, , etc. This is distinctly different from the 
situation encountered in the HF pseudopotential 
theory [S] in which, due to the non-locality of the 

exchange, V2 is only approximately equal to Vr . 

(Similarly, if one is to use the exact all-electron orbi- 
tal $&(r) in eq. (14) instead of the pseudo-orbital 
(eq. (6)) the pseudopotential would reduce to the 
form (15) for all I-components.) Hence, when the 
pseudopotential is used in molecular or solid-state cal- 
culations in the form: 

where IA and r?zrA define the spherical harmonics on 
site A, only the lowest members need to be calculated 

(e.g., s and p for first row atoms). 
We note that we have not so far restricted the 

pseudo-orbital expansion coefficients CE,,,,ll in eq. (6) 
except that they yield a normalized and nodeless 
orbital. Any choice of these coefficients that fulfills 
the above requirements should yield, for the refer- 
ence state, eigenvalues that are identical to those of 
the all-electron local-density hamiltonian. If, how- 
ever, it is desired that expectation values (other than 
orbital energies) over the pseudo-orbitals match 
closely those yielded by the exact all-electron valence 
orbitals, two routes are possible: (a) one can choose 
the coefficients (Ctr,n*r ]so that pxke(r) would closely 

match the real atom valence orbitals #x?(r) in the 
region of space considered relevant for the observable 
of interest. This approach has led to many prescrip- 
tions in HF pseudopotential schemes and leads to 
acceptable but approximate results. In this approach 
the expectation value of an operator 6, is usually cal- 
culated directly from the pseudocharge density: 

combined with the frozen-core (reference level) den- 
sity of the real atom 

0 8) 

to yield: 

(0) = J{rr’(r) t n’(r)} 6 dr , 09) 

_ with the expectation value over a valence pseudo- 
orbital is given by: 

We will illustrate in the next section some numerical 
results obtained with this “maximum similarity” 
approach (b). Alternatively, one can use for the atom 
any convenient choice of (Ct,,n,r) (obtainingin each 
case the exact reference state valence eigenvalues) e.g. 
minimizing the kinetic energy T[&] [5,6,8] but 
after the self-consistent pseudoequations have been 
solved, one orthogonalizes the pseudo-orbitals to the 
core orbitals of the real atom. This yields orthogal- 
ized pseudo-orbitals 3$(r) given by: 

where A is the normalization constant, and the 
related orthogonalized vaIence charge density is: 

Vd~~C~ 

ZV(r) = G &I $f,(T) I2 - (22) 

In this case, expectation values are taken directly on 
“n”(r) + ttC(r) or for the valence contribution only, on 
&(r)_ If the pseudo-orbitals ~&r(r) are found for the 
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reference electrmic state, this approach leads to 
)1”(r) + rlc(r), while if the equation is solved for a dif- 
ferent excited state or for a polyatomic system, the 
resulting density matrix is inexact (but expected to 
be very accurate). We will illustrate this choice nu- 
merically in the next section. We note that the ortho- 
gonalization procedure in (21) is easy and straight- 
forward to perform since the major time-saving step 

has already been utilized in solving a simplified self- 
consistent local density equation for the valence elec- 
trons only. 

3. Details of calculation 

The calculations required here contain two essen- 
tial steps: (a) development of the pseudopotential 
[eq. (la))1 for all relevant [-components ofa chosen 
electronic state of the atom, and (b) testing the pseu- 
dopotential by solving the pseudo one-particle equa- 
tion (9) t-or arbitrary elcctror:ic states and using the 

resulting orbitals to calculate various observables 
[eqs. (17)-(Z)] for these states. Step (a) involves 

first the self-consistent solution of the all-electron 
local density equation [eq. (1) with the functionals 
defined in (Z)-(5)] for a chosen reference state. It 
has been customary in the HF pseudopotential 
approaches [5-71 to carry out this step (as well as to 

test the pseudopotential) by expanding the solution 
Q&l(r) in (1) or I?st,i(r) in (6) in a fixed basis set (e.g. 
gaussians) and similarly to represent the pseudopoten- 
tial by some analytical fit. Although this procedure is 
usually satisfactory [5-S], it represents an unneces- 
sary approximation for the atomic problem. We avoid 
these approximations by employing a direct nurneri- 
cal technique with no basis set expansions. We use a 
standard predictor-corrector method [33] in an 
inwards-outwards integration scheme. The numerical 
accuracy in the eigenvalues is IO-’ au. The total 
energy is calculated from (7) by using the charge den- 
sity matrix constructed from the eigenvalue problem, 
to yield 

+ s P(r) Ie,, b(dl - L[~(r)l) clr, (23) 

where p(r) indicates the all-electron density when (1) 

is solved, and the pseudo-density when (9) is solved. 
Et is the total energy for the all-electron and for the 

valenceeleciron cases, respectively. The sum in the 
first term in (23) is carried over all (valence f core) 
orbitals in the former case and on the pseudo-orbital 
eigenvalues in the latter case. The two integrals in 
(23) are calculated by direct numerical integration. 
The accuracy in evaluating the total energy in eq. 
(22) is 10m7 au. 

We chose here as a reference state for the atom the 
ground electronic state (although, as demonstrated in 
the next section, a similar accuracy in the predictions 

of the pseudopotential one-particle equations can be 
obtained with other choices too). Having solved eq. 
(1) for this state, the eigerivalues $*,*, the eigenfunc- 
tions $:,*I+) and the total self-consistent potential 
Vtot [p?(r)] are used in (14) together with the 
Coulomb and exchange integrals Trot [r&)1 = 
-NJr + VcoUl [+(r)] + V,,[~z,(r)] computed numeri- 
cally from the pseudo-orbit&. In step (b) we use 
these pseudopotentials to solve eq. (9) for a series of 
electronic configurations using the same integration 
technique with identical error tolerances. The pseudo- 
charge density and the core density are then calcu- 
lated from eqs. (i 7) and (18) and the orthogonality 
coefficients required in eqs. (2 1) and (23) are com- 
puted numerically. 

The operators d [eqs. (19) and (30)] chosen for 
testing the resulting pseudo wavefimctions are J’ with 
-2 < !I <+3 for the orbital expectation values, and 

exp(iq - r) for the charge density expectation values. 
The latter quantity (atomic X-ray scattering factor) is 

calculated for a series of momentum values 4 from 
the standard form for the central field given by 

f’(4) = s sin(q . r) 
-----PW dr I 

q.r 

where p(r) can be: (a) the all-electron density, (b) the 
pseudo-charge density plus frozen core density or(c) 
the orthogonalized pseudo-charge density plus frozeh 
core density. 

4. Illustrative results; carbon and tungsten atoms 

4. I. The pseudopo tm tial 

We generate the pseudopotential V,(r) and VP(r) 

for the ground (g) ls22s22p2 configuration of carbon 
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Fig. 1. All-electron ( -) and Pseudo (- - -) 2s navefunctions for: (a) the s2p2 ground state of carbon atom. (b) the ionized 

[34]. The exact $3,(r) orbital obtained from the 

solution of (1) is depicted in fig. la together with the 
pseudo-orbit& I,&&) (the pseudo 2p orbital equals 
here the exact 2p orbital ax discussed above). The 

coefficients ofeq. (6) are C3,,1, = 0.2213783 and 

CS S.2S = 0.9509916 for &_,(r)tand C$,I, = 0, 

CS P,~P = 1 for &Jr). This choice assures that the 
pseudo-orbitals have zero amplitude at the origin, are 
normalized and show maximum similarity tc the 
exact valence orbitals (any increased mixing of $5,(r) 
into &_&) will still assure the absence of the node in 
es(r) and would hence be a legitimate choice yield- 

ing accurate eigenvslues, however this would cause 
&(r) to deviate more significantly from Q&(r) in 
the tail region and would consequently lead :o differ- 
ences in the observables computed from these orbitals 
unless &&(r) is specifically orthogonalized to the core) 
[35]. It is seen from fig. la that for distances from 
the nucleus larger than about 1 bohr, &(r) and 

$s,(r) are very similar (relative absolute amplitude 
differences of less than 3%). 

Fig. 2 depicts the pseudopotentials V$) and 

Fig. 2. Pseudopotentials for carbon 
rVp(r). 

----rVs(f), - - - 
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V$(r) for carbon. To analyze the various components 
appearing in them we rewrite eq. (14) ;ts- 

fir) = f&f) + {V,p,, [pp(‘)l - kUJ~~,(~)11~ 

(25a) 

where 

V tokps [Q)l = (-G/r + G,,, k&)1 

+ v”co”l,&&)l)- (25b) 

The I-dependent non-locality appears in the first term 

of (Xa): 

(26) 

while the last two terms in (2%) are co~iin~on to all 
the I-components of the pseudopotential. (This last 
feature arises from the locality of the LDF exchange, 
and does not hold in Hartree-Fock [E] .) Here 
V,(,* [p&r) contains the Coulomb and exchange-corre- 
lation potentials of the carbon atom and 
V&Jr+(r)] and V&,ul,ps [n,(r)] denote the 
exchange-correlation and Coulomb potentials. respec- 
tively, associated with the pseudti-charge density. Fig. 
3 shows separately the last two terms in eq. (25a) 
(where each of thcrn was multiplitd by r to produce 
an effective charge) together with the Coulomb and 
exchange correlation components of eq. (25b). 

DISTANCE (au 1 

Fig. 3. Componcnls of the carbon pseudopotential COlllpSCd 

with tlx all-electron potential V,,&r). 

Several features are apparent. At large distances, 
where the non-local term I&) is no longer important, 
the decay of the pseudopotential V&) is determined 
by the small difference VfOf [p&r)] - Vtot,ps [I&)] 
between the Coulomb, exchange and correlation po- 
tentials corresponding to the all-electron and the 
pseudo-charge densities, respectively. Past a distance 
of about 3 au from the origin, the total Coulomb COII- 

tributions to both Vfot [&)I and Vtot,ps [rip(r))) are 
practically zero, leaving the exchange-correlation of 
the valence orbitals (the core contributions being 
already negligible at these distances) as a dominant 

term. As seen from fig. 3, the pseudo exchange-corre- 
lation term Y,, ps[~~g(r)] closely matches V,,, [pa)] 
in the tail regioh due to the similarity of the all- 
electron and pseudo-charge density [cf. eq. (6)] 
in this region. The large r behavior of the pseudo- 
potential V@) is hence determined by the small dif- 
ferences between the real and pseudo exchange-corre- 
lation potentials (which can be arbitrarily reduced 
through a minimization of the differences between 
the real and pseudo-orbitals at the tail region) [X] _ 
The pseudopotential V!(r) is hence shorter range than 
the full all-electron potential V,,,[p,(r)] *. 

At short distances, the non-local term u?(r) is 
strongly repulsive for the I-components present in the 
core and decays rapidly to small values. For all the 
I-components not preserit in the core, the sum in eq. 
(26) reduces to rl’l = rll (since no core orbitals need 
to mix into this nodeless valence state) and hence 
uf(r) - 0, leaving a simple l-independent pseudopo- 
tential for these states with a -NC/r dependence at 
small r. 

In fig. 4 we display the carbon effective potential 
in a form more familiar in solid-state applications, i.e. 

$ We hnvc repented the construction of the pseudopotential 
excluding the cxchmge-ccmclntion potentinl both from the 
solution of the alleIcctron cigenvaluc problem (1) and 
from the pseudopotcntial expression (14). The results indi- 
cated that in this case the behavior of V](r) at long range is 
entirely governed by the different decays of the valence 
Coulomb term in (25~1) and the pseudo-valence Coulomb 
term I~ou,,&-) of (Xb). In the presence ofexchange-cor- 
relation, on the other hand, the long-range behnvior is dic- 
tstcd by the small differences bet\veen the valence 
exchange in VtoI[~h(r)] and the pseudo-vnlcncc exciunge 

%,ps(r) in (25). 
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Fig. 4. Effective potential form factors r’&) = Icsp(--iq .r) 
X P’Fff(r)dr for Qrbon. 

in Fourier space. The effective potential form factor 

t+(q) =.jxp(-ig * r) Vf”(r)dr , 

where Vfff(r) is given in eq. (9), is seen to be diver- 
gent (i.e., 4-‘) at (I = 0 with a cross-over (u,(qn) = 0) 
at 40 = 1 .S6aot for the s-potential a&a maximum 
(u,(qJ = max) at cim = 4 00’. It is more coniin01~ to 
define these quantities relative to the Fermi wave- 
number k,: (= 1.4594 a;’ for carbon) [ 131, i.e. qo/ 
?kF = 0.64 and q,,,/ZkF = 1.37. Numerous empirical 
calculations done on diamond (i.e. adjusting y(G) to 
obtain agreement with experiment for some low-lying 
interband transition energies, where C is a reciprocal 
lattice vector) yield widely scattered values for the 
parameters of y(q) (e.g.q&kF = 0.725, 0.92 and 
0.76 in refs. [36-381, respectively and qm/2kp = 
1.09 in ref. [38]. Our present ealcutation yields the 
direct first-principle values for t+(q) as predicted by 
the local density model for carbon (atomically 
screened) subject to the static 1s core approximation. 
In particular, we notice that our calculations show a 
larger pseudopotential core (i.e. smaller qe) and more 
noticeably a slower decay of ul(q) with momentum at 

ZThis would Facilitate the use of these pseudopotentials in 
solid-state.rea[-s/~acc band calculations (e.g., LCAO) since 
lattice sums of vi/l(r) converge much more rapidly than the 
corresponding sums on the real atomic potentials. On the 
other hand, in calculations carried out in Fortrierspoce 
(e.2.. orthogonolized plane waves_OPW of pscudopotential- 
OPW) slower convergence is expected. 

large (I $ than the semi-empirically adjusted results 

[36-381. The I # 0 components (“non-local pseudo- 
potential”) have been neglected in many solid state 
applications and simulated semi-empirically by the 
-Are-‘I’ form (4, CL > 0) by Hemstreet et al. [39] 
this is qualitatively similar to the form shown in fig. 4. 

4.2. Eigetwalttes md totaal energy differewes 

Tables 1 and 2 show the energy eigenvalues and 
the differences in total energy (excitation energies) 
for a series of electronic configurations for carbon [34] 
and tungsten [28] as obtained in an all-electron SCF 
calculation (“full SCF”) and wit11 the pseudopoten- 
tial calculation (“effective potential”). The errors in 
the ground state (<IO -’ au) reflect the numerical un- 
certainty in the calculation’. 

It is seen that a remarkably high accuracy is ob- 
tained over a large range of electronic configurations 
including excited and ionic species, using the ground 
state pseudopotential. As described above, these dis- 
crepancies arc a measure of the errors introduced by 
frozen core approximation. To test the sensitivity of 
the results to the assumed reference level we recom- 
puted the carbon pseudopotential using the s1p3 con- 
figuration as reference. The numerical error in the 
eigenvalues of the tested s1p3 eigenvalues dropped 
from 2 X10e3 au to 5 X 10-sau, while the errors in 
all other tested configurations did not exceed 1 X 
low3 au for the eigenvalues and 10m4 au for the total 
energy differences, confirming thereby the relative 
insensitivity of the valence state to the form of the 
static core. The test for the extravalence excitation 
(the highly excited 2s22p03s2 configuration) similarly 
shows good agreement with the exact results [3.5]. 

4.3. hhqtimctions ad charge derfsities 

In table 3 we compare the calculated orbital mo- 
ments using the all-electron wavefunctions [“exact 
orbital”, I$~&-) of eq. (I)], the pseudo-orbitals [&j(r) 
of eq. (9)] and the orthogonalized pseudo-orbitals 

]&(~) of eq. (2 I)1 f or tl le carbon 3_s orbital. We note 
that the pseudo wavefunction introduces substantial 
errors in the moments - a factor of 4.3 in the If = -:! 
carbon moment (being sensitive to the small-r behav- 
ior) and about up to 5% error in the high moments. 
Hence, although the pseudo-orbital I&F(~) was con- 



Table 1 
Comparision bctwccn all-electron (full SW) and pscudopotcntial (effective potential) results for the carbon atom in different elec- 
tronic canfi~uratioos. Et is the total cncrgy and A!?, is the difference in total energy relative to the ground SKIN s2p2. Energies in 

atomic units 

Configuration Full SCF Effective 
potential 

ELIOr Conti~uration Full SCF Effective 
potential 

Error 

co : szp2 f2S 
Q3 
Et 
AK, 

co : ,Ip3 E2S 

% 
El 
G 

-0.4573838 -0.4573838 
-0.1579533 -0.1579534 

-37.0536044 -5.2037811 
0.0 0.0 

-0.4544846 -0.172654 
-0.1734399 -0.1755639 

-36.7533514 -4.9035473 
0.3002530 0.3002337 

-0.8899874 -0.8924458 
-0.5799256 -0.5781562 

-36.6955825 -4.8464138 
0.3580219 0.3573672 

7 x 10-B 
1 x lo- 

0.002 
0.002 

0.0002 

0.002 
0.002 

0.0006 

c’i2+ : s2p’J qs -0.6590256 
% -0.3525969 
Et -36.9274553 
tit II.1761490 

CwQ : 51-5p2 ‘?& -0.6648014 
QP -0.3579445 
Ls; -36.7741344 
tit 0.2794699 

C”2s22p03s2 “IS -0.0943490 
E3s -0.0093509 
El -36.3706176 
a, 0.6829869 

-0.6601143 
-0.3520554 
-5.0717439 

0.1260370 

-0.6676590 
-0.3593705 
-4.9236569 

0.2801240 

-0.0942194 
-0.0093402 
-4.520895 

0.6828861 

0.001 
0.0005 

0.0001 

0.003 
0.001 
- 
0.001 

0.00014 
0.00001 

0.0001 

strutted to have the lnaxinlunl possible si~nilari~y 
with the exact ~~~avefun~ri~n in the region p3st the 
node, still the accuracy of orbital observables is fun- 
damentally limited [c.f. eq. (6)]. This point should be 
emphasized in the context of discussing bonding 
effects and core-sensitive observables in molecules 
and solids using pseudo wavefunctions, see also ref. 

[40] $. On the other hand, once the pseudo-orbital is 
orthogonalized to the (frozen) core orbital (last col- 

unm in tables 2 ml 3) a remarkably high accuracy is 
obtained in the 3s orbital moments (errors less than 
10w4% for the ground state and less than 1% for the 
excited species). This ort~lo~onalizat~on is simple to 
perform even in polyatomi~ systems once the all-eiec- 
tron SCF problem has been replaced by the simpkr 

f The nuclear magnetic shielding constant = $a* 
X($ I Zjrj-*I 9) (where Q is the fine-structure constant, $ is 

’ This is in contrast with the results obtained by Euwcma 
and Green [ 141 in their pseudopotential calculation on 

the all-electron wavcfunction and the sum extends on all elec- 
trons) is 25.8320 x low5 ZIU-~ using the exact LDI’ car- 

diamond structure factors in which the use ofpscudo-orbi- 
tals produced structure factors in very good agreement with 

bon wavefunctionsand, 25.4254 x 10m5 u-t using the these obtained from the nllclcctron orbitals while consider- 
pseudo vvavcfunctions (l.Werror) and 25.8320 X !O-j 

au-* using the orthogononalizcd pseudo wefunctions, Sim- 
ably poorer agreement WIS abtaincd when orthogonalized 
pseudoalks were used. From our discussion in section 2 

ilarly tfle ML’ of the pseudo wavefunctions introduces BS well as from our present r&Its it is clear that if a first- 
i .49% err0r in the calculated diamagnetic suscepribility 
Xdat$ I r#*2i $I f and 4% error in the magnetic hypcrfke struc- 

principle ground-state pseudopotential is used, the ortho- 
gonalizcd pseudo.orbit~ls should match exacfl~ the ground- 

ture constant a&q I zjrj -3 I @f while no error is introduced state a&electron orbital (used to construct the pseudopo- 
if the orthog0naiized orbit& are used. tentinl). 

pseudopotexitial eigenvatue problem hnd shoutd be 
undertaken if a nleal~in~f~ll discussion of ~vav~func- 
t~on-dependent effects is sought. 

In table 4 we present the X-ray structure factors of 
carbon cakuloted from the ground state (frozen} core 
density plus the ail-electron valence density (column 
2), the pseudo-orbital valence density column 3) and 
the orthogonalized pseudo-orbital valence density 
(column 4). Again it is observed that while the use of 
the pseudo-orbital valence density introduces sub- 
stantial errors in the structure factors, the orthogonal- 
zed pseudo-orbit& give rise to the correct structure 
factors ‘. (At sin e/k = 0 the error is forced to be zero 
due to the nor~~a~ization requirertlent while for very 
large sin O/h ail results should be identical since the 
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Table 2 
Results for 74W in bartrecs; (r) in bohr. Core: 
ls22s22p63s23p63d’04s24p64d104fr45s25p6 

Energies Pseudo- AU- 
potential electron 

Ortho- 
gonplizcd 
pseudo 

W”: 6s26poSd” 

E6S -0.1478 
‘6~ -0.0327 

Esd -0.1783 
(rks 3.4241 
@)6p 5.1157 

tr)5d 1.9296 

W”: 6s’6p15d4 
@Et = 3.25 cV) 
E6S -0.1801 
E6~ -0.0561 
E5d -0.2252 
tr)6s 3.3134 
(r)6p 4.7351 
@kid 1.8913 

W”: 6s06p05d6 

(L&t 2 0.04 rV) 

E6s -0.1039 
E6Q -0.01326 
E5d -0.07001 
(rks 3.8003 
(‘)6p 6.4531 
(‘kid 2.2403 

W’+: 6s26p05d 
(tit = 9.33 cv 

E6~ -0.4125 
‘6Q -0.2527 

c5d -0.5200 
(r)6s 2.9707 
(r)bp 3.1722 

(‘)sd 1.7657 

W3+: 6s26p05dl 

(tit = 60.22 e’.‘) 
Ebs -1.0521 
‘6Q -0.8367 
ESd -1.3709 
(r)6s 2.4690 
(f)6p 2.8443 
(r)5d 1.5617 

-0.147s 
-0.0327 

-0.1783 

3.5756 
5.2435 

1.9996 

-0.1793 
-0.05579 
-0.22387 

3.4805 
4.8984 
1.9652 

-0.1023 
-0.01278 
-0.0666 

3.9468 
6.7574 
2.3089 

-0.4049 
-0.2471 
-0.5 156 

3.1553 

3.9016 
1.8434 

-1.0386 
-0.8121 

-1.3536 
2.6886 
3.0638 
1.6471 

3.5756 
5.2435 
1.9996 

3.4699 
4.8781 
1.9611 

3.9384 
6.6556 
2.3152 

3.1217 

3.8469 
1.8317 

2.6142 
2.9659 
1.6234 

structure factor reflects then only the core density. 
Consequentiy the error is negative at small sin O/X, 
e.g. -1.6% at sin O/A = 2.1 n,’ and positive at medi- 
um sin O/X, e.g. 5.4% at sin e/A = 13.6 no’.) !Ve note 

Table 3 

Moments of the 2s orbital density in carbon (in units of 
a$ for the nth moment) 

Moment Pseudo- Exact Orthogonnlized 
orbital orbital pscudosrbitnl 

co: 2s22p* 

trB2) 0.8214358 

(r-‘1 0.7990946 
(rl) 1.5625877 
0% 2.9787695 
(2) 6.7936320 

c’+: 2s22p’ 

F-2 ) 0.9051024 
(r-1) 0.8456368 
(r’) 1.4495504 
w*) 2.5132019 
(r3) 5.1099245 

CI-: 2~2~3 

(r-2) 0.7967260 
(r-1) 0.7825223 
(i-l) 1.6227521 
(r2) 3.2845658 
<f3) 8.1686368 

co: 2s23s2 
(F-2) 0.9860646 
(y-1) 0.8870820 
(r’) 1.3694056 
tr? 2.2264337 
$1 4.7719507 

co: zs’2p3 
w-2) 0.829310$ 

F1) 0.8035044 
(rl) 1.5514342 
(r? 1 2.9313405 
(r3) 6.6152805 

3.5499372 3.5494371 
0.9135809 0.9135808 
1.5938337 1.5938337 
3.0896185 3.0896183 
7.1030495 7.1030496 

4.0291539 4.0570634 
0.977 1805 0.9796634 
1.4815605 1.4793120 
2.6221502 2.6142221 
5.3930103 5.36817 10 

3.4205884 3.4260397 
0.89 19433 0.8919970 
1.6551629 1.6558959 
3.4036979 3.4066762 
8.5248036 8.5353401 

4.5376364 4.5885756 
1.0382943 1.0417387 
1.3994561 1.3985313 
2.3252487 2.3733574 
4.4611905 4.4581860 

3.5802110 3.5972737 

0.9177704 0.9197704 
1.5855766 1.5825911 
3.0535451 3.0413864 
6.9637727 6.9199654 

that the errors introduced by using the nonortho- 
gonalized pseudo-orbit& are quite sizable and sub- 
stantially larger than the accuracy of most cxperimen- 
tal structure factor measurement techniques. 

Although one has broad latitude in choosing the 
coefficients C,II,,I,,, particular choices may have 
special advantages or disadvantages [5-8,35,41-441. 
The choice actuaIIy made above (adding just enough 
core to remove the first node) or suggested later 
(adding enough core to make the pseudo-valence 
exchange nearly cance1 ttie valence exchange in the 

large-r region) are obvious ones; as long as the final 

valence orbitals are reorthogonalized to the core, no 
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Table 4 Table 5 
X-my srructutc factors for the ground state carbon atom 

fpseudo fpseudo-orth 

Carbon gound stnte eigenvalues and moments of r in the 2s 
state, computed with the pseudopotentinl of eq. (27). The 
results are compared with the exact all-electron solutions, 
eq. (1). Energies in atomic units and 0”) in aa 

0.0 6.000000 6.000000 6.000000 
0.3 5.778611 5.781887 5.778679 
0.6 5.210876 5.222423 5.210886 
1.0 4.254419 4.279708 4.254418 
1.5 3.199111 3.236315 3.199107 
2.1 2.374506 2.411824 2.374506 

2.8 1.879442 1.902297 1.879443 
3.6 1.614311 1.614498 1.614311 
4.5 1.442790 1.421250 1.442791 
5.5 1.282316 1.246075 1.282316 
7.8 0.925535 0.883754 0.925535 

10.5 OS91291 0.560647 0.591291 
13.6 0.348089 0.329355 0.348089 
19.0 0.146508 0.138699 0.146508 
30.0 0.035460 0.633669 0.035461 

- 

e2s 
QP 
(r-2) 
(r-1) 
<r) 
(r’) 

pxtic&riy seriotls errors in the calculated charge dis- 

tribution occw (table 3). This will be true, generally, 
so long as the c ,,~.,~‘l are chosen with reasonable cau- 
tion. One extreme choice of the C,i,,,z~l permits cotn- 

parison with the Phillips-Kleinman pseudopotential. 
If’ one were to choose; in (6), & = ~,,, then (26) 
gives u&) = ~5, - ~7,. Thus we obtain 

of C,rl,til is arbitrary and unimportant in some iimits, 
extreme choices like this one can lead to poor results 
for ~QUefil~ZCkm quantities, even thOUgh the orbitd 
erzergies are very satisfactory. This must be kept in 
mind when using empiricallyderived pseudopoten- 
tials for calculating such observables as charge densi- 
ties, oscillator strengths or Compton profiles. 

Notice that this result has the form of the Phillips- 
Kleinman potential [4] : the first (pseudopotential) 
term accounts for the orthogonality and drives the 
orbital energy up to the correct value, while the last 
IWO terms account for valence interactions. We would 
expect this potential to yield quite good orbital ener- 
gies, and, as table 5 showsZ it does. On the other 
hand, the 91, is not very much like &zs in the tail 
region, so that the resulting pseudopotential (27) 
would be expected to yield rather poor wavefunc- 
tions and orbital densities; again, table 5 shows this 
cxpcctation to be coreect. In this case, however (un- 
like the choices taken previously for the C,rl,,;,), we 
cannot simply reorthogonalize the valence to the 
core, since we choose pZs = $,s, so that the valence 
orbital is the core orbital. Thus, although the choice 

Table 2 presents additional results, for the tung- 
sten atom [28] _ Again, the first-principles pseudopo- 
tential reproduced energy quantities to extremely 
high accuracy, while the pseudo wavefunction reor- 
thogonalized to the frozen core yields excellent mo- 
ments of the charge distribution. We note that even 
for W3’, with a energy 60 eV above the reference 
state, the errors are no larger than 2%. Thus even for 
this stringent test, on a large system with occupied 
high angular momentum states and at high excitation 
energies, our pseudopotential performs admirably. 

5. Remarks 

The established utility of the pseudopotential con- 
cept has led to proposal of several pseudopotential 
procedures for use in the LDF context [34,35,45-481. 
Several of these pseudopotential methods are semi- 
empirical 136-381 and are subject to some errors, par- 
ticularly for wavefunction-related quantities [49,50] ; 
we feel that these failures are due to both the failure 
to include the full angular momentum dependence 
and the absence of explicit constraints of wavefunc- 
tion similarity. More recently, several first-principles 
pseudopotential-LDF procedures have been proposed 

Effective 
potential 

Full SCF 

-0.4573829 
-0.157951 
64.1055643 
5.5995528 
0.2730326 
0.10104083 

- 

-0.4573838 
-0.1579534 

3.5499372 
0.9135809 
1.5938337 
3.0896185 
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[34,35,45,46], some of which have been successfully 
tested in molecular [%I] or solid-state [Sl] calcula- 
tions. We feel that our method [28,34,35,51] which 
retains the symmetry of the spherical harmonic 
expansion about each center, enjoys some efficiency 
advantages, particularly for band-structure studies 
employing plane-wave or gaussian basis sets [5 I] over 

procedures [45] which actually employ the differen- 
ces between pseudo-densities and true valence densi- 
ties in the calculation of the local-exchange potential. 
For molecular studies, the situation is not so clear, 
and the method employing density differences may 
actually be preferable. Both our method and those 
developed by Snijders and Baerends [45] and by 
Moriarty [4G] employ a first-principles approach to 
definition of the potential, are not.dependent upon 
fitting of experimental data, and do not make (often 
unjustifiable) oversimplifications in the treatment of 
the higher I-components of the pseudopotential; as 
expected on the basis of our formal arguments, first- 
principles potentials of the present type seem notice- 
ably superior to earlier semi-empirical potentials for 
calculation of wavefunction-related quantities. 

We have presented here a first-principle method of 
obtaining atomic pseudopotentials in the localden- 
sity formalism subject to the static core approxima- 
tion [34,35]. The pseudopotentials are straightfor- 
ward to calculate once an exact solution to the all-elec- 
tron local density problem for the chosen reference 
state of the atom is available, and should offer great 
economies in electronic structure calculations for 
polyatomic systems. Tests for the performance of the 
atomic pseudopotential for the C and W atoms in pre- 
dicting excited-state properties show accuracy better 
than 2 X 10m3 au for eigenvalues and 10m3 au for 
total energy differences for an excitation energy 
range up to 10 eV. While the direct use of the self- 
consistent pseudo-orbitals to compute orbital mo- 
ments and X-ray scattering factors introduces non- 
negligible errors, a simple orthogonalization proce- 
dure was shown to produce excellent agreement with 
the exact all-electron results. Ener,y results for other 
first-row atoms are equally satisfactory, and are pres- 
ented elsewhere [34]. Band structure studies [51] 
and some calculations on diatomic molecules [52] 
indicate that the present method does indeed produce 
a useful, viable, efficient, accurate first-principles 

LDF pseudopotential. 
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