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Linear combination of bulk bands method for large-scale electronic structure calculations
on strained nanostructures

Lin-Wang Wang and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 3 February 1999!

A ‘‘strained linear combination of bulk bands’’ method is introduced for calculating the single-particle
electronic states of strained, million-atom nanostructure systems, within an empirical pseudopotential Hamil-
tonian. This method expands the wave functions of a nanostructure~superlattice, wire, and dot! as linear
combinations of bulk Bloch states of the constituent materials, over band indicesn and wave vectorsk. This
allows one to use physical intuition in selecting then andk that are most relevant for a given problem. This
constitutes a useful approximation over the ‘‘direct diagonalization’’ approach where the basis is complete
~individual plane waves! but unintuitive. It also constitutes a dramatic improvement upon thek•p approach,
where the continuum model Hamiltonian is used, losing the atomistic details of the system. For a pyramidal
InAs quantum dot embedded in GaAs, we find electronic eigenenergies that are within 20 meV of the exact
direct diagonalization calculation, while the speed of the current method is 100–1000 times faster. The sub-
linear scaling of the current method with the size of the system enables one to calculate the atomistic electronic
states of a million-atom system on a personal computer in about 10 h. Sufficient detail is provided in the
formalism, so that the method can be promptly implemented.@S0163-1829~99!01024-3#
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I. INTRODUCTION

Heteronanostructures such as superlattices,1 embedded
quantum wires,2,3 or embedded quantum dots4 today consti-
tute the main platforms for electronic structure engineerin5

This calls for accurate predictions of their electronic prop
ties. The standard approaches to the problem are
effective-mass envelope-function approximation~EMA! and
its multibandk•p generalization,6,7 where the wave function
c(x) of the nanostructure is expanded in terms of zo
center (k50 or ‘‘G point’’ ! Bloch bands~indexedn) of the
underlying periodic solid

c~x!5
1

AN
(

n

NB

(
k

Nk

Ck,n8 @uG,n~x!eik•x#[(
n

NB

f n~x!uG,n~x!.

~1!

Here NB is the number of bands included in the expa
sion, uG,n(x) is the periodic Bloch function,k is the wave
vector, f n(x) is the envelope function, andN is the number
of primary cells in the system. This method is exact if
(NB5`) zone-center bulk bands are included. In practi
this approach has been implemented in the spirit of a mo
Hamiltonian, with a heavy truncation of the basis set (NB),
mitigated by extensive empirical parametrization of t
Hamiltonian matrix. Retension of a single band (NB51)
leads to the ‘‘particle in a box’’ description, whereas use
the highest occupied bulk valence bandG15v leads to the
‘‘6 36 k•p’’ generalization, and addition of the lowest un
occupied bulk conduction bandG1c leads to the ‘‘838 k
•p’’ generalization, etc.

The simplicity of the model comes, however, at a cost t
has been recognized only recently, when large basis set
culations of thesame Hamiltonian became available fo
comparison.8–10 These include the following.
PRB 590163-1829/99/59~24!/15806~13!/$15.00
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~1! The actual physical symmetry of the nanostructure
replaced in the EMA by an artificially higher-symmet
group. This distorts qualitative features of the electron
structure. Examples include the following:~a! The omission
of odd vs even oscillation in quantum films,1,8 leading to an
artificially monotonic energy-thickness curve.~b! The re-
placement of the true zincblendeTd symmetry of spherical
dots by spherical symmetry, which artificially disallowss-p
envelope function mixing.11 ~c! The replacement of the tru
C2v symmetry of a square-based pyramidal dot by aC4n

symmetry which misses the splitting ofp states and the in-
plane polarization anisotropy.12

~2! The coupling of nanostructure states to X or L bu
bands is disallowed. ThusG-to-X conversion of a quantum
dot electron state as a function of pressure13,14 or quantum
dot size15 cannot be described by the 838 k•p model, nor
can theL character of some of the lowest dot electron stat
or theX mixing in ~001! GaAs/AlAs superlattices.16

~3! The coupling of strain to the electron state is linea
ized. This could lead to errors as large as a few hund
meV.

~4! Interfaces are nonexistent or idealized. For example,
in superlattices lacking a common atom, such
(InAs)n /(GaSb)m with (n,m) integers. The interface can e
ther be Ga-As bonded or In-Sb bonded. They are treate
the same ink•p models. In addition, interdiffused and inte
mixed interfaces cannot be easily described by thek•p mod-
els.

~5! Electon-hole interaction energies evaluated via en
lope functions can be significantly inaccurate. Within the
k•p approach, Coulomb energies can be overestimated b
to 40% in a quantum dot,17 while exchange energies can on
be evaluated using a short-range analytical model which
been shown recently to be incorrect.18

However, there are ways of improving the convention
effective mass~or k•p) models,19 e.g., by adding a nonpara
15 806 ©1999 The American Physical Society
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PRB 59 15 807LINEAR COMBINATION OF BULK BANDS METHOD FOR . . .
bolic kinetic energy term; adding a state mixing term at
interface,20 introducing nonlinear strain effects, etc. The fo
malism can get very complicated, and the rapid increas
the number of parameters makes it quite intractable.

An alternative approach21 to this problem, which is more
along the lines ofab initio methods, is to avoid the decom
position of the wave function in Eq.~1! into envelope func-
tions. Instead, the wave function is described by a variati
ally flexible plane wave basis, and the potential is descri
as a superposition of atomic potentials22 va(r ). This guaran-
tees that the physical symmetry of the system is preser
and affords an atomistic description of surfaces, interfac
and strain. Since the basis set is not drawn fromG-like Bloch
states, an off-G character in the wave functions can b
readily described. In this approach, the single-particle Sch¨-
dinger equation is constructed as

H 2
1

2
¹21(

R,a
Wa~R!va@x2R2da~R!#J c~x!

[Hc~x!5ec~x!, ~2!

wherec(x) is the single-particle wave function,R denotes
the position of the primary cell, andda(R) is the displace-
ment of atom of typea inside the primary cellR. va(x) is a
screened, spherical atomic pseudopotential that can be
tracted from local density-approximation~LDA ! calculations
on bulk systems, and then adjusted empirically so as to fit
measured bulk band properties while keeping LDA qua
wave functions.22 In this work, we will deal with local
pseudopotentialsva(x) only. The weight functionWa(R) is
used to denote whether an atom of typea occupies siteR
1da(R). The atomic positions$R1da(R)% are relaxed with
respect to their ‘‘ideal’’ positions~e.g., perfect zinc-blende
crystal structure! to minimize the strain energy. For strain
dependent pseudopotentials,23,24 Wa(R) could deviate from
0 or 1, being instead a function of local strain.c(x) is ex-
panded in a fixed plane-wave basis set

c~x!5(
k

A~k!eik•x. ~3!

This approach~1! includes, via$R1da(R)%, the true atom-
istic symmetry of the heterostructure;~2! is able to describe
the multivalley~e.g.,G-X) mixing via the ability to describe
the whole Brillouin zone~BZ! Bloch states;~3! could be
used to study very small nanostructures, beyond the re
of parabolic approximation of the band structure, and bey
the region of linear strain dependence;~4! retains interfacial
properties pertaining to the atomic structures; and~5! given
the atomistic~i.e., nonenvelope! nature of the wave function
c(x), this method can also be used to calculate explicitly
Coulomb interaction and the exchange interactions.18,17

This approach has been used to study quantum wells
perlattices, disordered superlattices, quantum wires, collo
quantum dots, embedded pyramidal quantum dots, and c
position modulations in alloys. Excellent agreements w
the experiment have been obtained for single-particle ene
levels,11 exchange splittings,18 optical-absorption spectra25

and the magnitudes ofG-X coupling.13

The disadvantage of the expansion of Eq.~3! is that it
does not lend itself to systematic approximations: The pla
e
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wave basis$eik•x% of Eq. ~3! is classified only in terms of the
kinetic energy1

2 k2. In contrast, the EMA expansion of Eq
~1! is ‘‘intuitive,’’ in that one can classify the basis set i
terms of physical Bloch functions$uG,neik•x% and include
only those that are ‘‘low energy.’’ The consequence of th
distinction is that one uses a large basis set of plane wave
the pseudopotential approach. Even though we emplo
linear-in-size ‘‘O(N)’’ method,26 treating dots made o
500 000 atoms requires more than 20 h of CPU time on a
nodes Cray T3E machine. In this paper, we refer to t
direct solution of Eq.~2! as ‘‘exact.’’

Here we will present an approximate method to solve E
~2! by changing the basis of Eq.~3! to the basis of full zone
bulk Bloch states@Eq. ~4! below#. This approximate method
can solve the same problem of Eq.~2! within 10 h on a
personal computer. The accuracy of this method is typica
10–20 meV of the exact results.

This work is an extension to the ‘‘linear combination
Bloch bands’’~LCBB! method, which is described briefly in
Ref. 13. In the LCBB method, the wave functionc(x) in Eq.
~2! is expanded in terms of full-zone Bloch states of t
constituent bulk solids:

fk,n
0 ~x!5

1

AN
uk,n~x!eik•x ~4!

and

c~x!5(
n

NB

(
k

Nk

Ck,nfk,n
0 ~x!. ~5!

The system being calculated is a supercell~large box! peri-
odic in all three dimensions. Again,N is the number of pri-
mary cells in the supercell,n is the band index, andk is the
supercell reciprocal-lattice vector defined within the first B
The Hamiltonian matrix elements are evaluated within
basis set$fk,n

0 (x)%, and the resulting Hamiltonian matrix i
diagonalized to yield$Ck,n%. There are two advantages t
this approach.

~i! The advantage relative to a plane-wave method@Eq.
~3!#: Unlike the plane wave expansion ofc(x) in Eq. ~3!,
expansion in Eq.~5! allows one to select the physically im
portant bandsn andk points. As a result, the number of bas
functions (NB3Nk) in Eq. ~5! can be reduced significantl
compared to the plane-wave basis. As a matter of fact~see
Secs. III and IV!, it is possible to use a fixed number of bas
functions in Eq.~5! to achieve the same degree of accura
for different system sizes. This is in direct contrast to t
plane-wave expansions, where the number of basis funct
scales linearly with the size of the system. This sublin
scaling makes the LCBB method much faster than theO(N)
methods~e.g., the folded spectrum method26! for very large
systems.

~ii ! The advantage relative to thek•p method@Eq. ~1!#: In
the conventionalk•p method of Eq.~1!, the Bloch function
uk,n(x) of Eq. ~4! is replaced by the zone center (G) part
uG,n(x). As a result, one can describe the band structure o
near theG point.8,10 Furthermore, the Hamiltonian has to b
changed from Eq.~2! to a parametrized form so as to yie
the correct effective masses. As a result, thek•p method is
detached from the atomistic origins of Eq.~2!, and serves
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15 808 PRB 59LIN-WANG WANG AND ALEX ZUNGER
only as a continuum model for the envelope functions.
contrast, the LCBB method~1! retains the full atomistic
structure of the wave functions, enabling the use of
Hamiltonian of Eq.~2! without parametrization; Eq.~2! de-
scribes the bulk band structure correctly throughout the
even if only a single band(NB51) is used in Eq. (5). Thus
the method can be used to describeG-X couplings, nonpara-
bolic effects around theG point, interfacial anisotropy, and
interface-induced state couplings.

The formulation of the LCBB method described in Re
13 does not address strain, and thus pertains to unstra
heterostructures, such as GaAs/AlAs. In reality, most se
conductor heterostructures involve some degree of str
e.g., InAs/GaAs and InP/GaP. Strain can have a signific
effect ~up to a few hundred meV! on the electronic structure
of the system. In this paper, we will extend the previo
LCBB method to describe strained systems; thus we ca
the ‘‘strained LCBB’’ or SLCBB method. This extensio
expands the usability of this approach from very limit
cases~e.g., GaAs/AlAs! to all possible semiconductor he
erostructures, and thus constitutes a major improvemen
this approach.

Recall that the description of strain effects in thek•p
model requires as input the continuum elasticity strain pro
of the system, and various deformation potential parame
They are used to construct an explicit linearly strain dep
dent Hamiltonian. On the other hand, in our atomistic a
proach, all we need to describe strain effects is to solve
Schrödinger equation~2! when $R1da(R)% are not at the
ideal zinc-blende positions. Thus$R1da(R)% andva are the
-

,

n

n

e

,

ed
i-

in,
nt

s
it

on

e
rs.
-
-
e

only inputs of our method. Explicit deformation-potential p
rameters and continuum elasticity strain profiles are
needed.

II. FORMALISM

A. Strain-free LCBB formalism

Since the LCBB method is only briefly discussed in R
13, we will review its formalism here, and will provide mor
discussions on its selection of basis sets and computati
details in Secs. III and V, along with the discussions of t
SLCBB method. In the LCBB method, the atoms are
sumed to be in their unrelaxed ideal zinc-blende positio
$R01da

0%. The nanostructure is placed in a periodic superc
with cell edge vectors$L1

0 ,L2
0 ,L3

0% and reciprocal-lattice vec
tors $k%. The zinc-blende reciprocal-lattice vectors are d
noted as$G%. While k is restricted to the first Brillouin zone
of the zinc-blende reciprocal lattice, allG exceptG50 are
outside the first BZ. Each spatial point inside the superce
described by its Cartesian coordinatex.

As described in Eq.~5!, the nanostructure wave functio
is expanded by the constituent bulk Bloch statesfk,n

0 (x).
The periodic partuk,n(x) of the Bloch function is described
by the plane wave functions as

uk,n~x!5
1

AV0
(
G

NG

Ak,n~G!eiG•x, ~6!

where NG is the number of zinc-blende reciprocal-lattic
vectorsG within an energy cutoff. Using this basis set$fk,n

0 %
of Eq. ~4!, the Hamiltonian matrix elements are
^fk8,n8
0 uĤufk,n

0 &5V0 (
G,G8

Ak8,n8~G8!F \2

2m
uk1Gu2dk,k8dG,G8

1(
a

Va~ uk1G2k82G8u2!e2 ida
0
•(k1G2k82G8)Wa

0~k2k8!GAk,n~G!, ~7!
of
ze.
x

he
B
en-

r
nge,
whereV0 is the supercell volume andVa(q2) is the Fourier
transform ofva(x):

Va~q2!5
1

V0
E va~ uxu!eiq•xd3x, ~8!

where q25uqu2 and V05V0 /N is the volume of a single
primary cell, andWa

0(k) is a structure factor

Wa
0~k!5

1

V0
(
R0

Wa~R0!e
ik•R0. ~9!

The unapproximated equation~7! can be evaluated effi
ciently if Wa

0(k) is available. The calculation ofWa
0(k) is

facilitated by the fact that the atomsR0 are on a regular grid
so fast Fourier transformation~FFT! can be used in Eq.~9!.
Using this technique, the evaluation of the matrix eleme
in Eq. ~7! requires}(NB3Nk3NG)2 operations. As will be
discussed in Sec. III, the number ofk pointsNk can be kept
ts

the same independent of system size; only a few bandsNB
are needed in the basis set, andNG is a constant for a given
plane-wave cutoff energy. Consequently, the evaluation
Eq. ~7! is fast; the effort is independent of the system’s si
A direct diagonalization of the Hamiltonian matri

^fk8,n8
0 uĤufk,n

0 & yields the coefficientsCk,n in Eq. ~5! and
the eigenenergye. This diagonalization step takes}(NB
3Nk)

3 operations, which in practice is comparable to t
evaluation of the matrix elements. The strain-free LCB
method provides a fast and accurate way to obtain the eig
solutions of unrelaxed nanostructures.

B. SLCBB formalism for strained systems

Reference system: Starting with an unrelaxed system
$L1

0 ,L2
0 ,L3

0% and $R01da
0% as a reference system for ou

SLCBB, we let the atoms and the supercell shape cha
minimizing the total elastic energy of the system~using, e.g.,
an atomistic valence force field model30!. Let the relaxed
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atomic positions be denoted as$R1da(R)%, and the relaxed
supercell edge vectors be denoted as$L1 ,L2 ,L3%. One can,
for example, take the anion positions as$R%; then each cat-
ion has a displacement$da(R)% ~the displacements for an
ions is zero!. Notice that, in the unrelaxed Bloch functio
fk,n

0 (x) of the reference system, the periodic functi
uk,n(x) is commensurate with the unrelaxed atomic positio
$R01da

0%, not with the displaced atomic positions$R
1da(R)%. As a result, the Bloch functions of the unrelax
system form a poor basis set for the relaxed system. Wh
needed here is to shift the Bloch wave functions along w
the relaxation-induced shift in the atomic positions. This c
be done by mapping a point, described byx in the relaxed
system, to a corresponding pointx0 in the unrelaxed refer-
ence system:m(x)[x0. One can imagine obtaining this map
ping by considering a rubber sheet~with a grid on it!
wrapped on the unrelaxed supercell, and letting the rub
sheet deform following the displacements of the anio
Thus, we have the mappingm(R)5R0, andm(L j )5L j

0 for
j 51, 2, and 3. The unrelaxed Bloch functionfk,n

0 (x) will be
replaced byfk,n

0 @m(x)# as the basis function.
Strain-deformed Bloch basis set: Let us define a deformed

plane wave function as

uk1G&[AJ~x!

V0
ei (k1G)•m(x), ~10!

whereV0 is the volume of the reference supercell, andJ(x)
is the Jacobian of the mapm(x), so that

d3m5J~x!d3x. ~11!

Using Eq.~10!, the orthogonality condition is

^k1Guk81G8&5dk,k8dG,G8 , ~12!

so the deformed plane waves form an orthonormal set. S
pose that the unrelaxed Bloch basisfk,n

0 (x) of Eq. ~4! has
the periodic partuk,n(x) defined by Eq.~6!. Then the ‘‘de-
s

is
h
n

er
.

p-

formed Bloch function’’ in the relaxed system can be defin
as

ufk,n&5AJ~x!fk,n
0 @m~x!#5(

G

NG

Ak,n~G!uk1G&, ~13!

whereAk,n(G) is defined in Eq.~6! for a bulk system. The
index n now denotes collectively~i! the band index,~ii ! the
identity of the constituent bulk materials~e.g., GaAs and
InAs!, and~iii ! the bulk strains used to calculateAk,n(G) in
Eq. ~6! ~e.g., unstrained InAs, hydrostatically compress
InAs, or uniaxially strained InAs!. The Bloch functions ob-
tained directly from Eqs.~6! and ~13! for different bands,
materials, and strains are not mutually orthogonal at a gi
k. We will thus explicitly orthogonalize these basis functio
at eachk point ~using the Gram-Schmidt orthogonalizatio
scheme!, so that the resultingufk,n& ’s form an orthonormal
basis set:

^fk,nufk8,n8&5(
G

NG

Ak,n* ~G!Ak,n8~G!dk,k85dn,n8dk,k8 .

~14!

As in the case of the strain-free LCBB of Eq.~5!, the
eigenstatec(x) of the deformed system will be expanded b
the deformed Bloch functionsufk,n&

c~x!5(
n

NB

(
k

Nk

Ck,nufk,n&. ~15!

Hamiltonian matrix in a deformed Bloch basis: To solve
for the coefficients$Ck,n%, we need to evaluate the matri
elements of the HamiltonianH of Eq. ~2! using the basis se
ufk,n&, then diagonalize the ensuing Hamiltonian matrix.

We will break the Hamiltonian H into the kinetic energ
part H152 1

2 ¹2 and the potential energy partH2
5(R,aWa(R)va@x2R2da(R)#, and evaluate their matrix
elements separately. For the kinetic-energy part, we hav
the
is
e
ion of
^fk,nuH1ufk8,n8&5
1

2 (
G,G8

Ak,n* ~G!Ak8,n8~G8!E J~x!

V0
@¹e2 i (k1G)•m(x)#•@¹ei (k81G8)•m(x)#d3x

5
1

2 (
G,G8

Ak,n* ~G!Ak8,n8~G8!
1

V0
E @~k1G!• ê~x!#•@~k81G8!• ê~x!#ei (k82k1G2G8)•m(x)d3m

5
1

2 (
G,G8

Ak,n* ~G!Ak8,n8~G8!dG,G8~k1G!•F 1

N (
R0

ê~R0!• ê~R0!ei (k82k)•R0G•~k81G8!. ~16!

Here, the strain tensorê(x) is defined as]m/]x. In Eq. ~16!, we have made two approximations. First, we have ignored
gradient operating on the Jacobi functionJ(x). This ‘‘smoothe(x) approximation’’ is valid when the change in the strain
smooth in space. Second, we have broken down the full space integrald3m into the integral inside one primary cell and th
summation(R0

over the primary cells. For the integral inside one primary cell, we have only considered the variat

ei (G2G8)•m in the integrand, and thus obtaineddG,G8 . Now, if we define

ŝ~k![
1

N (
R0

ê~R0!• ê~R0!eik•R0, ~17!

we have
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^fk,nuH1ufk8,n8&5
1

2 (
G

Ak,n* ~G!Ak8,n8~G!~k1G!•ŝ~k82k!•~k81G!. ~18!

Next we will evaluate the matrix element for the potential partH2. Let us first derive the formula for the matrix element
the deformed plane-wave basis function of Eq.~10!:

^k1GuH2uk81G8&5
1

V0
E J~x!(

R,a
va~x2R2da!Wa~R!ei (k81G82k2G)•m(x)d3x

5
1

N (
R0 ,a

J~R0!Wa~R0!e2 i (k2k8)•R0
1

V0
E va~x2R2da!eiq•[m(x)2R0]d3x

5
1

N (
a

eiq•da
0

(
R0

J~R0!Wa~R0!e2 i (k2k8)•R0eiq•[ ê(R0)•da(R0)2da
0 ]

3
1

V0
E va~x2R2da!eiq• ê(R0)•(x2R2da)d3~x2R2da!. ~19!

Here,V05V0 /N is the volume of one primary cell. In Eq.~19!, we have usedq[k81G82k2G and ê5]m/]x. Again,
we have ignored the change ofJ(x) within one primary cell. We have also usedm(x)2R08 ê(R0)•(x2R). This is valid for
smallx2R, which is the case in the integral ofd3(x2R2da), where the pseudopotentialva(x2R2da) decays rapidly with
increasingx2R2da . Also notice that, we have changedWa(R) to Wa(R0), since, as indices,R and R0 refer to the same
primary cell. Now, let us define

Dda~R0!5 ê~R0!•da~R0!2da
0 . ~20!

Using Eqs.~20! and ~8!, Eq. ~19! can be rewritten as

^k1GuH2uk81G8&5
1

N (
a

eiq•da
0

(
R0

J~R0!Wa~R0!e2 i (k2k8)•R0eiq•Dda(R0)Va~ uq• ê~R0!u2!. ~21!

A direct evaluation of the matrix elements formed by the sum in Eq.~21! requires a large number of operations}N3(Nk
3NG)2, whereN is the number of the primary cells in the system. The number of plane wavesNG is typically ;60 when a
5–7 Ry plane-wave cutoff energy is used. The number ofk pointsNk is typically around 1000. But the number of primary ce
N is of the order of millions. Thus a direct evaluation of Eq.~21! is impractical. We thus prefer to simplify Eq.~21!. Notice
that Dda(R0) denotes the internal displacement of the cation atom from its ‘‘ideal’’ position (ê21

•da
0), thusq•Dda(R0) is

usually much smaller than 1. As a result, we can expandeiq•Dda(R0) into 11 iq•Dda(R0). Let us also definex̂(R0)5 ê(R0)
• ê(R0)2 Î , then Va„uq• ê(R0)u2…5Va„q

21q•x̂(R0)•q…. Assuming the strain is small, thenx̂(R0) is small; thus we can
expandVa to second order inq•x̂(R0)•q. Substituting these expansions into Eq.~21!, we have

^k1GuH2uk81G8&5
1

N (
a

eiq•da
0

(
R0

J~R0!Wa~R0!e2 i (k2k8)•R0FVa~q2!1 iVa~q2!q•Dda~R0!

1Va8 ~q2!q•x̂~R0!•q1
1

2
Va9 ~q2! (

i1, . . . ,i4
qi1qi2qi3qi4x i1,i2~R0!x i3,i4~R0!G , ~22!

whereVa8 (q2)5dVa(q2)/dq2 and Va9 (q2)5d2Va(q2)/dq2
2 . Each index ofi1, . . . ,i4 runs through the three dimensions

vectorq.
Now let us define a few structure factors:

Wa~k!5
1

N (
R0

J~R0!Wa~R0!e2 ik•R0,

Wd
a~k!5

1

N (
R0

J~R0!Wa~R0!Dda~R0!e2 ik•R0,

~23!
Ŵx

a~k!5
1

N (
R0

J~R0!Wa~R0!x̂~R0!e2 ik•R0,

Wi1,i2,i3,i4
a ~k!5

1

N (
R0

J~R0!Wa~R0!x i1,i2~R0!x i3,i4~R0!e2 ik•R0.
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Substituting these structure factors into Eq.~22!, we obtain

^k1GuH2uk81G8&5(
a

eiq•da
0FVa~q2!Wa~k2k8!1 iVa~q2!q•Wd

a~k2k8!1Va8 ~q2!q•Ŵx
a~k2k8!•q

1
1

2
Va9 ~q2! (

i1, . . . ,i4
qi1qi2qi3qi4Wi1,i2,i3,i4

a ~k2k8!G . ~24!

The replacement of Eq.~21! by Eq.~24! leads to a speedup by 104, as will be discussed in Sec. IV. Finally, the matrix eleme
in the deformed Bloch function basis can be expressed in terms of^k1GuH2uk81G8&,

^fk,nuH2ufk8,n8&5 (
G,G8

Ak,n* ~G!Ak8,n8~G8!^k1GuH2uk81G8&. ~25!
av

av

de
e
u

rs
tr
-

o
. I
t
-
t
is

on

c
le
th

ate
that
.

r

ima-

ed

rder
ing
s

red
an

.
e
he
of

od

ow
et
het-
ua-
d,

ig.
in

for
-

f

In our pseudopotential calculation, we have used22 a
smooth plane-wave cutoff functionv(uk1Gu2). This is nec-
essary because we have a small number of plane w
(NG;60) for each primary cell. Ifv(uk1Gu2) is not used,
the bulk band structure as a function ofk could be discon-
tinuous due to sudden changes of the number of plane w
as thek point changes. The use ofv(uk1Gu2) smooths out
this discontinuity. However, the use ofv(uk1Gu2) also in-
troduces additional terms in our formulas above. For a
tailed description of these additional terms, see the App
dix. Notice that, althought we started the derivation of o
formalism by introducing the mapingm(x), at the end, in Eq.
~24! @or Eq. ~A6!#, we only needê(R0) and J(R0), not the
detailed mapingm(x).

III. DISCUSSIONS OF APPROXIMATIONS

In contrast to the exact solutions of Eq.~2!, we have used
several approximations in our SLCBB approach. The fi
type of approximations concerns the evaluation of the ma
elements in Eqs.~18!, ~24!, and ~25!. Because of these ap
proximations, for a given basis set@Eq. ~13!#, the calculated
matrix elements from Eqs.~18!, ~24!, and~25! are not exact.
The ‘‘smoothe(x) approximation’’ and ‘‘Taylor expansion
approximation’’ belong to this category. The second type
approximations concerns the truncation of the basis sets
stead of using a complete basis set, we have taken advan
of the fact that, in our Eq.~15!, the nanostructure wave func
tions are expanded in the physically meaningful basis se
bandsn and wave vectorsk. We have thus truncated the bas
set to include only physically relevant$n,k%.

A. Smooth e„x… approximation

A major approximation we made in deriving Eqs.~18!

and ~24! is that we have ignored the change ofê(x) @hence
J(x)# within each primary cell. This is the ‘‘smoothê(x)
approximation.’’ It is because of this useful approximati
that we do not need to know the detailed functionm(x), but
instead we need only to knowJ(R0) and ê(R0) at each
primary cell R0. This ‘‘smooth ê(x) approximation’’ is ex-
pected to be accurate in the region away from the interfa
but near the interface, this approximation could in princip
introduce some errors. However, our numerical tests of
es

es

-
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SLCBB results against the exact results in Sec. V indic
that such errors are small. One possible reason for this is
the wave functions are not localized around the interface

B. Taylor expansion approximation

In deriving Eq.~24! from Eq.~21!, we have used a Taylo
expansion ofeiq•Dda(R0) in powers of q•Dda(R0), and a
Taylor expansion ofVa„q

21q•x̂(R0)•q… aroundq2. These
truncated expansions can lead to errors. These approx
tions exist even when the strain is uniform as long asDda
and x(R0) are not zero. Notice that we have expand
Va@q21q•x̂(R0)•q# to the second order ofx̂(R0). That
means, for a major part, we have retained the second-o
effects of the strain. To see how large the error result
from the ‘‘Taylor expansion approximation’’ is, Fig. 1 show
the SLCBB eigenenergies vs strain for bulk InAs compa
with the exact result. The SLCBB was calculated with
unrelaxed reference system$R0 ,k% defined as thex50 point
in the figure. We consider three types of strains (A, B, and
C) taken from an elastic calculation~Sec. V! at three loca-
tions ~see the inset to Fig. 1! inside an InAs pyramidal dot
We see that, with our~semi-! second-order expansion, th
bulk electronic states of the different strain regions in t
quantum dot have been reproduced within an error
;10 meV.

C. Choice of basis sets

1. Unstrained system

We first discuss the convergence of the LCBB meth
with regard to the number of bulk bandsn and wave vectors
k for the unstrained AlAs/GaAs system. The issue is h
many bands andk points should be included in the basis s
to obtain accurate results. Notice that, in this unstrained
erostructure, the approximations of matrix element eval
tion discussed in Secs. III A and III B do not exist. Indee
the matrix elements calculated via Eq.~7! are exact. Thus the
only error comes from the limited basis set. As shown in F
2, when six GaAs bands and six AlAs bands are included
the basis set, the electron eigenenergies
(GaAs)m /(AlAs) m superlattices are within 2 meV of the ex
act calculations form down to 1 ML. When the number o
bands is reduced to two for eachk point, the eigenenergy



-
1

his

e

tr
t t
n

y

a
in
n

-

le
ases,
he
, the
her.

ults
s
Fig.

t

e

id
f
ion

ns

lines

15 812 PRB 59LIN-WANG WANG AND ALEX ZUNGER
error increases to;5 meV form.10 ML. For large super-
lattices, e.g.,m520 ML, including only one band in the ba
sis set is enough to obtain the electron energies within
meV. Thus, for the large nanostructures for which t
method is designed, just a few~all-zone! bands should be
enough to describe the electron states. Usually, becaus
the degeneracy of the bulk bands near theG point, more bulk
band basis functions are needed to converge the nanos
ture hole states than the electron states. Note further tha
hole states and electron states of a given nanostructure ca
calculated separately using different basis sets.

As for the choice ofk points in the basis, one usuall
places them in regions near specialk points, e.g., theG point,
the X point, and theL point. Here one can exercise physic
judgment to achieve economy. For example, when study
a G-X coupling, as in Ref. 13, one needs to include regio
both near theG andX points, while in studying a state pri
marily derived from the bulkG point, as in Sec. V, we only

FIG. 1. SLCBB calculations for bulk InAs under differen
strains. The end point (x51) strains forA, B, andC are taken from
the interior of the pyramidal quantum dot studied in Sec. V.A is at
the center of the pyramid,B is at the center of the base of th
pyramid, andC is shifted from pointB along the~110! direction,
one-third of the distance away from the corner of the pyram
The unrelaxed reference system (x50) has a lattice constant o
a55.879 Å . The basis functions used in the SLCBB calculat
for the lowest electron statee1 and the highest hole stateh1 are
described in Sec. V. The strains atA,B,C points, 3.4% relative to
the reference system ofx50 ~not to the nature bulk InAs!, are~A!
Tr~e!23.3.4%,exx.eyy.ezz, exy.eyz.exz.0; ~B! Tr~e!23.0,
ezz2exx(5eyy).7%, exy.eyz.exz.0; ~C! Tr~e!23.0.3%,
ezz2exx(5eyy).8%, exz.eyz.2%, exy.1%.
0
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he
be

l
g
s

need to includek points near theG point. An important fea-
ture of the LCBB and SLCBB methods is that for simp
shaped nanostructures, when the size of the system incre
the numberNk of thek points needs not to be increased. T
basic idea is that, when the size of the system increases
envelope function of the electronic state becomes smoot
As a result, the maximum value of thek vector needed to
describe the envelope function becomes smaller. This res
in the same number ofk points in the basis set, and is thu
independent of the system size. This is demonstrated in
3. The exact lowest electron state of the~001!
(GaAs)m /(AlAs) m superlattice is analyzed using Eq.~5!.
The sum of coefficients(nuCk,nu2 is plotted as a function of
k and the superlattice periodm. As m increases, we have
more and morek points within the BZ. However, if we
choosek according to a magnitude criterion of(nuCk,nu2,

.
FIG. 2. The effects of the number of bulk band basis functio

used in the SLCBB calculations of~001! (GaAs)m /(AlAs) m super-
lattices. The solid lines are the exact results, and the dashed
are the SLCBB results.~a! The number of bandsNB used in the
basis set equals 12: six from GaAs and six from AlAs.~b! NB52,
from the fifth and sixth bands of GaAs fork near theG point, and
from the fifth and sixth bands of AlAs fork near theX points.~c!
NB51, from the fifth band of GaAs fork near theG point, and the
fifth band of AlAs for k near theX points. 24k points are used in
the basis set, 13 near theG point, and 11 near theX points.
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e.g.,(nuCk,nu2.131023 ~above the dashed line in Fig. 3!,
the number ofk points is almost independent ofm. This
important feature of the LCBB and SLCBB methods mak
their computational efforts scale almost asO(N0) ~see Sec.
IV !. Thus these methods are suited ideally to studying v
large systems.

2. Strained systems

To calculate the effects of strain on the eigenenergy
second order requires that~i! the Hamiltonian matrix ele-
ments should be evaluated correctly to second order@as we
did in Eq.~24! and discussed in Sec. III B#, and~ii ! the wave
function should be correct to first order in strain. This mea
that the basis set should have sufficient variational flexibi
to allow the wave function to change with strain. We intr
duce the strain dependence into the basis set by inclu
bulk Bloch functions corresponding to a few types of stai
For example, to describe a bulk solid under various degr
of hydrostatic strains, one needs to include in the basis
hydrostatically strained system in addition to the unstrain
system. To describe the~001! uniaxially strained systems, a
additional~001! uniaxially strained Bloch function is neede
in the basis set. The idea here is to have enough variati
degrees of freedom for the wave function to cover the wh

FIG. 3. The selection ofk points in the basis set and its siz
dependence for (GaAs)m /(AlAs) m superlattices. Exact electro
wave functionsc(x) of the superlattices are analyzed using E
~15! @equivalent to Eq.~5! in this case#. The basis function contri-
bution to the wave function from eachk point @(nuCn,ku2# is plotted
here as a function ofk and the superlattice periodm. If only the k
points with(nuCn,ku2.0.001 are chosen, the number ofk pointsNk

is independent of superlattice sizem. Thus one can use the sam
number of basis functions in SLCBB for different size systems.
s
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strain profile of the system. As will be discussed in Sec.
to calculate a pyramidal InAs quantum dot, we need to
clude 3–4 differently strained bulk systems in the basis
such as in the calculation of Fig. 1. If we include only
single bulk system in the basis set, the eigenenergies
often be in error of up to 100 meV. Note that the unrelax
reference system defined in the begining of Sec. II B is u
to generate$R0 ,k%, but not to generate the basis set. T
basis function@coefficientsAk,n(G) in Eq. ~6!# can be gen-
erated from strained bulk systems, as discussed here.

IV. COMPUTATIONAL CONSIDERATIONS

In this section, we discuss some numerical details of t
method, which are important for its implementation. The
are two computational aspects to the implementation of
SLCBB method:~i! evaluation of the matrix elements usin
the deformed Bloch function basis@Eqs.~18!, ~24! and~25!#,
and ~ii ! diagonalization of the resulting matrix to get th
eigenenergies and eigenstates.

A. Matrix element evaluation

The key to the current implementation is to have a f
evaluation of the matrix elements. This is made possible
the use of Eq.~24! instead of Eq.~21!. As mentioned in Sec
II, the derivation of Eq.~24! from Eq.~21! reduces the com-
putational effort of the matrix elements@Eq. ~25!# from }N
3(NB3Nk3NG)2 operations to}30(NB3Nk3NG)2 opera-
tions, given that all the structure factors in Eqs.~17! and~23!
are known. Here a prefactor 30 is used to represents
evaluation of the many terms in Eq.~24! @or Eq.~A6!#. Since
the number of primary cellsN is typically about a million,
the use of Eq. ~24! instead of Eq. ~21! represents a
;10 000-fold speedup.

Since all theR0 points in Eqs.~17! and ~23! reside on a
regular fcc grid, fast Fourier transformation can be used
calculate the structure factors in Eqs.~17! and ~23!, in a
fraction (,5%) of the total matrix evaluation time. Ther
are only six components to be calculated for the ten
Ŵx

a(k), and 15 grouped components to be calculated
Wi1,i2,i3,i4

a (k). Furthermore, to save memory, not allk points
within the first BZ need to be stored. This is because, fo
given basis set, onlyNk k points inside the first BZ are used
Thenk2k8 in Eq. ~24! occupies only a small fraction of th
total k points in the first BZ and only on thosek points need
we storeŝ(k), Wa(k), Wd

a(k), Ŵx
a(k), andWi1,i2,i3,i4

a (k).

In Eq. ~23!, each primary cell has oneê(R0) andJ(R0).
In practice, we have assigned oneê(R0) andJ(R0) for each
atom in the zinc-blende primary cell. In other words,x̂(R0)
and J(R0) in Eq. ~23! should be changed tox̂a(R0) and
Ja(R0). To evaluateê for a given atom, we have considere
the four atoms bonded to that atom. If we usedxk (k51, 2,
and 3! to denote the three edges of the four-atom-corne
tetrahedron, anddmk are the corresponding three edges
the unrelaxed reference system, thenêa for the atom at the
center of the tetrahedron is calculated asdmk5 êa•dxk .
Thereafter,Ja(R0) is calculated asdetu êa(R0)u. Notice that
Dda(R0) in Eq. ~23! is nonzero only for cation atoms sinc

.
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15 814 PRB 59LIN-WANG WANG AND ALEX ZUNGER
the anion atoms are used to represent the position of
primary cell. In Eq.~17!, we have used the averagedê• ê
from the cation and anion atoms.

The calculation of Eqs.~24! and ~25! can be further
speeded up by carefully rearranging the ‘‘do loops’’ in t
program overk, k8, G, G8 and n, n8. The idea is that Eq
~24! @and the major part of Eq.~A6!# depends only onq
5k2k81G2G8. Thus, for the sameq, the time-consuming
multiplications need not be repeated. In practice, instead
doing a double loop overk and k8, one can have an oute
loop over all possiblek2k8 values, and an inner loop ove
the possiblek for eachk2k8. Within each loop for the same
k2k8 value, we can then store the results of Eq.~24! for
eachG2G8, and use them for differentG andk values. In
doing so, we have effectively reduced a major part of
(NB3Nk3NG)2 scaling toNB

23Nk3NG scaling.
To carry out Eq.~25!, one needs the coefficientsAk,n(G)

of the bulk Bloch function. This is obtained by direct diag
nalization of the bulk Hamiltonian at each individualk point,
and for each constituent material and bulk strain. Again,
band index, material index, and bulk strain index are co
bined into ‘‘n’’ in Ak,n(G). Furthermore, at eachk point,
Ak,n(G)’s for different ‘‘n’’ are orthogonalized, as shown i
Eq. ~14!. The generation ofAk,n(G) for all of the needed
basis functions takes,5% of the total matrix evaluation
time.

Finally, since the HamiltonianH is real, one can exploi
symmetries to reduce the number of matrix elements
needs to evaluate. First, due to the Hermitian symme
^fk,nuHufk8,n8&5^fk8,n8uHufk,n&* . Second, due to
the time-reversal symmetry, ^fk,nuHufk8,n8&
5^f2k,nuHuf2k8,n8&* . As a result, only a quarter of th
(NB3Nk)

2 matrix elements need to be explicitly calculate

B. Diagonalization of the Hamiltonian matrix

After the whole matrix̂ fk,nuHufk8,n8& is obtained, it is
diagonalized to get the eigenenergies and eigenstates. T
done using standard numerical packages, e.g.,LAPACK. Usu-
ally, only the band-edge states are needed for nanostruc
calculations. We found it necessary in some cases, to
obtainA5(H2Ere f)

2 by a matrix multiplication, then solve
the eigenstates ofA. Here,Ere f is a reference energy place
inside the band gap. This folded spectrum method26 changes
the band-edge states from the middle of the energy spec
to the lowest-energy states of the folded spectrum. Thus
solve for only a few states, instead of the whole spectru
The diagonalization step scales as (NB3Nk)

3. If the number
NB3Nk of the basis set is larger than 4000–5000, the ti
for the diagonalization part becomes larger than the time
the Hamiltonian evaluation part. For a system with a f
million atoms and using a few thousand deformed Blo
functions as the basis set, it typically takes 1–2 h to evalu
the matrix elements on a workstation and an additional
hours to diagonalize the resulting matrix. However, up
;400-MB memory might be needed to store the lar
Hamiltonian matrix.

V. RESULTS FOR A PYRAMIDAL QUANTUM DOT

In this section, we will apply the SLCBB method to ca
culate the single-electron states of a pyramidal quantum
he
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and compare the results with the exact solutions of Eq.~2!.
Nanometer-sized semiconductor quantum dots can be gr
using the Stranski-Kranstanow growth mode in molecu
beam epitaxy~MBE!27 or metal-organic chemical vapo
deposition.28 When a 1.7-ML InAs is deposited on a GaA
substrate during a 550-570 °C MBE growth, Ruvimo
et al.29 reported$101%-faceted InAs pyramids formed on th
surface. These surface InAs pyramidal quantum dots are
sequently covered by GaAs capping layers.

We have studied such a$101%-faceted InAs pyramidal
quantum dot embedded in a GaAs matrix. The crystal str
ture is zinc blende. The square base of the pyramid ib
5110 Å ~i.e., 20a, wherea is the lattice constant of GaAs!.
The height of the pyramid is thenh5b/2555 Å . The pyra-
mid is placed in a 40a340a320a supercell, filled with
GaAs. The whole system contains a quarter of a million
oms.

There is a 7% lattice mismatch between InAs and Ga
The atomic positions are relaxed using a Keating vale
force field~VFF! model.30 The strain profile of this system i
reported in Ref. 31. The hydrostatic strain and uniaxial str
can be as large as 10% inside the quantum dot. The s
effects on the local confinement potential can be lar
than31 500 meV. Thus it is essential to treat these str
effects accurately.

The electronic structure of this system using Hamilton
~2! can be calculated exactly using the parallelized fold
spectrum method~FSM!.12,24A 5-Ry cutoff energy is used in
the plane-wave expansion. A smooth cutoff function ofb
50.8 is used, as described in the Appendix. The FSM res
were reported in Ref. 24. That study revealed relationsh
between the shape of the quantum dot with the state splitt
polarization, and number of confined states in the quan
dot. The time to calculate the conduction and valence-b
states of this system is about 20 h on 128 nodes of the C
T3E parallel machine. Here we are interested in using
dot system as a test for our approximated SLCBB metho

First we calculate the electron states of the system.
choose the lattice constant of our unrelaxed reference sys
to be 5.879 Å , which is between the GaAs lattice const
(5.653 Å ) and the InAs lattice constant (6.058 Å ). W
have used a sphere around theG point to select thek points
in the SLCBB expansion of Eq.~15!. About 800k points are
used. This corresponds to a grid of ten discretek point in
each direction. Four strained bulk systems were used to g
erate the Bloch wave-function basis. The first one is GaAs
its natural lattice constant of 5.653 Å . The second one
InAs in a compressed lattice constant of 5.879 Å . The th
one is InAs in an average lattice constant of 5.879 Å b
underezz2153% uniaxial strain (z is the pyramid height
direction!. The fourth system is InAs, as in the third case, b
with an additonal 3%exy , eyx strain. The choice of these
bulk systems is designed to cover the strain profile of
system, as shown in Ref. 31. Note that for a simpler sys
like quantum wells and superlattices, the strain profile wo
be much simpler. Thus a smaller number of strained b
systems would be needed in the basis set. For each o
above four systems, we have chosen only one full-zone b
~the first conduction band! as the basis set. As a result, the
are a total of 3018 basis functions. It takes about 1.4 min
a IBM 595 workstation to generate all the basis functio
Ak,n(G); 1.2 min to obtain theŝ(k) in Eq. ~17! andW(k)’s
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in Eq. ~23!; 21 min to evaluate the matrix elements in E
~25! @or Eq. ~A6!#; and 10 min to diagonalize the 301
33018 matrix. Thus, in total it takes about 34 min to calc
late the electron states of the quantum dot. This is ab
1000 times faster than the direct calculation using the FS
Should the system be larger, this ratio could also be. Thi
because the time for the current approach will not chan
while the time of FSM will increase linearly with the size o
the system.

Figure 4 shows the electron wave function and energie
the pyramidal InAs dot. We see that the SLCBB CBM e
ergy has an error of 12 meV compared with the exact F
results. The energy of SLCBB CBM13 has a larger error o
29 meV. Notice that the SLCBB energy is slightly high
than the exact energy. This is an indication that the ene
error comes from a limited SLCBB basis set@rather than
from the matrix element evaluation error in Eq.~24!#. A
strong restriction on the basis set is the number ofk points.
With the limitedk points, it is difficult to describe the mor
complicated wave functions of CBM13, causing a larger
energy error for this state. Notice also that the energy sp
ting between states has been reproduced accurately by
SLCBB method. The largest error for the energy splitting
9 meV. So, in this regard, the result of SLCBB is qu
satisfactory. The wave functions of the SLCBB and the
rect calculation are quite similar. There are some small

FIG. 4. The SLCBB calculated electron states of an InAs py
midal quantum dot embedded in a GaAs matrix, with a base len
equal 110 Å and a height equal to 55 Å . The results are comp
with the exact results of the folded-spectrum method. The num
are the corresponding eigenenergies~in eV! and energy splittings.
The isosurfaces are plotted from the wave-function squares.
level values of the green and blue isosurfaces equal 0.25 and 0.
the maximum wave-function square values, respectively.
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ferences, like the size of the isosurface. However,
SLCBB wave function plotted in Fig. 4 is only an approx
mate one. That is, to plot Fig. 4, we have projected the w
function c(x) in Eq. ~15! to uG,n(x) @with a multiplication
envelope functionFn(x)#. The use ofuG,n(x) instead of
fk,n(x) introduces some small errors in the plotted wav
function amplitude(nuFn(x)u2. Thus the small isosurface
difference between SLCBB and direct calculation in Fig.
should not be taken too literally.

Next we calculate the hole states. Here more basis fu
tions are needed to describe the degenerated top of the
lence band. Like the conduction state calculation, an un
laxed reference system with a lattice constant of 5.879 Å
used. The same four strained bulk systems and the s
k-point selections are used as for the electron state calc
tion. However, more bands are taken in the basis set for e
strained system. For the first bulk system of natural Ga
four bands are taken, from the first to the fourth (G1v and
G15v). For the other three systems, the three top vale
bands (G15v) are taken in the basis set. This results in 99
basis functions. On the same IBM 595 workstation, it tak
the same time to generate the basis functionsAk,n(G) and to
obtain theŝ(k) in Eq. ~17! andW(k)’s in Eq. ~23!, as in the
case of electron state calculations. It takes however 150
to evaluate the matrix elements in Eq.~25! @or Eq.~A6!#; 109
min to carry out a matrix multiplication to obtain (H
2Ere f)

2; and another 316 min to diagonalize the resulti
(H2Ere f)

2 matrix. In total, the calculation of hole state
takes about 9.6 h. This is more than ten times slower than
calculation of the electron state, but is still about 100 tim
faster than the direct calculationvia the folded spectrum
method. Notice that about three quarters of the compu
time is spent in calculating (H2Ere f)

2 and diagonalizing the
resulting matrix. A standard exact diagonalization routine
used to diagonalize the extrema states of the (H2Ere f)

2

matrix. There may be room to improve the situation by us
an iterative diagonalization scheme, like the Lancz
method. To store a 990939909 complex Hermitian matrix
about 400-MB memory is needed.

Figure 5 shows the wave function of the dot’s hole sta
and the eigenenergies. The SLCBB hole state energies
typically 11–22 meV lower than the exact energy. Aga
this is mainly due to the limited variational degree of fre
dom in the basis set, especially due to the limitedk points.
This is a more acute problem for hole state, since they t
to have finer features in their wave function, as shown in F
5. The energy splittings have a maximum error of 10 me
with the average error being 5.6 meV. The order of the sta
are the same for the SLCBB and FSM. The wave functio
of the SLCBB and FSM look similar. However, for VBM
and VBM-1, the two wave-function lumps are more sep
rated in the FSM than in the SLCBB. This may simply ind
cate that there are not enoughk points in the SLCBB basis to
describe the small wave-function lumps. Again, some fi
structure differences between the SLCBB and FSM in Fig
should not be taken too literally, since we have introduc
small errors in plotting the SLCBB wave functions.

It is nontrivial to obtain the correct hole wave function
Unlike the case for the electron states, where the nodal st
ture follows s, p, and d classifications, the hole states a
more complicated, e.g., they are so intermixed as to have
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nodes. These wave functions cannot be estimated with
explicit calculation. If the error of our approximation we
on the order of 100 meV, instead of the current 10-m
value @for example, by removing the second-order te
Wi1,i2,i3,i4

a in Eq. ~24! or by using only a single strained bul
system in the basis set#, completely different hole wave func
tions will result, bearing no resemblance to the states sh
in Fig. 5.

VI. CONCLUSIONS

We have presented a strained, linear combination of b
band~SLCBB! method for calculating single-particle wave
functions and energies of nanosystems. This method re
sents an extension of the LCBB method to the strained
erostructure systems. This method correctly treats the eff
of strain on the electronic structure up to a major part of
second order. Unlike the conventionalk•p method, no ex-
plicit strain deformation potential parameters are used to
resent this strain effect. What is needed are the atomic p
tions and the atomic pseudopotentials. Sufficient details
presented in this paper, so that a workable program ca

FIG. 5. The SLCBB calculated hole states of the same In
pyramidal quantum dot as in Fig. 4. The results are compared
the exact results of the folded-spectrum method. The same a
Fig. 4 for the isosurface values.
ut

n

lk

re-
t-
ts

e

p-
si-
re
be

developed based on the current formalism. The SLCBB
sults differ from the exact diagonalization results only
&20 meV in absolute energy levels, and&10 meV in the
energy splittings. The wave functions of the SLCBB are ve
similar to those obtained in direct diagonalization. Howev
for a system containing a quarter of a million atoms, t
SLCBB is 100–1000 times faster than the direct FSM cal
lation. For larger systems, this speedup ratio will be ev
larger. With the SLCBB method, the atomistic~not the en-
velope function! electronic structure of a million-atom sys
tem can be calculated within 10 h on a personal comput

Another use of the SLCBB method is to study the con
bution of different bulk states to the eigenstates of a na
structure. This can be done by monitoring the change of
eigenstates when some of the bulk bands in the basis se
removed. This can also be done by plotting(kCk,nufk,n& in
Eq. ~15! for different band indexn. A simple summation of
(kuCk,nu2 will reveal the magnitudes of different bulk ban
contributions in quantum dot states. For example, the d
hole states shown in Fig. 5 are consisted of typically 95%
the bulk heavy hole and 5% of the bulk light hole.

Finally, throughout this paper, we have ignored the sp
orbit interaction in our calculation.12 To include this interac-
tion is not difficult. One approach is to add a spin-orbit i
teraction term in Eq.~25!. One can double the basis set
Eq. ~13!, so that there are spin-up and spin-down comp
nents. Under this basis set, the terms in Eq.~25! are the
diagonal terms within the spin-up and spin-down comp
nents. The spin-orbit coupling can be introduced as ad
tional diagonal and off-diagonal terms between spin-up a
spin-down components. The same technique of FFT can
used as in Eq.~23!. A nonlocal potentialVa

so(k1G,k8
1G8) can be used to replaceVa(q2) for the spin-orbit inter-
action. However, the formalism of these additional terms c
be much simplified comparing to the terms in Eq.~24!, since
energy involved in these additional terms is small and l
order approximations are acceptable. A recent impleme
tion of the spin-orbit interaction version of the SLCBB pr
gram shows that~1! the memory of the program will only be
doubled due to symmetry;~2! the time to evaluate the matri
elements increases by about 25%.
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APPENDIX: ADDITIONAL TERMS CAUSED BY THE
SMOOTH CUTOFF FUNCTION

In a plane-wave pseudopotential calculation, the pla
wavek1G is included in the basis set if

E~k1G!5
1

2
uk1Gu2<Ecut , ~A1!

s
th
in



ur
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whereEcut is a cutoff energy, usually about 5–8 Ry in o
calculations.
.

K

G

n-
A smooth cutoff functionv(uk1Gu2) can be defined as22
ent
v~ uk1Gu2!5H 1 if E~k1G!<bEcut

sin2Fp@Ecut2E~k1G!#

2~12b!Ecut
G if bEcut<E~k1G!<Ecut ,

~A2!

whereb<1 is a control factor (b50.8 is used in the current calculation!.
To use this smooth cutoff function, the potential partH2 of the Hamiltonian will be changed to a nonlocal operator

H2~x1 ,x2!5E v~x2x1!H(
R,a

va@x2R2da~R!#Wa~R!J v~x2x2!d
3x, ~A3!

wherev(x) is the Fourier transformation ofv(uk1Gu2) in real space, and is a short-range function. Then the matrix elem
^k1GuH2uk81G8& can be written as

^k1GuH2uk81G8&5
1

V0
E AJ~x1!e2(k1G)•m(x1)v~x2x1!H(

i ,a
va@x2R2da~R!#Wa~R!J

3v~x2x2!AJ~x2!e(k81G8)•m(x2)d3x1d3x2d3x. ~A4!

Using the same approximation as we did in Eq.~19!, especially making the expansionm(xl)2m(x)8 ê(R0)•(xl2x), for l
51 and 2, we have

^k1GuH2uk81G8&5
1

N (
a

eiq•da
0

(
R0

J~R0!Wa~R0!e2 i (k2k8)•R0eiq•Dda(R0)

3Va~ uq• ê~R0!u2!v~ u~k1G!• ê~R0!u2!v~ u~k81G8!• ê~R0!u2!. ~A5!

This equation is the counterpart of Eq.~21!. Following the same approximation after Eq.~21!, and expandv@ uk1Gu21(k
1G)•x̂•(k1G)# to the first order of (k1G)•x̂•(k1G), and we have our final result as

^k1GuH2uk81G8&5(
a

eiq•da
0H v~ uk1Gu2!v~ uk81G8u2!FVa~q2!Wa~k2k8!1 iVa~q2!q•Wd

a~k2k8!

1Va8 ~q2!q•Ŵx
a~k2k8!•q1

1

2
Va9 ~q2! (

i1, . . . ,i4
qi1qi2qi3qi4Wi1,i2,i3,i4

a ~k2k8!G
1v~ uk1Gu2!v8~ uk81G8u2!Va~q2!~k81G8!•Ŵx

a~k2k8!•~k81G8!

1v8~ uk1Gu2!v~ uk81G8u2!Va~q2!~k1G!•Ŵx
a~k2k8!•~k1G!J , ~A6!

wherev8(q2)[dv(q2)/dq2. Equation~A6! should be used to replace Eq.~24! in cases where a smooth cutoff functionv is
used in the calculation. The kinetic-energy part@Eq. ~18!# remains the same.
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