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ABSTRACT

I describe a new strategy for predicting the electronic properties of zero-dimensional
semiconductor quantum dots, including the excitonic spectrum. This methodology
was applied recently to both “free standing” (e.g. colloidal) and t semiconductor-
embedded (e.g. self-assembled) dots.

1. Experimental advances in growth and characterization of semiconductor
quantum dots call for theoretical methods capable of predicting the measured
electronic structure as a function of the shape and size of the dot. The objectives of
such an endeavor are to predict (a) the single-particle energy levels and their
confinement energies, (b) the electron-hole Coulomb and exchange energies, (c) the
ensuing two-particle excitonic spectrum and transition probabilities, (d) the energies
needed to charge quantum dots (“Coulomb blocade”) and (e) the nature of the
electronic states in the system (e.g. s,p,d..., heavy hole-like, light-hole-like, I'-like or
X-like, etc).

2. For quantum-wells and superlattices (that are confined in only one
dimension), there is a highly successful “standard model” for addressing the above
theoretical requirements. This is the well-known effective-mass-approximation
(EMA) kep method. In this approach the wavefunctions of the nanostructure are
expanded in terms of N Bloch states of the underlying bulk -periodic solid. This
expansion is limited, however, only to Brillouin-zone center (“gamma’) Bloch states.
If N = 1 we have the “single band EMA” or “particle in the box”. If we use the top
of the valence band I, state to expand the wavefunction of the nanostructure then
Ny = 6 (due to 3-fold spatial degeneracy of this p-state, times the 2-fold spin
degeneracy). This approximation is called “6x6 kep”. If we add to the basis the bulk
conduction band minimum I',, then N, = 8 and the approximation is called “8x8
kep”. For quantum wells and superlatteces, the “8x8 kep”” model has provided a very
good account of the electronic structure, using input (“Luttinger”’) parameters drawn
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from the band structure of the bulk-periodic solid.

3. Quantum-dots lack translational periodicity in all 3 spatial directions, so
they are conceptually more removed from the 3D bulk-periodic crystal than are the
2D periodic quantum wells. Would a bulk-crystal-derived formalism such as the
EMA suffice for describing quantum dots? Mathematically, this question means “how
many gamma-like 3D periodic bulk Bloch states does it take to capture the essential
features of the wavefunctions of nD periodic nanostructure?” (n=0 for dots, n=1 for
wires).

4. Until recently, the answer to the above question was unknown, since there
wasn’t any method capable of using an arbitrary number N; of bulk basis functions
for expressing the nanostructure wavefunctions. In fact, the success of the EMA was
examined primarily by contrasting its predictions directly with experiments. This is
usually an eminently reasonable way to test the validity of any theory. However, this
is not the case if one uses adjustable parameters to fit the theory to experiment. This
was often done in application of the EMA to quantum dots. Indeed, often the EMA
parameters were adjusted to fit the experiments they claim to explain theoretically.
For example, consider kep calculations on CdSe dots: Norris and Bawendi [1] say,
“We use standard nonlinear least-squares method to globally fit the experimental
data...our fitting routine adjusts three parameters: the Luttinger band parameters vy 1
and y2 and the potential barrier for electrons.” In another work, Efros et al. [2] say,
“The position of the quantum size levels are very sensitive to the valence band energy
parameter; those used for calculation...give the best description of the CdSe
microcrystal absorption spectra.” Wind et al. [3] say, “Fig. 1 shows the experimental
values...the lines in fig. 1 have been calculated following a model including the valence
mixing...The best correspondence could be obtained [by] choosing a Luttinger
parameter y = 0.38...” Since in such cases the EMA theory is explicitly fit to
experiment, it cannot examine the legitimacy of either its successes or its failures. In
these cases, good agreement with experiment does not necessarily imply good theory.

5. So how many gamma-like 3D-periodic bulk states are needed to expand
a wavefunction of a nanostructure? The answer was recently given by Wood et. al
[4-5] for AlAs/GaAs (001) superlatteces and quantum wells, by Wang and Zunger [6]
for X-like states in bulk solids, and by Fu, Wang and Zunger [7,8] for quantum dots.
These authors “projected” the pseudopotential-calculated wavefunctions of
superlatteces, quantum wells and dots onto the gamma-like states of bulk-periodic
solid, finding how many of the latter are needed for expanding the former. The
unpleasant answer is that a reasonable description of even the band structure away
from the Brillouin zone center requires as many as Ny = 30 gamma bands, (see figures
3 and 4 in Ref.6), while small quantum dots require a few hundred bulk bands for a






quantitative description.

6. So what happens if we disregard the above noted “mathematical warning”
and go ahead using the EMA with a small number N of bands? Can we adjust the
many parameters and still get away with this? The answer is that one can not do this
with impunity. For example, the EMA with small Ny can even misrepresent the
correct physical symmetry of the nanostructure, leading to qualitatively incorrect
predictions. Here are a few examples:

@® A film made of p monolayers of zincblende material can either have or lack
reflection symmetry, depending on whether p is odd or even. Consequently, the
energy levels of thin films oscillate [9] with the film thickness. The continuum-like
EMA does not recognize reflection symmetry and produces a monotonic dependence
of the film energy levels on the film thickness. Pseudopotential calculations [9]
produce the expected odd-even oscillations.

@ A spherical dot made of zincblende material (e.g., InP, AlAs) does not have
spherical symmetry. Its physical T (tetrahedral) symmetry permits, in fact, mixing of
s-like with p-like character in the wavefunctions. [ 10] The simple EMA, on the other
hand views such dots as spherical with “s-like” or “p-like” states. This led to the
expectation [11,12] that single-photon absorption experiments (“s—s” or “p-p”) and
two-photon (“s-p”) experiments will reveal radically different spectra, reflecting
“different level symmetries”. In fact, the measured single-photon and two-photon
spectra are virtually identical. This is the case for CuCl [11], CdSe [12] and InP
dots. Analysis [10] of the real wavefunctions reveal indeed heavy mixing of s and p
character, consistent with experiment.

@® A square-based pyramidal dot made of zinc blend material (e.s, InAs) does not
have C,, symmetry [13]. Consequently, the two in-plane directions [110] and [110]
are not equivalent. In contrast, the EMA kep views the square-based pyramid as a
classic pyramid, with 4-fold rotation symmetry. Consequently, the polarization ratio
P[110]/P[110] for the lowest electron-hole transition in SK dots of InAsis ~ 1 in kep.
A realistic Pseudopotential calculation [14] gives a ratio of 1.3. The same problem
exists in (001) superlatteces that lack a common atom, e.g. [15] InP/GaAs or
InAs/GaSb: kep leads to a polarization ratio of 1, while experiment and pseudo
potential calculation give a “giant polarization”.

7. Other difficulties when using the EMA:

@ Sometimes quantum dots have X-derived or L-derived low-energy states that are
missed by the I" based EMA. Examples include: (a) Sufficiently small GaAs dots,






wires and films have an X, -like conduction band minimum [16,17,18] (b) The second
bound electron state of InP dots is L,--derived [10] (c) Under hydrostatic pressure,
InP dots [19] and GaAs-embedded-InAs dots[20] have X, ~derived conduction band
minium. (d) The I'-X coupling matrix element in superlatteces and quantum
dots[19,20] can be as large as the level spacings.

® Real surfaces (e.g. chemically-passivated, or reconstructed, or defects at surfaces)
and real interfaces (e.g. coherently strained and/or inter diffused) can not be modeled
by the EMA that is inherently “surfaceless”.

@ In strained quantum dots (e.g. InAs embedded in GaAs) the electronic levels shift
and split due to strain, but EM A-based methods describe this coupling only via linear
deformation potentials. Recent calculations [14] have shown that the linear
approximation can lead to errors of a few hundred meV for strongly strained dots
(e.g. InAs/GaAs, with its 7% strain).

8. Is there an easy way out?

One could add more basis functions to the conventional kep, but this comes
with an unpleasant rapid increase in mathematical complexity and in the number of
fictitious adjustable parameters that are not “physical observables” which could be
measured. It is likely that the inertia of the EMA for quantum dots, propelled by its
many successes in higher-dimensional nanostructures (e.g. quantum wells) and its
inherent simplicity and adjustability, will continue to promote its widespread use,
especially among experimentalists, as proclaimed in this meeting by Ray Tsu.
However, there is a possibility of moving forward, using a completely different
approach, which we have recently developed [21-27]. It is not always an easy way
out, but it overcomes all of the objections we have raised above, it provides all
physical quantities listed in paragraph 1, and can be applied to dots, wires and films
of almost any semiconductor, with any shape or strain profile.

9, So what is the basic idea?

Molecules, quantum dots and solids are made of atoms that can be
characterized by approximately transferable atomic pseudopotentials v,(r). The EMA
does not recognize atoms or potentials. Instead, it describes the electronic structure
via matrix elements over Bloch functions, retaining the “coarse”, or “long-
wavelength” characteristics of the molecule or dot, thus smoothing over its “fine”, or
“atomistic” structure. Not only does this remove sometimes the true physical
symmetry of the molecule or dot, but it also results in a large number of parameters
(=matrix elements) whose magnitude and coupling to strain are difficult to determine






as Ny—. Instead, we will treat a molecule, dot or solid as a linear combination of
atomic pseudopotentials placed spatially where atoms are located. This immediately
gives you the right symmetry of the object at hand, including the opportunity to model
its surface or interface with atomic detail. Also, since such molecular potentials
depend on the atomic positions within the molecule, and since “strain” is merely a
collection of (displaced) atomic positions, this approach gives you in a natural way
the full coupling of strain to the electronic structure. What we need to know is the
screened atomic potential for each atomic type. The theory of construction of
screened atomic psudopotentials that correctly reproduce a given set of measured
bulk or molecular properties and ab-initio calculated wavefunction is described in refs
[21,28] and will not be discussed here. The full informational content of the
chemistry of our problem is encoded in the functions Ve(r) for each atom type «.

Once we have constructed the molecular potential, we place each
molecule/dot in a fictitious large unit cell and periodically repeat the cell so as to
create (artificial) 3D periodicity. When studying ‘free-standing” (e.g. colloidal) dots
we surround each dot in a unit cell by a chemical passivation layer, followed by a
thicker layer of vacuum, intended to separate the quantum dots. When studying
matrix-embedded (e.g. InAs-in-GaAs “self assembled™) dots, we surround each dot
in a unit cell by its (usuvally strained) matrix material.

Now that we have a mathematically translationally periodic Hamiltionian, we
can find its eigen solutions by employing much the same methods used in ordinary
“band theory”. We can expand the wavefunction of the dot as a linear combination
of plane waves[22-27], or as a Linear Combination of Bloch bands (LCBB)[29]. The
problem is that a dot has many more atoms per supercell (10°-10°) than an ordinary
periodic solid (~.10 atoms). Thus, the size of the Hamiltionian matrix for a dot is too
large. Fortunately, however, the problem can be drastically simplified by realizing that
the physics of quantum dots is often restricted to the energy levels in the vicinity of
the band gap. For example, a dot made of 1000 Si atoms has 2000 occupied valence
levels (assuming s+3p states for each atom), but all we care about is the 10-100
highest energy valence levels (plus a similar number of empty conduction states). We
have invented a “Folded Spectrum Method” [22, 26] that permits us to find eigen
solutions in a desired “energy window”, without wasting computational effort on
obtaining the remaining, less interesting states. Thus, the total computational effort
rises only slowly (in fact, linearly) with the number of atoms N in the dot, rather than
the N? scaling in common band structure methods.

Once we have found the energy levels and wavefunctions in the vicinity of the
HOMO and LUMO, we can set-up a “configuration interaction” treatment [30,31]
for describing the excitonic spectra beyond “mean field” theory. An excitonic state
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is formed form a linear combination of products of a valence orbital times a
conduction orbital. The expansion coefficients in this linear combination are found
by seeking a variational solution. The hamiltonian matrix of this problem corresponds
to both Coulomb and exchange electron-hole interactions that are computed explicitly
from the orbitals. Solving the variational problem gives the two-particle excitonic
levels and wavefunctions, thus the excitonic absorption spectrum.

10. Summary and references of what has been calculated so far with this
method for free-standing (colloidal) dots:

@® Band gap vs size for Si [26,32,33], InP [34], CdSe [35,36] and InAs [37] dots.
The size scaling R™ has m=1-1.5 not m=2 as in EMA.

@ Wavefunction analysis of InP dots, showing that the HOMO is s-like, not p-like
as predicted by the EMA [8].

@® The electron-hole Coulomb energies [38] of Si, InP and GaAs, showing that the
EMA overestimates them by up to 40%. The size scaling R™ has n<1.

@® The electron-hole exchange energies [30] of Si, InP and CdSe showing that an
hitherto neglected, long-range component exists, reflecting monopole-interactions.
The size scaling R™ has p~2, not p=3 as previously assumed.

@ The full excitonic spectrum of CdSe [36], InP [10] and InAs [37] dots.

@ The effect of imperfect surface passivation (leading to cation and anion “dangling
bonds”) on the electronic structure, including the appearance of localized gap states
capable of trapping carriers [34].

@ Effects of pressure on direct-to-indirect transitions in InP dots [19].

@ Effects of size on direct-to-indirect transitions in GaAs dots [16,17].

11. Summary and references of what has been calculated with this method so
far for embedded (“self assembled”) quantum dots:

@® The prediction that while free-standing InP dots have a direct band gap, a GaP-
embedded InP dot has an interface-localized “indirect” conduction band [39].

@® The prediction that under pressure, the GaAs-embedded InAs dot will also have
an interface-localized conduction band [20].






® The prediction [40] that a set of nested spheres (“Russian Doll”) of
GaAs/AlAs/GaAs/AlAs... can be made so that the hole wavefunction is localized on
the central GaAs sphere, while the electron wavefunction is localized on an external
shell, thus affecting charge-separation on the same material.

@® The electronic structure of square-base InAs pyramid embedded in a GaAs matrix,
showing [14,41,25] (a) splitting of the electron p state (b) strong in-plane anisotropy
of the lowest excitonic transition (c) that as many as 5 confined electron levels exist

and (d) that the hole states are so heavily intermixed that no (s, p, d...) nodal structure
remains. All of these predictions are surprising in light of previous EMA calculations.
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