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The conditions under which the band gaps of free standing and embedded
semiconductor quantum dots are direct or indirect are discussed. Semiconductor
quantum dots are classified into three categories; (i) free standing dots, (ii) dots
embedded in a direct gap matrix, and (iii) dots embedded in an indirect gap
matrix. For each category, qualitative predictions are first discussed, followed by
the results of both recent experiments and state of the art pseudopotential
calculations. We show that:
• Free standing dots of InP, InAs, and CdSe will remain direct for all sizes,

while dots made of GaAs and InSb will turn indirect below a critical size.
• Dots embedded within a direct gap matrix material will either stay direct

(InAs/GaAs at zero pressure) or will become indirect at a critical size (InSb/
InP).

• Dots embedded within an indirect gap matrix material will exhibit a
transition to indirect gap for sufficiently small dots (GaAs/AlAs and InP/
GaP quantum well) or will be always indirect (InP/GaP dots, InAs/GaAs
above 43 kbar pressure and GeSi/Si dots).

In indirect nanostructures, charge separation can occur with electrons and holes
localized on different materials (flat InP/GaP quantum well) or with electrons
and holes localized in different layers of the same material (concentric cylindrical
GaAs/AlAs layers).
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INTRODUCTION

One of the most important properties used to
classify the optical response of a quantum dot system
is whether it has a direct or indirect band gap. In dots
with direct gaps, the electron and hole wavefunctions
are both confined within the dot and are both derived
from the Brillouin zone center Γ states. This produces
strong oscillator strengths for optical transitions and
a strong luminescence. Dots with indirect band gaps
can be indirect in real space, in which case the elec-
trons and holes are localized in different regions of the
nanostructure (e.g., dot interior vs barrier), and/or
indirect in reciprocal space, where the states involved
in the optical transitions evolve from different k
points in the Brillouin zone. The oscillator strengths
for optical transitions in dots with indirect gaps are
small, producing weak luminescence.

There are several physical factors which control
whether the interband transitions in a quantum dot

will be direct or indirect: As a starting point, one has
to consider the order of the levels (e.g., Γ1c and X1c) in
the bulk material from which the dot is derived. Does
the bulk material have a direct (InP, GaAs) or indirect
(GaP, Si) gap and what is the spacing of the levels? On
moving from a bulk system to a dot system, the level
ordering can be dramatically altered by the effects of
(i) quantum confinement which drives electron levels
up in energy and hole levels down in energy in inverse
proportion to their respective effect masses, and (ii)
strain, which can drive levels either up or down in
energy depending on the sign of the deformation
potential. Finally, if the quantum dot is embedded
within a matrix of another semiconductor such as
“self-assembled” dots grown by the Stranski
Krastanow (SK)1 technique,2–4 the energy levels in the
matrix material have to be considered along with the
dot energy levels. If the lowest electron level in the
barrier is below that of the dot, then electrons may
localize in the barrier, producing a system that is
indirect in real space. Similarly, if the highest hole
level in the barrier is above that of the dot, then holes
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may localize in the barrier, again producing a system
that is indirect in real space.

In this paper, we consider the question of when a
dot or nanostructure made of a direct gap bulk mate-
rial such as GaAs, InP, InAs, or InSb will remain
direct or switch to an indirect band gap. We classify
quantum dot systems into three specific categories:

• Free standing dots (i.e., dots without a barrier),
e.g., InP, InAs, InSb, and GaAs. We will predict
that GaAs dots become indirect below a given
size, while InAs stays direct for all sizes. Also
under pressure, free standing InP dots become
indirect at a lower pressure than the bulk.

• Dots embedded within a direct gap barrier mate-
rial, e.g., InSb/InP5 and InAs/GaAs.3,4 We will
predict that InAs/GaAs stays direct, while InSb/
InP becomes indirect.

• Dots embedded within an indirect gap barrier
material, e.g., InP/GaP,2 GeSe/Si,6 GaAs/AlAs,7

Fig. 1. Schematic illustration of the change in energy level order as a
result of quantum confinement in free standing quantum dots.

and InAs/GaP.8,9 We will predict that for suffi-
ciently small dots, GaAs/AlAs becomes indirect,
while InP/GaP and GeSi/Si are indirect for all
sizes.
We discuss the physical factors that determine

the above behavior and present theoretical predic-
tions of where any crossovers may take place. Where
available, we summarize recent experimental results.

FREE STANDING QUANTUM DOTS

Colloidal chemistry techniques have been suc-
cessfully used to synthesize free standing quantum
dots made from InP,10 CdSe,11 InAs,12 and CdS.13 For
each of these materials, high quality samples, with
narrow size distributions (<5%) have been produced.
The surfaces of the dots are passivated by a combina-
tion of organic molecules and HF treatments. After
such treatments, the dots can produce quantum yields
as high as 60%.10 These free standing dots are consid-
ered strain free.

When predicting whether the band gap of free
standing quantum dots is direct or indirect, there are
two factors to consider:

• The initial level ordering in the bulk material
from which the dot is derived, and

• The size of the quantum dot and the resulting
quantum confinement.

Qualitative Expectations

On moving from the bulk to a quantum dot,
translational symmetry is broken, and k is no longer
a good quantum number. However, analysis of quan-
tum dot wavefunctions shows that they are con-
structed from a packet of states in reciprocal space
centered on a specific point in the Brillouin zone of the
parent bulk material, such as the Γ, X, or L points. In
the following discussion, we shall refer to states
constructed from states around the Γ point as “Γ
derived,” and similarly for X and L points. To obtain
a rough idea of whether the Γ1c, and X1c derived
quantum dot levels from a bulk material with a direct
gap will cross each other producing a system with a
gap that is indirect in reciprocal space, we consider
the predictions of effective mass theory. The energies
of the Γ1c and X1c derived energy levels of a dot with
radius R are given by
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ent atomic species and Rαn are the positions of all the
atoms within the dot and barrier materials. The
pseudopotentials, υα, have been fitted15 to the experi-
mental band gaps, effective masses and deformation
potentials of the bulk binary materials. We use the
reciprocal space functional form of the pseudopotential
from Ref. 15.
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where a0α, a1α, a2α, a3α, a4α are adjustable parameters15

and Tr(ε) is the trace of the strain tensor.16 We assume
the bulk zinc-blende structure and use the bulk inter-
atomic spacings obtained from experiment.14

We expand the single particle wavefunctions, ψi,
in a plane wave basis
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The, matrix elements of the Hamiltonian in Eq. (3) in
the basis of Eq. (5) are calculated according to

Table I. Experimentally Measured Values14 for the Position of the Γ1c and X1c Levels
with Respect to Each Materials Valence Band Maximum

Material Γ1c X1c Γ1c – X1c   m cΓ1

*

  mX c1

*

InAs 0.37 2.28 1.91 0.02 2.0
InSb 0.25 1.71 1.46 0.01 2.0
InP 1.50 2.44 0.94 0.08 2.05
GaAs 1.51 2.03 0.52 0.07 1.18
AlAs 2.79 2.37 –0.42 0.18 1.56

Fig. 2. The bulk Γ1c – X1c spacing vs the difference between the
effective mass estimated [Eq. (1)] quantum confinement of the Γ1c and
the X1c levels for AlAs, GaAs, InP, InAs, and InSb quantum dots. For
each material, the endpoints of the line correspond to the difference
between the quantum confinement of the  Γ1c and X1c levels for dots
with radii of 30 and 100Å, calculated using Eq. (1).

Crossing will therefore occur if (i) the initial energy
difference,   

ε εX bulkc c1 1
−[ ]Γ , is not too large, and (ii) the

Γ mass,   mΓ
* , is sufficiently lighter than the X mass,

  mX
* . Figure 1a shows schematically the energy levels

of a quantum dot constructed from a direct gap bulk
material with a small Γ1c – X1c spacing in the conduc-
tion band. Quantum confinement in the dot drives the
Γ1c level above the X1c level, producing a dot with an
indirect gap. Figure 1b shows the opposite situation
where there is a large Γ1c– X1c spacing in the conduc-
tion band. Quantum confinement effects in this dot
are not sufficient to drive the Γ1c level above the X1c
level, hence the dot will have a direct gap. The experi-
mentally measured14 bulk energy level spacings and
the electron effective masses of InAs, InSb, InP,
GaAs, and AlAs are given in Table I. Figure 2 shows
the initial bulk Γ1c– X1c spacing vs the difference
between the effective mass predictions for the quan-
tum confinements [from Eq. (1)] of the Γ1c and the X1c
levels for quantum dots constructed from each of
these materials. A line is drawn for each material,
whose endpoints correspond to the difference be-
tween the quantum confinement of the Γ1c and X1c
levels for dots with radii of 30 and 100Å, calculated
using the simple effective mass expression in Eq. (1).
The figure is divided into two regions by the thick
diagonal line. Dots falling to the left of the line have
a larger initial Γ – X spacing than quantum confine-
ment difference, and hence have a direct band gap.
For the dots on the right of the line, the effects of
quantum confinement cause a level crossing and
hence an indirect band gap. Figure 2 predicts that
InAs and InP dots will remain direct, even when their
radius is reduced to 30Å, whereas InSb and GaAs will
undergo a direct to indirect transition at a sufficiently
small radius. As bulk AlAs has an indirect gap, AlAs
dots of all sizes will also have an indirect gap. Of
course, the effective mass theory described in Eq. (1)
is only qualitative, so we next describe realistic calcu-
lations of the effects.

Calculations

Our method of calculation is based on the use of
a single particle empirical pseudopotential Hamil-
tonian,

    
ˆ

,

H n
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The potential describing the quantum dot system is
constructed from a sum of screened atomic
pseudopotentials, υα, where α represents the differ-
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Table II. Critical Sizes (in ML) for the Direct/
Indirect Crossover in Free-Standing GaAs

Quantum Films, Wires, and Dots20

Film Wire Dot

Free-standing 8  14 >15
AlAs embedded 13  25 >15
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2
2 δ (6)

The spin orbit interaction is represented by a nonlocal
pseudopotential,   υα

SO( ) , which is evaluated in real
space using the linearly scaling small box method
from Ref. 17.

The quantum dots, surrounded by either vacuum
or a barrier material, form a supercell which is peri-
odically repeated. Sufficient vacuum/barrier mate-
rial is used, to ensure that the interactions between
each dot and its periodic images are negligible. These
supercells contain up to one million atoms, which is
too large for the Hamiltonian in Eq. (3) to be solved by
conventional diagonalization methods. We thus use
the “folded spectrum method” (FSM),18,19 in which one
solves for the eigenstates of the equation

  
ˆ ,H ref i ref i−( ) = −( )ε ψ ε ε ψ

2 2 (7)

where εref is a reference energy. By placing εref within
the gap, and close to the valence band maximum or
conduction band minimum, one is then able to obtain
the top few valence states or the bottom few conduc-
tion states, respectively.

Note that this empirical pseudopotential approach
to the single-particle problem includes shape effects,
interface effects and spin-orbit coupling in the Hamil-
tonian [Eq. (3)]. However, it neglects self-consistency,
which is expected to produce a negligible effect in such
large quantum dots.

Direct Gap Dots: InP, InAs, and CdSe

The simple qualitative ideas expressed in the
section “Free Standing Quantum Dots: Qualitative
Expectations” were tested using the pseudopotential
methods described above for a number of free stand-
ing quantum dots including GaAs,20,21 InP,22–26 InAs,27

and CdSe.28,29 For InP, InAs, and CdSe, it was found
that the bulk spacing between the Γ1c level and the
next lowest level in the conduction band is sufficiently
large (see Table I) that the effects of quantum confine-
ment do not cause the dots to develop an indirect band
gap, even for dots as small as 20Å radius. There are
several recent experiments11,22–28,30 which clearly show
the existence of a direct band gap in free standing
InP,31 InAs,12 and CdSe11 quantum dots. These experi-
ments observe a strong fundamental photolumines-
cence (PL) peak that blue shifts as the size of the dots
decreases which is interpreted as evidence for a direct
band gap in these dots.

Quantum Confinement Induced Direct to Indirect
Crossover: GaAs

In the case of free standing GaAs nanostructures,
pseudopotential calculations20,21 on dots, wires, and
films predict there is a critical size below which the
band gap will be indirect as a result of the quantum
confinement effects illustrated in Fig. 1 and Fig. 2.
These critical sizes are given in the first line of Table
II. Figure 3 shows the CBM energies of a series of

Fig. 3. Pseudopotential calculation of Γ1c and X1c energies of
free-standing, hydrogen-passivated GaAs (1 1 0) quantum films and
(1 1 0) × (110) quantum wires as a function of the thickness/diameter
(in MLs).21

GaAs films and wires varying in thickness/diameter
from 1 to 25 monolayers. The electron states derived
from the Γ1c and X1c states have different effective
masses and therefore have different quantum con-
finement energies. This produces a Γ1c →  X1c crossing
at a critical film thickness of approximately ten mono-
layers and a critical wire diameter of approximately
15 monolayers. Figure 4 shows a plot of the CBM
wavefunction amplitude in a cross-sectional plane
through two free standing GaAs quantum wires, one
with a diameter less than the critical size and one
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gap of the dot is direct or indirect. Firstly, if the band
offsets between the dot and matrix have a type II
alignment, with the conduction band minimum of the
matrix below that of the dot, this alone can produce a
band gap that is indirect in real space, with electrons
localized in the barrier. Secondly, if there is a lattice
mismatch between the dot and the matrix, the coher-
ent heterostructure system will be strained. The strain
profile couples to the band offsets via the deformation
potentials of the individual bands and can change a
system that has a type I alignment in the absence of
strain to an indirect type II alignment in the presence
of strain, and hence an indirect band gap.

This is illustrated in Fig. 5. Quantum confine-
ment (QC) pushes electron levels up and hole levels
down. The effect of strain is as follows. The dot states
derived from the Γ1c conduction state have a strongly
positive deformation potential (e.g., for GaAs   a cΓ1

Fig. 5. Schematic illustration of the band alignment for quantum dots
constructed from a direct gap material embedded within a matrix with
a direct band gap. The bulk band energies are shown with solid lines
and the confined electron and hole levels are shown by dashed lines.
The conduction and valence band offsets are marked as ∆Ec and ∆Eυ.
The energetic effects of quantum confinement (QC) and strain are
illustrated by the arrows.

larger than the critical size. Although both
wavefunctions are strongly localized within the wire,
it is clear that the Bloch function corresponding to the
X1c derived CBM in the smaller wire has a different
symmetry to that corresponding to the Γ1c derived
state in the larger wire. So far there has been no
experimental testing of the predicted20,21 direct-indi-
rect transition in free standing GaAs quantum
nanostructures, presumably because the methods
that produce free standing dots (e.g., colloidal chem-
istry10) have not yet been perfected for GaAs.

Pressure Induced Direct to Indirect Crossover: InP

In quantum dot systems, structural phase transi-
tions usually occur at increased pressures compared
to the bulk. For example the transition to the β-Sn
structure in Si nanocrystals.32 However, recent calcu-
lations of InP dots under hydrostatic pressure26 show
that the reduced dimensionality acts to reduce the
pressure at which the band gap switches from direct
to indirect. The lighter effective mass at the Γ1c point
(0.08m0) compared to X1c point (2.05m0) produces
much stronger quantum confinement effects for elec-
trons whose wavefunctions are derived from the Γ
point. This difference in quantum confinement re-
duces the Γ1c – X1c separation in the zero pressure
quantum dot relative to the bulk. The pressure re-
quired to induce a direct to indirect band gap transi-
tion is therefore also decreased in dots compared to
that in bulk. For example, calculations26 predict a
relative deformation ∆a/a of 0.0414 is required to pro-
duce a level crossing in bulk InP, compared to ∆a/a of
0.0245 in a InP quantum dot with a diameter of 34.8Å.

DOTS EMBEDDED WITHIN A
DIRECT GAP BARRIER MATERIAL

Qualitative Expectations

When a quantum dot is embedded within a ma-
trix of another material, two factors in addition to
quantum confinement can affect whether the band

Fig. 4. Amplitude of the CBM wavefunctions in a cross-sectional plane
through two free standing GaAs quantum wires, one with a diameter
less than the critical size for the Γ – X crossover (13 ML) and one larger
(15 ML) than the critical size.21 Note the Γ1c and X1c wavefunction
character in (a) vs (b).

(a)

(b)

(c)
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~10.7 meV/kbar–1) , and hence move up in energy in
response to compression (InAs in GaAs, Fig. 5a and
InSb in InP Fig. 5b), and down in response to tensile
strain (GaAs in InP) Fig. 5c). Valence states derived
from the Γ15υ point typically have a small positive
deformation potential (e.g., for GaAs   aΓ15υ

 ~1.7 meV
kbar–1) and therefore move less under strain. If a dot
embedded in a matrix with a direct gap is compressed
as a result of strain (InSb in InP), this can push the Γ1c
level in the dot toward that of the matrix thus ap-
proaching a type II alignment (GaAs in InP, Fig. 5c).
The key quantity which controls whether dots in such
a system have a direct or indirect band gap is the
conduction band offset, ∆Ec, which measures the dif-
ference between the bulk energies of the lowest con-
duction band in the dot and the embedding matrix. If
the natural (unstrained, no quantum confinement)
value of ∆Ec is large enough (e.g., InAs/GaAs), then
the effects of strain and quantum confinement will
not be able to overcome it and the dots will always
have a direct band gap. However, if ∆Ec is small then
the effects of strain and quantum confinement (InSb/
InP) could push the energy of the Γ1c level in the dot

above that of the embedding matrix, producing a
system that has an indirect gap in real space.

Finally, if the initial Γ1c – X1c, conduction band
level spacing in the quantum dot material is small
(e.g., GaSb) then the larger quantum confinement of
Γ1c derived states compared to L1c derived states
resulting from the lighter effective mass at the Γ point
may alone be sufficient to produce an embedded dot
with a band gap that is indirect in reciprocal space.
Such a crossover has already been observed in GaSb/
AlSb quantum wells. Similar quantum dot experi-
ments need to be performed.

Calculations

 Direct Gap Dots: InAs/GaAs

The most common example of quantum dots em-
bedded within a direct gap matrice is that of InAs dots
embedded within a GaAs matrix. Using the Stranski-
Krastanow growth technique, this system has been
shown3,4 to produce high quality quantum dots with a
relatively small size distribution. In the InAs/GaAs
system, the conduction band offset, ∆Ec is large (1.05
eV), and spectroscopic measurements agree with
pseudopotential calculations33–35 that strain effects
and quantum confinement are not large enough to

Fig. 6. Calculated33 wavefunctions squared of a pyramidal InAs dot,
(base = 100Å, height = 10Å) embedded in GaAs, at zero and 60 kbar
hydrostatic pressure. In real space isosurfaces are shown at 25%
(light) and 75% (dark) of the maximum value. In reciprocal space, the
momentum space projection in the ky = 0 plane of the zinc-blende
Brillouin zone are shown. At zero pressure, both electron and hole
wavefunction are localized in the InAs quantum dot, whereas above
the transition pressure the electrons are localized in a strain induced
pocket above the quantum dot.

Fig. 7. Schematic illustration of the band alignment for quantum wells
and dots constructed from a direct gap material embedded within a
matrix with an indirect band gap. The bulk band energies are shown
with solid lines and the confined electron and hole levels are shown by
dashed lines. The effect of strain induced splitting of the X1c points is
shown. Excitations corresponding to direct and indirect transitions are
shown by arrows 1 and 2. Quantum confinement effects are indicated
by the arrows marked QC.
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convert the InAs to an indirect dot. This is illustrated
on the left hand side of Fig. 6 which shows an isosurface
plot of the lowest energy electron state at zero pres-
sure. It shows that the state is localized within the
InAs pyramidal dot, i.e., the band gap is direct in real
space. The bottom of Fig. 6 shows the same state in
reciprocal space. This state is derived from the Γ point
in the bulk band structure, i.e., the band gap is direct
in reciprocal space. We expect that GaAs/InP dots will
also remain direct, as explained in Fig. 5c.

Indirect Gap Dots: InSb/InP

In contrast to the InAs/GaAs system, the InSb/
InP system has a very small conduction band offset,
∆Ec. Recently, Prieto et al.5 predicted this offset to be
as small as 0.05 eV and they showed that if uncapped
InSb dots are grown on an InP substrate the band
alignment is type I, and the dots have a direct band
gap. However, if these dots are capped with another
InP layer, the InP capping layer compresses the InSb
dots. This compressive strain raises the energy of the
Γ1c level in the InSb dots with respect to the Γ1c level
in the InP matrix. For InSb dots smaller than 10 ML,
the combination of quantum confinement and the
strain induced raising of the Γ1c level produces a type
II band alignment (Fig. 5b), and hence InSb dots with
a band gap that is indirect in real space.

Quantum Confinement Induced Direct to Indirect
Transition: GaSb/AlSb

GaSb is only barely a direct gap semiconductor:
the L valley is approximately 85 meV above Γ valley.
The effective mass of electrons in the L valley is about
ten times higher14 than that in the Γ valley. For
quantum wells with a width less the 40Å, quantum
confinement effects have been shown36 to push the Γ
derived states above the energy of the L derived
states, producing a system with a band gap that is
indirect in reciprocal space. To date, no such observa-
tions have been made for GaSb/AlSb quantum dots.

DOTS EMBEDDED WITHIN AN INDIRECT
GAP BARRIER MATERIAL

Qualitative Expectations

When a quantum well or dot constructed from a
direct gap material is embedded in a barrier material
with an indirect gap, one has to consider the effects of
strain and quantum confinement on both the Γ de-
rived states and the off-Γ derived states (such as X and
L) in both the dot/well material and the barrier
material.

If the dot/well and barrier are lattice matched,
e.g., GaAs/AlAs, one only has to consider the effects of
quantum confinement when calculating whether a
particular system has a direct or indirect gap. Figure
7a shows the band alignments for a quantum well
constructed from a direct gap material embedded in
an indirect gap barrier. The band alignment is type I,
with both electrons and holes localized in the quan-
tum well. However, the X1c level in the barrier is not

too far above the Γ1c level in the well. For a wide
quantum well, the quantum confinement effects will
be small and the system will have a direct gap (see
arrow 1 in Fig. 7a). When the well gets narrower,
quantum confinement effects could push this Γ1c de-
rived state confined in the well, above the energy of
the X1c level in the barrier (see arrow 2 in Fig. 7a). At
this point, the system would switch to a type II
alignment with a band gap that is indirect in both real
and reciprocal space.

If there is a lattice mismatch between the dot/well
and the barrier, e.g., InP/GaP, one has to consider the
effects of strain on both the Γ and X1c states in both the
well and matrix, in addition to the effects of quantum
confinement. These strain effects are illustrated in
Fig. 7. In a superlattice, the triply degenerate X1c
states in the “well” and the “matrix” layers are split by
epitaxial strain into X|| and X⊥. The size of the splitting
is proportional to the strain which itself is controlled
by the relative amounts of matrix and well material.
For example, a thick well layer and a narrow barrier
layer will produce large epitaxial strain in the barrier
and small epitaxial strain in the well. In Fig. 7a, the
well layer is thin, resulting in a large epitaxial strain
in the well which in turn produces a large splitting of
the X1c state in the well. In a strained system, whether
the system has a direct or indirect band gap is con-
trolled by two factors: (i) the size of the splitting of the
X1c state in the indirect gap matrix, and (ii) the
amount of quantum confinement in the direct gap
QW. One expects a critical width of QW, below which
the effects of quantum confinement push the Γ1c
derived electron states in the well above the lower of
the two split X1c states in the barrier. In this situation,
the system has a band gap that is indirect in both real
and reciprocal space. If the strain in the barrier is
large and hence the splitting of the X1c is large, then
less quantum confinement is required to push the Γ1c
well state above the X1c barrier state. One, therefore,
expects the critical width to increase as the well width
to barrier width ratio increases and the strain in the
barrier increases.

So far we have only considered the strain profile
in a two dimensional quantum wells or superlattices.
The strain profile of an embedded quantum dot is
qualitatively different to that of an embedded quan-
tum well/superlattice. The strain profile in and around
an isotropic spherical inclusion embedded in an iso-
tropic matrix was originally derived in 1956 by
Eshelby37 to first order in the lattice mismatch, εm = (ai
– am)/am, where ai and am are the lattice constants of
the inclusion and the matrix, respectively. Eshelby
showed that inside the sphere, only uniform hydro-
static strain exists,

  
ε ε

γin m= −






1
1 , (8)

where γ = 1 + 2Bm(1 – 2νm)/(Bi(1 + νm), and where Bi and
Bm represent the bulk moduli of the inclusion and the
matrix and νm is the Poisson ratio of the matrix. In the
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indirect gap is the GaAs/AlAs system. As the lattice
constants of GaAs and AlAs are almost identical, this
system is strain free. Figure 8 shows a set of
pseudopotential calculations38 for GaAs quantum
wires with diameters ranging from 0 to 90Å. There is
a critical diameter of wire, dc, at which a Γ – X crossing
takes place in the conduction band of the GaAs wire.
Below dc, the lowest energy electron state is derived
from the X1c point and is localized in the AlAs matrix.

Fig. 8. Pseudopotential calculated38 VBM and CBM energies of an
GaAs cylindrical quantum wire embedded in an AlAs matrix as a
function of the wire diameter (solid dots connected by line). The critical
diameter for the Γ → X transition (dc) is indicated by a thick arrow. The
dotted lines correspond to the energies of the Γ15υ and Γ1c states of bulk
GaAs and of the Γ15υ and X1c states of bulk AlAs. Insets (a) and (b) show
the wavefunction amplitude of the CBM before and after the Γ → X
transition; the CBM amplitude, averaged over the (100) planes (paral-
lel to the wire direction), is plotted along the [100] direction. Inset (c)
shows the VBM wavefunction amplitude along the [100] direction.

surrounding matrix, however, the strain has both a
radial (rad) and tangential (tang) component, given
by

  

  
ε

ε
γrad
mr

R
r

( ) = − 





2
3

,

  
ε

ε
γtan .g
mr

R
r

( ) = 





3

(9)

This spherical geometry is unique in that the strain
decays as 1/r3 with distance r. For lower symmetry
geometries such as self-assembled, truncated pyra-
midal dots, one expects a similar decay of the strain,
with however, an additional angular dependence. It is
this radial decay of the strain away from an embedded
dot which is dramatically different to the strain in a
quantum well system. In a quantum well or
superlattice system the strain is uniform throughout
both the well and the barrier regions.

States derived from off-Γ points respond in a more
complicated fashion to the strain profile described in
Eq. (8) and Eq. (9) than the Γ1c levels which simply
move up and down in response to the hydrostatic
strain. A schematic example of one such system is
shown in Fig. 7b. In this system, the dot material has
a direct gap at the Γ point, while the barrier material
has an indirect gap, with the lowest energy conduc-
tion state derived from the X1c point (e.g., InP/GaP).
The response of the X1c point to the strain profile
described in Eq. (8) and Eq. (9) was recently derived
by Yang et al.6 They show that the triply degenerate
X1c level is split by the epitaxial strain present at the
interface of the dot and the barrier material. This
splitting is illustrated in Fig. 7b by the two thin
curved lines at the X1c point. In combination with the
quantum confinement and strain induced energy level
shifts described in the section “Dots Embedded Within
a Direct Gap Barrier Material,” this splitting of the X1c
levels can also induce a type I to type II transition.
This transition is illustrated by the two arrows la-
beled I and 2 in Fig. 7b. In the case where the dot is
large, so quantum confinement is small, and the
hydrostatic strain induced shift of the Γ1c level is also
small, absorption will take place from the Γ15υ  hole
level to the Γ1c electron level in the dot as indicated by
arrow 1. However, if the quantum confinement or
strain effects are more significant, they can push the
Γ1c electron level above the lower of the two split X1c
levels in the barrier. In this case, electrons will be
excited into the interface localized X1c level as indi-
cated by arrow 2, and the system will have an indirect
band gap. In this case, the electron state will be
localized at the interface (see shaded region in Fig. 7b),
unlike the quantum well where the X-like electron
state is delocalized in the barrier.

Calculations

Direct to Indirect transition in dots: GaAs/AlAs

A common example of a nanostructure with a
direct gap, embedded in a barrier material with an
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Figure 9 shows the highest energy hole and lowest
energy electron states for two AlAs embedded GaAs
quantum wires, one with a diameter of 45.3Å (below
dc) and one with a diameter of 56.6Å (above dc). Figure
9 shows how the localization of the electron state
moves from inside the GaAs wire for diameters above
dc into the AlAs matrix for diameters below dc. Note
that for wires with diameters below dc, as the lowest
energy electron state is X1c derived, it is, therefore,
doubly degenerate. The second line of Table II shows
the calculated critical thickness, lc and critical diam-
eter, dc, for GaAs films and wires embedded in an AlAs
matrix.

The above calculations show that quantum wires
localize both electrons and holes in the wire for the
case of wide quantum wires with a type I alignment.
When the wells are narrow and the alignment is type
II, charge separation occurs with the electrons local-
ized in the X valley of AlAs and holes are localized in
the Γ valley of GaAs. In a recent pseudopotential
calculation, Kim et al.39 showed that for multiple
quantum wells with a curved geometry charge sepa-
ration can also occur. However, in their cylindrical
“Russian Doll” geometry, they show that electron-hole
separation can occur on different layers of the same
material and the same valley. Figure 10 shows the
confinement energies and the wavefunction localiza-
tions of (a) electrons and (b) holes for a series of
concentric cylinder geometries. For each geometry,
the inner GaAs cylinder is fixed at 10 ML thick and
the surrounding AlAs cylinder is fixed at 4 ML thick.
Figure 10 plots the change in localization and confine-

ment energy as the thickness of a third GaAs layer is
varied in thickness from 4 to 12 ML. It shows that for
a 10:4:10 ratio of GaAs:AlAs:GaAs cylindrical quan-
tum well thicknesses, electrons localize in the Γ valley
of the first quantum well layer and holes localize in
the Γ valley of the third quantum well layer.

Direct to Indirect Transition in Quantum Wells:
InP/GaP

The most common example of quantum wells and
dots constructed from a direct gap material embedded
within a lattice mismatched indirect gap material is
InP wells/dots embedded within GaP. Calculations40

of (InP)n(GaP)n (001) superlattices using the LDA as
implemented by the all electron, linearized augmented
plane wave (LAPW) method41 predict a quantum
confinement induced type I → type II transition
occurs as the thickness, n, is decreased below 4.

In Fig. 11, we present the results of empirical
pseudopotential calculations performed to test the
predictions of Fig. 7a for systems with n ≠ m and n, m,
> 4. The top of Fig. 11 shows a “phase diagram”
indicating which (InP)n(GaP)m (001) superlattices have
direct and indirect band gaps. Before calculating the

Fig. 9. VBM and CBM wavefunction amplitudes of GaAs [001] quan-
tum wires in AlAs.38 The wavefunction amplitude, averaged along the
wire direction, is plotted in the (001) plane. The solid circles denote
cross sections of the GaAs wires (of diameter d). For d = 45.3Å, the
CBM is a double-degenerate X-like state localized in the AlAs matrix.
For d = 56.6Å, the CBM is a nondegenerate Γ-like state localized in the
GaAs wire. In both cases, the VBM is localized in the GaAs wire.

Fig. 10. Confinement energies of the (a) CBM and (b) two highest
valence bands for cylindrical Russian Dolls vs the thickness.39 The
other parameters are held fixed at m = 10 ML, n = 4 ML, and q = 8 ML.
Wavefunction amplitudes, averaged along the wire direction, are
shown as insets for a few structures.



423
Indirect Band Gaps in Quantum Dots Made
from Direct-Gap Bulk Materials

electronic structure of each superlattice, the atomic
positions were first relaxed to their minimum strain
energy values, using the valence force field (VFF)
elastic energy functional.42 We see that as predicted in
Fig. 7a, as the number of GaP layers increases, the
splitting of the X1c derived state in the GaP is reduced,
and hence the critical InP well thickness for the direct
to indirect transition also decreases. Figures 11a to
11d show two example superlattices with direct and

indirect gaps. Figures 11a and 11b plot the CBM and
VBM wavefunctions squared for a (InP)12(GaP)12
superlattice. Both the VBM and CBM are localized in
the InP region producing a direct gap. Figures 11c and
11d plot the CBM and VBM for a (InP)8(GaP)12
superlattice. Figure 11c shows that the reduction in
the width of the InP regime has increased the quan-
tum confinement of the Γ1c derived CBM state in the
InP, pushing it above the X1c derived state in the GaP
and producing an indirect gap.

Indirect Gap Dots: InP/GaP

InP quantum dots embedded in GaP have been
grown2,43,44 using the Stranski-Krastanow technique
and their optical properties have been extensively
studied.43–46 The most recent photoluminescence stud-
ies9 of these dots found almost no emission and the
authors conclude that the lowest lying electron state
is pushed up by the effects of quantum confinement
and strain such that the system is indirect in real and
reciprocal space. This result was predicted by recent
pseudopotential calculations47 of spherical InP dots
embedded within a GaP matrix. Figure 7b shows that
the X1c level is split at the interface of the dot and the
barrier, producing an interface localized well for elec-
trons. Figures 12a and 12b show the calculated47

Fig. 12. Wavefunction squared (top) and momentum-space analysis
(bottom) for the near edge states of an InP dot with a diameter of 131Å
embedded in a GaP matrix. The wavefunctions squared are shown in
the (001) plane through the center of the InP dot. The black circles
mark the position of the InP/GaP interface. The momentum-space
projection of each wavefunction is in the kz = 0 plane of the Brillouin
zone.

Fig. 11. Pseudopotential calculation47 of the crossover between direct
and indirect gaps in an (InP)n(GaP)m superlattice. Figures (a) to (d)
show the VBM and CBM wavefunctions squared for an (InP)24(GaP)24
superlattice [(a) and (b)] with a direct gap and (InP)16(GaP)24 superlattice
[(c) and (d)] with an indirect gap.
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amplitude of the electron and hole wavefunctions in a
plane through the center of the InP/GaP system. The
hole wavefunction is localized within the InP dot as
expected, while the electron wavefunction is localized
in the strain induced wells, shown as shaded regions
in Fig. 7b. To establish the identity of these
wavefunctions in terms of the parent GaP and InP
bulk states, the dot wavefunctions were projected into
the zinc-blende Brillouin zone using the method de-
scribed in Ref. 48. This mapping is shown in Figs. 12c
and 12d for the kz = 0 plane through the Brillouin
zone. We see that the hole state is a Γ-derived state
(Fig. 12c), while the lowest conduction state is X-
derived (Fig. 12d). The calculated dipole transition
matrix element between these states is five orders of
magnitude smaller than one would expect between a
more typical pair of Γ-derived conduction and valence
states, rendering the transition forbidden. This local-
ization of the electrons in a X-derived, interface local-
ized well accounts for the results of Ref. 9.

Indirect Gap Dots: InAs/GaAs
under Pressure > 43 Kbar

Although, as discussed in the section “Dots Em-
bedded Within a Direct Gap Barrier Material: Calcu-
lations: Direct Gap Dots: InAs/GaAs” and Fig. 6, at
zero pressure the InAs/GaAs system can be classified
as a dot embedded within a direct gap matrix, at a
pressure of approximately 43 Kbar49,50 the GaAs ma-
trix material undergoes a conduction band Γ → X
transition, above which the lowest lying electron
state in the GaAs matrix is derived from the X1c point.
The system then behaves in a similar manner to that
described above for GaP/InP. In Fig. 6, we show the
results of pseudopotential calculations33 for an InAs
dot with a base of 100Å and a height of 10Å embedded
within a GaAs matrix. The results contrast the lowest
lying electron state found at zero and 60 Kbar pres-
sures. Figure 6 shows that at zero pressure, the lowest
lying electron state is Γ1c derived and localized inside
the dot, as discussed in the section “Dots Embedded
Within a Direct Gap Barrier Material: Calculations:
Direct Gap Dots: InAs/GaAs.” However, above the
transition pressure, the X1c state in the GaAs barrier
is split by the strain at the interface of the dot and the
matrix, producing a well for X1c electrons in a similar
manner to that discussed above for the GaP/InP
system. As a result of this splitting, the lowest lying
electron state in the system is X1c derived and local-
ized in a well just above the tip of the pyramid. This
predicted switching of the electron state from inside
to outside the dot and from the Γ1c to X1c point is
supported by recent PL experiments.49,50 These show
an increase in the PL energy with pressure up to the
critical pressure, P = 43 Kbar. Above the critical
pressure, the strength of the PL signal dramatically
decreases and the PL energy then decreases with the
application of additional pressure. This is the hall-
mark signature of a Γ – X transition, similar to that
predicted in Ref. 33.

Indirect Gap-Dots:GeSi/Si

A third example of semiconductor dots embedded
within an indirect gap material is that of GeSi dots
embedded within Si. This system was analytically
studied in Ref. 6. The authors predict that for all Ge
compositions, x, of a spherical GexSi1–x dot embedded
within a Si matrix, the band alignment will be type II
and the system will have an indirect band gap. They
also use finite element calculations to demonstrate
that the approximation of an isotropic inclusion in an
isotropic matrix, adopted in Eq. (8) and Eq. (9), alters
the band energies by less than 0.01 eV.

CONCLUSIONS

We have classified semiconductor quantum dots
into three categories; (i) free standing dots, (ii) dots
embedded in a direct gap matrix, and (iii) dots embed-
ded in an indirect gap matrix.

• Free standing dots may have (i) a direct gap for
all experimental sizes (e.g., InAs, InP, and CdSe)
or (ii) if the initial conduction band level spacing
is small and the effects quantum confinement
are strong enough, they may switch to an indi-
rect gap below a critical diameter (e.g., GaAs and
InSb).

• Dots embedded in a direct gap material may
have (i) a direct gap (e.g., InAs/GaAs) if the
natural conduction band offset between the dot
and the matrix is type I. However, (ii) even if the
offset is type I, the dots may still switch to an
indirect gap if either quantum confinement or
strain effects push the Γ1c level in the dot above

that of the matrix (e.g., InSb/InP).
• Dots embedded in an indirect gap material can

be classified into two groups; (i) GaAs/AlAs un-
dergoes a direct to indirect transition below a
critical size. (ii) InAs/GaAs above 43 kbar pres-
sure, InP/GaP and GeSi/Si all have type II band
alignments and indirect gaps for all sizes.

Finally, we show that a result of the different
strain profiles in quantum dot and quantum well
systems, one does not see the interface localized
states observed in certain quantum dot systems occur
in quantum well systems constructed from the same
materials (e.g., InP/GaP).
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