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We present a method for obtaining first-principles nonlocal atomic pseudopotentials in the density-
functional formalism by direct inversion of the pseudopotential eigenvalue problem, where the pseudo-wave-
functions are represented as a unitary rotation of the “exact” all-electron wave functions. The usual
pseudopotential nonuniqueness of the orbitals is fixed by imposing the physically appealing constraints of
maximum similarity to the all-electron wave functions and minimum radial kinetic energy. These potentials
are shown to yield very accurate energy eigenvalues, total energy differences, and wave-function moments
over a wide range of excited atomic configurations. We have calculated the potentials for 68 transition and
nontransition elements of rows 1-5 in the Periodic Table. Their characteristic features, such as classical
turning points and minimum potential radii, faithfully reflect the chemical regularities of the Periodic Table.
The nonempirical nature of these potentials permits both an analysis of their dominant features in terms of
the underlying interelectronic potentials and the systematic improvement of their predictions through
inclusion of appropriate correlation terms. As these potentials accurately reproduce both energy eigenvalues
and wave functions and can be readily fit to analytic forms with known asymptotic behavior, they can be
used directly for studies of many structural and electronic properties of solids (presented in a separate paper).
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First-principles nonlocal-pseudopotential approach in the density-functional formalism:

I. INTRODUCTION

Pseudopotentials have enjoyed enormous popu-
larity in the past decade in a very wide range of
problems, including electronic structure of
atoms,! molecules,? solids,** surfaces® and inter-
faces,® structural stability of crystal phases,*”
phonon dynamics,® transport properties,’ and su-
perconductivity.!® The basic underlying notion
has been that the closed-shell core states, with
their approximate spherical symmetry and tight-
binding character, are nearly unresponsive to
many of the low-energy perturbations that are re-
sponsible for the physically interesting phenomena
in the subspace of the “reactive,” or valence
states. As a matter of fact, the entire notion of
the column structure of the Periodic Table is
based on this passivity of the core states to vari-
ations in the bonding environment. Since a large
number of quantum-mechanical approaches to the
many-electron problem involve mathematical op-
erations whose complexity increases as a high
power of the total number of electrons in the unit
system, an explicit reckoning of the core electrons
has become redundant.

Despite these difficulties, the vast majority of
ab initio studies of molecular and solid-state elec-
tronic structure has been based in the past on a
frontal attack on the all-electron (core + valence)
problem, most notably within the Hartree-Fock
and local-density-functional (LDF) formalisms.
Although the introduction of various simplifying ap-
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proximations to the all-electron potential (e.g.,
muffin-tin approximations, limited self-consis-
tency, superposition approximations, etc.) has
enabled the study of rather complex molecular and
solid-state systems, even with the aid of modern
computing technology, more rigorous approaches
are still limited to the study of small to medium
size systems. Aside from the practical difficult-
ies with the all-electron approach, more funda-
mental complications arise from the necessity to
establish orthogonality to the exact lower states of
the Hamiltonian in order to assure the variation-
ality of the expectation values,'* and the lack of
transferability of the elementary constructs of the
electronic structure (e.g., core characteristics)
from one system to the other, a universality that
underlines much of the intuition of chemical bond-
ing. i

The most obvious approach has been to explicitly
ignore the core electrons. Since unrestricted vari-
ational solutions to the problem would inevitably
result in an attempt of the valence states to repro-
duce the lowest-energy corelike states'? (“vari-
ational collapse” to the core), an explicit para-
metrization of the valence Hamiltonian (or its ma-
trix elements) has been required. This approach
formed the basis for a large number of semiem-
pirical electronic-structure methods, both in
chemistry [Hiickel,'® Pariser- Parr-Pople (PPP),*
CNDO"] and in solid-state physics (classical tight
binding,'® Hubbard,'” Kondo,'® etc.). The pseudo-
potential approach!*-*! has allowed one to formally
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substitute the all-electron problem:
(-—-‘%Vz-{-V"'c)Z/)j =€j¢/ (1)

[where 9, spans the combined core (c¢) and valence
(v) orthogonal subspaces, and V,,c is determined
in principle from all zp,’s], with a simpler equation

(-3V2+ V,+ Vps)x,-=>t,-x,-, (2)

where 7 spans only the valence subspace and the
X;'s are related to the zp,’s by a unitary rotation

xi:Zcij' by @)
-

with arbitrary constant coefficients C,;;,. Here V,
has the same functional form as V,, ., but acts only
on the valence subspace, while Vg is an additional
potential (hereafter denoted the pseudopotential),
determined in principle from the spectrum €,, vec-
tor space {zpj}, and transformation coefficients
{C,;}, such that x,=¢, for all valence states.
Transformation (3) makes it possible (but not nec-
essary) to obtain smooth and nodeless orbitals x;,
simply by mixing sufficient core states yj into the
valence state 37, to remove its spatial nodes.
Consequently, the set {xi} does not have to be or-
thogonal to the core. To the extent that the con-
struction of Vpg can be made sufficiently simple,
the pseudopotential eigenvalue problem (2) is sub-
stantially easier to handle than the original prob-
lem (1). The fact that the pseudo-wave-functions
(3) are just a linear combination of the all-elec-
tron states makes it possible to recover the true
wave functions ¢, from the solutions x; simply by
orthogonalizing to the (usually known) core
states.?>?? Phillips and Kleinman®® have shown
that for the particular case where the core func-
tions ¢ are eigenstates of the Hamiltonian describ-
ing the valence manifold, the pseudopotential Vpg
can be written in the relatively simple form

Vas(r, €)= (€= €5) 455 . (@)
jec

Unfortunately, the above condition simply does not
hold for most systems of interest (e.g., for single-
valence-electron atoms or ions, the core orbitals
are eigenstates of a Hartree-Fock Hamiltonian
that includes both core and valence terms?®). A
generalization of Eq. (4) to many-valence-electron
systems by Weeks and Rice!? results in a very
complicated form for Vpg in terms of the core-
projected valence wave functions, core orbitals,
and pseudo-wave-functions, and hence does not
lead to any simplification of Eq. (1). Even the
simpler form (4) requires the knowledge of the
actual solutions of the all-electron problem of the
system of interest, and hence is of little direct
help. The inherent simplification provided by the

pseudopotential approach in replacing the all-elec-
tron potential and the orthogonal set ¢, by an ef-
fective potential,

Ve”: Ves+Vy, (5)

with its associated non-core-orthogonal set, rests
in the possibility to construct Vpg from the core
characteristics of some simple profolype system
and to use this potential for studying the response
of the reactive electrons in geneval systems. This
constitutes the basic pseudopotential frozen-core
approximation, which replaces the dynamic effects
of the core electrons in an arbitrary system by a
static external field constructed from the core
characteristics of simpler reference systems.
Such a potential is considered successful if that
replacement holds over a sufficiently large energy
range (e.g., a typical width of a valence and lower
conduction bands). The potential is then said to

be approximately energy independent over that
range.

These ideas have led to two distinct approaches
in implementing the pseudopotential theory in
practice—the model potential and the first-prin-
ciples potential methods. The model potential ap-
proach abandons the relation(3) between the pseudo-
and real wave-functions, and usually uses an an-
satz functional form for either Vypg or Vpg+ V, (to
be fixed by fitting to some selected properties of
prototype systems) such that the energy eigenval-
ues of the new potential match those of the real
potential over some energy range. One hence gives
up the control one had on the wave functions [(e.g.,
by fixing the C;, in Eq. (3))], and concentrates on
reproducing the enevgy eigenvalue spectva. This
approach was originally stimulated by the apparent
difficulties reported in the mid-1960’s by Abaren-

* kov and Heine®® and Szasz and McGinn® to obtain

directly from Eq. (4) simultaneously smooth
pseudopotentials and wave functions, even for sim-
ple ions. The model potential approach has been
subsequently used in three major forms: the em-
pirical-pseudopotential method (EPM), the semi-
empirical self-consistent pseudopotential method
(SSPM), and the nonempirical-model-potential
method (NEMP). In the EPM approach® 2627 one
completely avoids the specification of the micro-
scopic interactions pertaining to V, (e.g., Coul-
omb, exchange, and correlation) and obtains a
parametrized V,,, directly by fitting the energy
eigenvalues of Eq. (2) to low-energy spectra of
semiconductors,® 26?7 for Fermi-surface data,?®
or ionic term values.?®'3° The translational sym-
metry of the perfect solid and the relative insen-
sitivity of the electronic structure near the Fermi
energy to high-momentum-transfer scattering
events, made it possible to obtain a good fit using
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only a small number of parameters V,, (G,),
where G, is a reciprocal-lattice vector. System-
atic extension of this approach is possible via the
introduction of additional parametric forms in V.,
describing the energy and angular momentum de-
pendence of the pseudopotential?” (nonlocal correc-
tions). As the separation of the potential indicated
in Eq. (5) is not done in the EPM, this approach is
not limited by the frozen-core approximation and
attempts to mimic core polarization and relaxation
effects. The SSPM approach®'~®® treats the valence
field by a microscopically defined theory [e.g.,
Hartree-Fock® (HF) or local-density functional
(LDF)*?], but parametrizes a chosen model form
for Vpg to ionic term values® or to the band struc-
ture.® Since in this approach V,,, depends on the
actual solutions y; through the screening valence
field V,,(Z;i X3), self-consfstency in the description
is possible in principle. In the NEMP ap-
proach,**%" V_ is again treated rigorously while
Vs is fitted to theoretically calculated all-electron
atomic eigenvalues.

In contrast to all the model potential approaches,
the first-principles pseudopotential approach re-
tains the rigorous relation (3) and attempts to cal-
culate both Vg and V, from a microscopic theory
without restricting them to any model functional
form. Both the successes and the failures of this
theory in reproducing the observed data can in
principle be analyzed in terms of the underlying
microscopic interactions in the Hamiltonian (e.g.,
electron correlation), subject to the pseudopoten-
tial frozen-core approximation. Further, property
(3) enables the retention of the desirable features in
the pseudo-wave-functions (such as expandability
in simple and convenient basis functions, similar-
ity to “good” all-electron wave functions, etc.)
and recovery, to within a good approximation, of
the true wave functions, simply by core orthogon-
alization.

First-principles pseudopotentials have been pre-
viously obtained with the HF scheme by several
workers,'?¥%3 and were used for molecular
structure studies. Recently, Zunger et al.*®*
have suggested a method for obtaining first-prin-
ciples pseudopotentials in the local-density form-
alism which are more directly suitable for solid-
state applications. In this paper we present a gen-
eralization of the method to all atoms of rows 1-5
in the Periodic Table. This enables a comprehen-
sive discussion of the chemical regularities in
these potentials, including the variations in their
nonlocality, strength, and characteristic turning
points as a function of their location in the Period-
ic Table. We show that these potentials very ac-
curately reproduce both the wave functions and the
energy eigenvalues and total energy differences of

the underlying all-electron density-functional Ham-
iltonian over a wide range of excited states. This
establishes their weak energy dependence over a
large range of electronic configurations and orbital
delocalization, and suggests their usefulness for
studying bonded atoms in solids. We further dem-
onstrate how the agreement obtained with observed
quantities can be systematically improved by in-
troducing appropriate correlation corrections into
the all-electron Hamiltonian. In a separate paper
we will discuss applications to both bulk-solid
electronic structure and to the study of the phase
stability of crystal structures. Their success in
describing both electronic properties and struc-
tural regularities will hopefully enable the estab-
lishment of the pseudopotential practice in solid-
state theory on a basis of a microscopic first-
principles theory..

II. DEVELOPMENT OF THE FIRST-PRINCIPLES
PSEUDOPOTENTIALS

As the underlying ideas of the development of the
first-principles pseudopotential in the local-density
formalism have been presented previously,*”* we
give here only a brief discussion and indicate the
new features needed to treat atoms in arbitrary
position in the Periodic Table.

One considers a fictitious (pseudo) atom in a ref-
erence electronic state g, having N, electrons-
(where N, is the number of electrons in the true
atom assigned to valence states) and a nuclear
charge Z,. The electrons interact via Coulomb
and exchange-correlation forces and with a (yet
unspecified) fixed external potential given by

Vext ()= _Zv/'r“' VPs('V) . 6)

The total energy of the system is

E‘;[n]=T0(ng)+f 0V oo () dr

f ET(—:—I;(I—) drdv' +E(n), M

where Ty(n,) is the noninteracting kinetic energy

of electron density n, and E_(n(r)) is the interac-
ting, inhomogeneous total exchange and correlation
energy.*? One expects that the effective one-par-
ticle equation that will determine the variational
density in Eq. (7) will be*? 43

[— %VZ + Vext (T) + Vee(ng(,r))

+ Vo (X DIXe () = 25 x5 (), (8)

where the interelectronic Coulomb and exchange-
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correlation potentials are, respectively,

Vo= [ TZ‘(de'

OE, (n,(r))

ch(n ('V) 51’L (1/) ’

9)
and the density #,(») is. related self-consistently
to the eigenvectors of Eq. (8) by

ng(r) = ;Ni, PRI (10)

Here N%, denotes the valence occupation number

in the ground reference state g, and the sum is ex-
tended to include N, electrons. The inhomogeneous
exchange and correlation potential V, (n,(r)) is
normally replaced by the homogeneous free-elec-
tron potential V, (n,(r)) in the usual way,* leading
to an exchange part V (u,(r)) [with exchange coef-
ficient a =% (Ref. 42)] and a correlation part

V(n (r)) for which we adopt the results of Singwi
et al.** Gradient corrections®®'*® are possible,

but will not concern us here. Note that as the den-
sity n,(v) would be constructed to be slowly vary-
ing over space, the neglect of the higher terms in
the gradient expansion is more justified than in the
all-electron LDF approach.

One now seeks the form of the external potential
Vext ) such that for the reference electronic state
g, the eigenvalues of Eq. (8) will equal those of the
all-electron problem:

[=3V2=(Z,+ Z)/7+V,Lp (7))
+ V(o rIUE, (r) = €595, (), (11)

and that the pseudo-orbitals x%; () will be related
to the all-electron solutions ¥%,(») by a simple unit-
ary rotation

o
Xit(7)=;cil,wz¢fu(7’), 12)

where {C,,, w ,} are arbitrary coefficients, to be
fixed later. We denote the all-electron and pseudo-
charge-densities by p(v) and n(r), respectively,
and add the indices » and ¢ to denote valence and
core, when necessary. This condition determines
the external potential in terms of the (reference
state) all-electron quantities and the transform-
ation {C%, , ,} as

1 Vg ()

— 8 -
Vel =ty a0

_[_Zv/v+Vee(ng(1f))+ V,c(ng(r))] . 13)
Here we have used the fact that V. (n, (7)) is a local

function (if gradient terms are to be included, an
appropriate average over the orbitals %,(r) is ta-

ken'). Expressing the second term in Eq. (13) by
the all-electron form (11), one obtains

Ves)=U,(7) + Voo (p, ")) = V (1, (7)), (14)
where U,(r) is
UI(T) Z Cnl n'l sn'l)zl’n'l("") (15)

Enfcnt,wtd’fn ()

and V,,(p,(¥)) is the total all-electron potential of
Eq. (11). The sums in Eq. (15) are over all core
states and the nith valence state, and V (n,(r)) is
the valence field due to the distribution #,(r) and
the nuclear charge Z,[last term in square brack-
ets in Eq. (13)].

In this form, Vpg(r) can be used in Eq. (8) to re-
place the core electrons of Eq. (11) and produce
the desired eigenvalue spectra and wave functions.
It is, however, directly expressed in terms of the
all-electron solution and, as such, is of little
help. We assume now the pseudopotential frozen-
core approximation, namely, that Vpgq(#), which
exactly replaces the dynamic effects of the core
electrons in the vefevence atomic electvonic state
g, can be used for states other than g. This im-
plies that if Vpg(») is obtained for a characteristic
state g from Eq. (14), then one can directly obtain
approximate valence-electron solutions for arbit-
rary systems containing the same core through the
use of the pseudopotential rather than the all-elec-
tron equation. A large part of the rest of this pa-
per is devoted to testing and discussing this ap-
proximation.

We now examine how the freedom given in trans-
formation (12) can be used to obtain useful results.
In order for the pseudopotential to correctly re-
produce the chemical content of the underlying all-
electron problem, one would like x,;(7) to be as
close as possible to the true orbital z!)‘,’,,(r) in the
regions of space which are relevant for bonding in
polyatomic systems. One would similarly require
that X, (») be spatially smooth and lack the radial
nodes characteristic of ¥,,(v) [as x,, () are now the
lowest solution of the new Hamiltonian in Eq. (2)],
so that the former be conveniently expandable in
simple and small basis sets. This would permit
direct comparison of the valence orbitals of atoms
belonging to the same row without reference being
made to their differences in the chemically pas-
sive core regions. Whereas the smoothness of the
pseudo-wave-functions can be imposed by mixing
sufficient core orbitals in transformation (12),
undue “overmixing” can result in lack of similar-
ity of X,;(») to the corresponding all-electron val-
ence orbitals in the chemically important tail re-
gion. A straightforward method that fulfills this
“maximum similarity” constraint within a nonor-
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thogonal representation is the simultaneous mini-
mization of the core-projection expectation value

Qus ()| P | X (1)) = min (16)

for all valence states nl, subject to the require-
ment that x,, () be nodeless.?**' A simple illus-
tration of this process can be given for first-row
atoms: here one finds that the minimum amount
of mixing of the core ¥, ,(») orbital into the valence
P,s(7) orbital, which produces a normalized and
nodeless X,,(») orbital, leads to x,,(0)=0. Any
further mixing of ¥, () would still yield a nodeless
X2s(7), however, its similarity to ¢,,(») would dim-
inish. Minimization of the core projection within
the constraint of X,,(7) being nodeless is hence
simply equivalent here to requiring x,.(0)

=C s, 25%25(0) + Co 558,5(0) =0. Clearly, condition
(16) uniquely determines the pseudopotential trans-
formation for the simple case of a single core or-
bital. For atoms having an arbitrary number of
core states, we follow the suggestion of Kahn et
al.?® and require that the optimum pseudo-orbital
also minimize the “radial kinetic energy”,

f;[ffy— (l‘ﬂ;g)]z dr=min, 1)

and hence be spatially smooth. Conditions (16) and
(17), subject to the additional requirement of nor-
malization and least amplitude in the inner-core
region X,,(0)=0 (equivalent to the cusp condition??),
uniquely determine transformation (12). Some ex-
amples for the optimum coefficients are given in
Appendix A.

The crucial step here is that we do not allow the
process of fitting the energy eigenvalues of the
pseudo-Hamiltonian to some selected canonical
results to also implicitly fix the pseudo-wave-func-
tions to some uncontrolled form.3-2*27 We sim-
ilarly avoid the use of core-projection operators
directly in the pseudopotential, as done in the
Phillips-Kleinman form,? simply because such a
choice leads to arbitrary wave functions in an un-
constraint variational treatment. Instead, we fix
the nonuniqueness of the pseudo-wave-functions in
the reference electronic state from the outset by
imposing the physically appealing constraints of
maximum wave-functions similarity and minimum
kinetic energy. Any successful constraint of this
sort should result in pseudo-wave-functions that
systematically reproduce the characteristics of the
true wave functions in a reasonably wide energy
range. We examine this question quantitatively in
Sec. 1IV.

The numerical procedure used to solve Egs. (8)
and (11) were previously discussed.* It consists
of a self-consistent predictor-corrector numerical

integration scheme that avoids the need of expand-
ing ¥(r) in basis sets and produces very accurate
(~10"7 a.u. in the energies) and stable results. The
determination of the pseudo-orbitals in Eq. (12) is
performed iteratively by progressively mixing
core orbitals with valence orbitals and minimizing
Egs. (16) and (17) simultaneously. The required
transformation coefficients C,; ,, are obtained as
the lowest roots of a M X M eigenvalue problem
pertaining to the matrix form of Eqs. (16) and (17).

‘Accurate solutions of Eq. (17) require the know-

ledge of the polynomial expansion of §,,(») at small
r.#® Thefirstthree tofour terms in such an expan-
sion are sufficient to determine C, ., to six sig-
nificant figures. These calculations have been
performed for 68 atoms from rows 1-5 in the Per-
iodic Table. The resulting pseudopotentials and
their quality are discussed in the next few sections.

III. FORM OF THE CORE POTENTIALS AND
CHEMICAL TRENDS

Figures 1-5 depict the form of some represen-
tative nonlocal atomic core potentials. The atomic
core potential W,(») is defined by combining the
nuclear attraction term —Z,/7 from the valence po-

{=0
Core: 1s

|
2}

Potential (a.u.)

l |
0 1.0 2.0 3.0

R (o)

FIG. 1. The =0 core potentials of the first-row
atoms. Due to the absence of 7=1,2 core states in these
systems, the core potentials of the latter symmetries
(not shown) are purely attractive,
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= Ef(‘,g/—’/ 1=0, () I=1. The =2
= :i potentials are purely attrac-
g tive.
a -5 S —
cl
Ar’
—10t- -
-15 | | | i ] 1 Il
0 10 20 30 40 © 10 20 30 40
R (a.u)

tential in Eq. (5) with the pseudopotential

W)=V -2Z,/r (18)

(This termis usually referred to in the literature
as “ionic potentials”. We prefer to use here the
atomic core potential to indicate that W,(») re-
places an atomic core rather than the core of a
stripped ion). The term Z}=—»W,(v)+Z, can be
viewed as a position and angular-momentum-de-
pendent effective charge that replaces, in the
pseudopotential representation, the actual valence
charge Z,. In generating these core potentials for
atoms from the ith row in the Periodic Table, we
have defined the core orbitals as those belonging
to the rare-gas atom from row i~ 1.

In order to understand the form of the atomic
core potentials in Figs. 1-5, we first rewrite
W,(») in terms of the components of the all-elec-
tron potential and the all-electron and pseudo-
charge-densities p(r) and n(r), respectively. Us-
ing Eq. (14) and adding and subtracting V, (p®(r))
+V,p°(r)), one gets

w,(n) =[U,(r)-Z,/7]
+[=Z /r+ V, Lo°(r)+ V, ()]
1V p°) +0°0) |
=V, (p° )= V(o (r))]
+{V, (0° () =V, (n*(1))]

+[V, (p*r) =V n*(")], (19)

where U,(r) is given by Eq. (15). Here the first

term represents the nonlocal, or /-dependent part,

while the rest of the terms are “local” (i.e., com-
mon to all [ values). In applying these core poten-

tails to polyatomic systems, W,(») is considered
as an external potential associated witha given
core and the fotal core potential is given by

Wtot(?): Z IZ Wt(?" ﬁa)Pta s
[+3

where R, denotes the position vector of the ath
core, and P,, is the angular momentum projection
operator with origin at R,

The atomic core potential in Eq. (19) has a sim-
ple physical interpretation. The term U,(») re-
places the core-valence orthogonality constraint
for those pseudo-orbitals that have lost spatial
nodes due to transformation (12). The valence or-
bitals that have no core states of matching sym-
metry (e.g., 2p,3d for first-row atoms, 3d for
second-row and the first-transition-series atoms,
etc.) are already nodeless in the all-electron or-
thogonal representation, and no core mixing via
Eq. (12) is needed; in these cases X, (»)=¥,, ()
represents the nodeless maximum-similarity or-
bital, and the sum in Eq. (15) reduces to a single
termas C,; ,,=5,,. Hence Uy(r)=0 foralll=L
not present in the core. We see that for these [
values the atomic core potential is local and com-
mon to all I=L. The effective potential (5) seen
by such an electron in the atom is simply the total
all-electron potential V,,(p(»)) with lim, _, , W,(r)
=-Z/7, and no pseudopotential cancellation is said
to take place. On the other hand, valence orbitals
that have core states of matching symmetry are
mixed with the latter in transformation (12). This
leads to a strongly repulsive U,(r) in Eq. (15). In
particular, if x,, () in Eq. (12) is chosen to have
zero amplitude at the origin, a polynomial expan-
sion of ¥,,(r) leads to?***

(20)
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FIG. 3., Core potentials of the first, 3d, transition
series (a) 1=0, () I=1, and (c) I=1,

lim U,(»)=C,/7* C(21)

r—>0
for 1# L where C, is a positive constant. It is
hence seen that U,(») replaces an effective centri-
fugal barrier for those states that have been
“pseudized” by transformation (12). U,(r) is hence
a realization of Pauli’s exclusion principle as a
potential in real space, and is responsible for the
“hard-core” behavior of the core potentials in
Figs. 1-5 for [# L. This repulsive potential tends
to partially cancel the nuclear attraction term in
Eq. (19), leading to a form that is “weaker” (i.e.,
has valence rather than core states as the lowest

1 T T T
=0 (a)
Core: 1s, 2, 2p, 3s, 3p, 3d, 4s, 4p

_5

—-10L | I 1 | 1 | |
5 T T T T T T
=1 (b)
0 + t t t t t
= Mo Nb
o Te -
~— Rz 7
e | R
.% -5 ,l = i
® d A Pd
o ]
& I \-cd

FIG. 4. Core potentials of the 4d transition seriés (a)
1=0, () 1=1, and (c) I=2,

solutions) than the all-electron potential. Note
that in the present formulation the degree of this
pseudopotential cancellation is not assumed (viz.,
the empty-core®® or Heine-Abarenkov® potentials),
but rather comes out as a natural consequence of
the maximum similarity constraint imposed on the
orbital transformation in Eq. (12). Had we, for
instance, given up the requirement that the
pseudo-wave-function match the true wave function
to the maximum degree possible for a nodeless or-
bital x, the pseudopotential cancellation in Eq. (19)
would have been altered significantly. An extreme
illustration is the case where the pseudo-orbital
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FIG. 5. Core potentials of the alkali atoms. (a) 7=0,
b) 1=1,

X (7) is identified in Eq. (12) with a 1s orbital
[having no nodes but lacking similarity to the val-
ence state x,,(#)]. This leads to U,(r)=€,, - €,,,
exactly like the Phillips-Kleinman form,? with lit-
tle pseudopotential cancellation. Clearly, this re-
sulting core potential would yield the correct val-
ence eigenvalues in Eq. (2) (simply by shifting the
1s level by an amount necessary to make it degen-
erate with the valence orbital of interest), but
would lead to very poor valence wave functions.
The highly repulsive character of U,(r),l# L, for
small » and the associated degree of pseudopoten-
tial cancellation is hence a natural consequence of
the maximum similarity constraint on the pseudo-
wave-functions, which assures in turn its vari-
ational quality. Note that the repulsive nonlocal
potential U,(») is short range under the maximum
similarity constraint; if R, denotes a distance
from the origin at which all core orbitals have al-
ready decayed to zero, it is clear from Eq. (15)
that for »>R_ one gets U,(r)=0. Hence, although
determining the behavior of the pseudo-wave-func-
tions in their tail region, U,(r) is confined to the
core region. We note that both the empirical and
the semiempirical core potentials used for solid-
state applications usually lack this hard-core re-
pulsive behavior near the origin,35:24:26:27:31,32 54
the fitting of the pseudopotential energy eigenvalues

alone to the low-energy spectra leaves one with
the liberty to employ smooth potentials. This is a
consequence of the relative insensitivity of the
valence electronic structure near the Fermi en-
ergy to high-momentum-transfer scattering events.
Imposing explicit constraints on the wave functions
of the sort discussed above leads to the repulsive
core with its characteristic high-momentum com-
ponents. This is in turn responsible for the form-
ation of the classical turning points satisfying
W,(#9) =0, which contain a great deal of structural
information and can be used to theoretically sep-
arate various crystalline phases.*"*®

The second term in square brackets in Eq. (19)
represents the total Coulomb and exchange-cor-
relation potential of an isolated neutral core. It
behaves as —~Z_/7 at short distances, and is
screened out by the core density further out. The
third term in square brackets in Eq. (19) repre-
sents the nonlinearity of the exchange-correlation
functional with respect to the core and valence
charge densities. It measures the core-valence
interaction in the system, and is hence proportion-
al to the penetrability of the core by valence elec-
trons (which is a consequence of their mutual or-
thogonality). The last two terms in square brack-
ets in Eq. (19) AV, and AV, represent, respec-
tively, the Coulomb and exchange-correlation or-
thogonality hole potentials. They stem directly
from the existence of a depletion charge density
A(7)=p®(r) - n(r) due to the removal of the ortho-
gonality nodes in the pseudopotential represen-
tation.  Under the maximum similarity constraint,
A(7) is positive in the inner core and becomes neg-
ative further out. This leads to a partial cancel-
lation between the electron repulsion AV, (») and
the exchange-correlation attraction AV _ () over
the core region. The large 7 behavior of the atom-
ic core potentials is hence determined by ~Z,/7 (or
in Fourier space, by —4we?Z,/q?), slightly mod-
ified by the sum AV, + AV, . of the orthogonality
hole potentials. These deviate from zero outside
the core only to the extent that the pseudo-charge-
density #(») does not exactly mimic the true val-
ence density p’(»). These deviations are in turn
explicitly minimized by the maximum similarity
constraint*>%! imposed here. Note that while the
all-electron local-density potential V... (v) (Eq. 11)
has an unphysical exponential decay at large » (due
to the noncancellation of the Coulomb and exchange
self—interactions“), the corresponding core poten-
tials lack this feature.

It is clear from our discussion of the atomic
core potentials W, () that they are divided into two
principle classes: for I not present in the core,
they are governed by the —Z/» form at small » and
are negative throughout all space, approaching
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zero as Z,/v [e.g., Fig. 3(c)]. For I present in the
core, they start outas C,/? in the inner core,
have an I-dependent classical turning point 79
[W,(#?)=0] and a negative minimum WPi*= W, (»Pi®)
at 77", and then approach zero as -Z,/7 [e.g.,
Figs. 3(a), 3(b)and4]. Theiressential new feature
relative to many of the empirical model potentials
is the occurrence of the turning points* #J. These
are strongly nonlocal and characterize the prop-
erties of the atomic core in that they represent the
point where the repulsive Pauli potential, mod-
ified by orthogonality hole effects, equals the at-
tractive electron-nuclear and exchange-correl-
ation potentials. Their occurrence in the inner-
core region suggests the possibility of their trans-
ferability from one system to the other, and makes
them particularly suitable for discussing chemical
regularities in molecules and solids. Implicit in
their derivation are the classical constructs used
to describe bonding, such as electronegativities,
hybridization, and s-p promotion energies, as 7'
measures the scattering power of a screened core
towards states with angular momentum /. In a sep-
arate paper®® we show that, in fact, these turn-
ing points can be used to provide an essentially ex-
act topological separation of the various structural
phases of both octet A¥B® ¥ and the suboctet
AYBP-¥  3< P< 6 compounds.

Figures 1-5 show that systematical changes oc-
cur in 7}, 7P® and WP®" as one moves along rows

and columns in the Periodic Table. A better vis-
ualization of these trends is provided in Fig. 6,
where the elements are denoted by their

(rPin, WPin) coordinates. In this plot we have again
used a closed-shell rare-gas core for separating
the valence states from the core. The elements
are seen to be clearly grouped according to their
rows in the Periodic Table. At small |W®"|and
large " (i.e., shallow and delocalized, or weak,
potentials) we find the classical free-electron-
like metals, while at large |W™*| and small 7™*®
(deep and localized, or strong, potentials) we find
the atoms that form covalent structures and the
transition metals. Each row in the Periodic Table
is represented here by at least two lines—one con-
necting the full circles passing through the /=0
coordinates and one connecting open circles pas-
sing through the /=1 coordinates. The full trian-
gles denote the =2 coordinates. The =1 compo-
nents of the first-row atoms as well as the =2
components of the second and third rows are purely
attractive, asdiscussedabove, and all have a mini-
mum of negative infinity at the origin. For con-
venience, we have connected the /=0 and /=1 coor-
dinate of each atom by a straight line. Clearly,
the length and slope of these lines measure the s-p
nonlocality of the potential. Few interesting ob-
servations can be made. The s-p nonlocality de-
creases as one moves down the columns in the
Periodic Table, as the ratio of the number of core

T 1 T T T

301Cs _
r lmin
Rb
25 _
1 Core: He =0 . ..
K 2 Core: Ne ot =1 FIG. 6. Radii of mini-
3 Core: Ar o =2 mum.potential r" asa
20l 4 Core: Kr _| function of the well depth
: |W M| for atoms of rows
5 Core: Xe 1-5, Full circles denote
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] Na \ triangles denote the I=1
T 151 - and /=2 components, re-
E~ \ spectively, The I=0 and
L N NN 1=1 radii of each atom are
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states of =0 and /=1 symmetry approaches unity
and U,(r) becomes approximately ! independent.
Hence, while for second-row atoms there are two .
core states of /=0 symmetry and only one for I
=1 symmetry, the pseudopotential cancellation is
far better for the former (leading to more delocal-
ized and shallow /=0 core potentials), while for
the fifth-row atoms the number of core states is
5 and 4, respectively, and the pseudopotential can-
cellation is very similar for these symmetries.
One further notes that while within a given row the
slope of the line connecting the (#™®, W2®) and
(rPin, WPin) coordinates is negative at the right
side of each row (i e., the p potentials are more
localized and deeper than the s potential), these
slope move gradually towards less negative values
and become positive eventually at the left side of
the lower rows (i.e., the p potentials become more
extended and shallower than the s potentials). This
is directly related to the increased delocalization
of the outer valence p orbitals as one moves to-
wards the left side of the rows. One notes that the
1 =2 coordinates are quite separated from the [
=0, 1 coordinates, and vary almost linearly within
each row. These localized d potentials are re-
sponsible for the relatively narrow and separated
d bands in the transition-metal series. Their
variations along the rows parallels that of the d-
band width in the respective elemental metals, and
similarly, their proximity to the /=0 coordinates
governs the degree of s-d hybridization. It is in-
teresting to note that while the decrease in the val-
ence. charge Z, results in relatively more delocal-
ized 1=0, 1 core potentials as one moves to the
lighter elements of a given row, the same decrease
in Z, results only in a change in the depths of the
1 =2 potentials, leaving the d-core size of the 4d
and 54 elements relatively unaffected by Z,.

Figure 7 depicts a 2!, W™ map for the columns
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in the Periodic Table. Each line connects atoms
having the same number of valence electrons, de-
noted by their group number. It is seen that the
atoms are grouped naturally according to their
chemical behavior: on the lower right side we have
the most electronegative atom with its deep and
localized potential, while at the upper left side we
have the most electropositive atom with its weak
and delocalized potential. The first atom of each
column (belonging to the first row) is rather sep-
arated from the remaining atoms in the same col-
umn due to absence of a [=1 core state. As the
number of valence electrons increases, the poten-
tials tend to span a larger range of depths and a
smaller range of radii, while for the low-Z, ele-
ments, the core radius becomes the decisive char-
acteristic feature in a column.’! Tendencies to-
wards metallization within a given column (e.g.,
C-Si-Ge-Sn) are reflected by an increased radius
and a decreased potential depth (i.e., more free-
electron-like).

It is hence seen that the first-principles pseudo-
potentials faithfully reproduce the regularities of
the Periodic Table. We will next examine the de-
gree to which the resulting pseudo-wave-functions
parallels the chemical trends in the all-electron
wave functions.

IV. FORM OF THE WAVE FUNCTIONS
AND THEIR ACCURACY

In order to establish the basis for analyzing the
bonding properties of polyatomic systems within
the pseudopotential framework, one would like to
assure that the atomic pseudo-wave-functions re-
produce the pertinent features of the true valence
wave functions. One can choose a set of simple
prototype systems and examine how well the
smooth and nodeless pseudo-orbitals reproduce

3.0

I T I I T T T

2.5

2.0
N

0.5

T I T

FIG. 7. The »{" vs
Wit coordinates of atoms
from columns 1-7, The
number of valence elect-
trons is constant along
each column, and equals
the column number,
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the values and regularities in some relevant oper-
ator expectation values obtained with the “true”
all-electron orbitals. We know that the expectation
values of the Hamiltonian operator are, by con-
struction, exactly reproduced for the reference
ground state of the atoms. Other operators that
might sample the pieces of the wave functions
which are relevant to bond formation in condensed
systems are 7!, 7, 7%, V?, etc. In particular, the
various moments of » are useful in depicting the
detailed deviations of x from ¥ in the various re-
gions of space, as in a direct comparative plot
they are hardly visually distinguishable in the tail
regions.

Figures 8—-12 show the trends in the moments of
7 for both the all-electron (full circles) and the
pseudo- (open circles) wave-functions for atoms of
rows 1-5. Both sets of wave functions were ob-
tained from a self-consistent numerical integration
of Eqs. (11) and (8), respectively, with an accur-
acy of 0.01% in the moments. It is clear that the
pseudo-orbitals reproduce the all-electron results
to within a few percent, and that even the small
variations in the moments within rows in the Peri-
odic Table are directly apparent in the pseudopo-
tential calculation. It is concluded that these
pseudopotentials are capable of accurately reveal-
ing the chemical trends underlying the all-electron
calculations.

A further test for the quality of the pseudo-wave-
functions is furnished by comparing their orbital
kinetic energies (which tends to measure the de-
gree of localization of the orbitals) with the cor-
responding all-electron results. Although the
pseudo-orbitals clearly carry less kinetic energy
due to the explicit elimination of their radial
nodes, one would expect that a chemically mean-
ingful pseudopotential will reproduce the regular-
ities in the orbital localization as one moves along
rows and columns in the Periodic Table. An ex-
ample is given in Fig. 13, from which it is evident
that this is indeed the case with the presently de-
veloped potentials.

The orbital kinetic energies can be further used
as a quantitative measure of the pseudopotential
cancellation for each angular-momentum species.
The ratio f; = T,/T%%, (where T™ stands for the
orbital kinetic energy per electron and PS and AE
denote, respectively, pseudopotential and all-elec-
tron) equals 1.0 when the pseudopotential trans-
formation (12) does not modify the wave function
(i.e., I not present in the core), and decreases to-
wards zero as the degree of kinetic energy can-
cellation increases. We find that to within a good
approximation, f; is constant within rows in the
Periodic Table, indicating that it is the number of
radial nodes rather than the core charge that de-

20 T T T T T T T

r?) (av?)

(r) (aw)
.
I
v
|

\o
0.8L_1 | | | | | | ]
T T T I T T T |
1.6 /. —
- r™ o O
1.4 r 2s / ,,/

™ (au™)
P
T
\
\
|

o,’ s
0.8 0 ]

/4

0.6 e -
Y

0.4 o/’

0.2 | | | 1 1 | | |

Li Be B C N o F Ne

FIG. 8. Orbital moments for the valence electrons of
the first-row atoms. Full and open circles denote all-
electron and pseudopotential results, respectively. The
2p orbital moments are identical by definition.

termines the degree of pseudopotential cancell-
ation. Although the variations from constancy of
f; may admittedly reflect genuine chemical trends,
these deviations are very small and can be ignored
for the purpose of the present discussion. Table

I gives the values of f; with their characteristic
variance, as calculated for all atoms of rows 1-5.
It is seen that the 1=0 cancellation is always about
a factor of 2 better than the I=1 cancellation,
while the /=1 cancellation is better to within a
similar factor than the I =2 cancellation. Further,
even for a constant number of core states of the
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FIG, 10, Orbital moments for the 4s states in the first-
row transition atoms, Full and open circles denote all-
electron and pseudopotential results, respectively,

density was simply added to the valence pseudo-
charge-density in calculating F(Q). The errors .
are seen to be located almost equally at low and
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FIG, 11, Orbital mo~
ments for the valence
electrons of the second-
row transition metals,
Full and open circles de-
note all-electron and
pseudopotential results,
respectively. (a) 5s, (b)

FIG. 12, Orbital mo-
ments for the valence elec-
trons of the third-row
transition metals, Full and
open circles denote all-
electron and pseudopoten-
tial results, respectively.
(a) 6s, () 5d.,
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electron (@) and pseudopotential (O) calculation, The
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high momentum [Fig. 14(b)], and are in general
within the experimental accuracy of most mea-
surements. We emphasize that within the first-
principles pseudopotential scheme developed
here, an orthogonalization of the valence pseudo-
orbitals to the core wave function results in the
exact valence orbitals (for the reference atomic
ground state), and hence the errors in the mo-
ments (#*) and x-ray scattering factors vanish
identically. This does not occur in the model
potential formulations, where it is found that core
orthogonalization results sometimes in even larger
deviations from the all-electron results.>?

TABLE I Kinetic energy cancellation factor f;
=T¥/TH; for the first five rows in the Periodic Table.
The core orbitals in the ith row are defined as the rare-
gas configuration of the ¢ -1 row,

Row fs fp fd
1 0.78 +0.01 1.00 1.00
2 0.175+0.02 0.39 +0.03 1.00
3 0.135+0.002 0.29 +0.03 1.00
4 0.102+0.002 0.235+0.04 0.50 £0.02
5 0.083+0.005 0.185+0.03 0.36+£0.02

50 | I ! I .I T

F(Q) (electrons/atom)

AF(Q) (electrons/atom)

—-0.3 | | | 1 | | |
0 2 4 6 8 100 12 14 16
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FIG, 14, (a) X-ray atomic secattering factors of Cr,
Zn, Mo, and Rh, calculated from the pseudo-valence-
charge-density plus the all-electron core density, F(Q
=0) is normalized to the atomic number. (b) The dif-
ference between the exact all-electron atomic scattering
factor and that calculated from pseudo-wave-functions as
a function of momentum, Note that in the present form-
alism this difference vanishes identically when the
pseudo-wave-functions are core orthogonalized.

V. ENERGY DEPENDENCE OF THE POTENTIALS

The pseudopotential partitioning of the effective
field seen by a valence electron into a static core
potential 27, W,(F)P, and a dynamic valence re-
sponse potential V, ((¥))+ V, (u(F)) are useful to
the extent that the former is genuinely transfer-
able from the prototype electronic configuration
to arbitrary systems. One would expect this trans-
ferability to hold to the extent that the core char-
acteristics as well as the core-valence interac-
tions of given angular momentum symmetries are
similar in both systems. In these cases the val-
ence field V,, (n(T))+ V. (n(T)) readjusts dynamically
(via a self-consistent treatment) to screen the to-
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tal core potential W,,,(¥) such that the resulting
variational density parallels the all-electron den-
sity obtained in the presence of the simpler —Z/»
static external potential. Note that in contrast to
the empirical model potential®2%27 approach in
which the entire effective potential is considered as
the transferable unit, the present approach used
only the atomic core potential as the system-invar-
iant unit, and allows for a-system-dependent self-
consistent screening through the valence response
potential. Although the ultimate test for the trans-
ferability of the core potentials should be based on
actual quantitative comparisons of all-electron

and pseudopotential calculations for polyatomic
systems (to be presented in a separate paper),” a
good idea of the stability of a given pseudopotential
against various bonding perturbations can be ob-
tained simply by considering excited and ionized
states of the atom. Although restricted to spher-

ical site symmetries, these excited states offer

a large range of variations in both wave functions
and energies so that the capability of the potential
in reproducing the all-electron results over a siz-
able energy range in the polyatomic system can be
judged. One would expect a pseudopotential to suc-
cessfully replace the actual dynamic effects of the
core electrons in some energy range AE, above
the reference state used for its construction. In
this simple case the question of transferability of
the potential from one electronic state to the other
reduces to its degree of energy dependence; the
potential is said to be approximately energy inde-
pendent over the range AE, if it reproduces the
all-electron results over this range. One is typ-
ically interested in probing the stability of the po-
tential for excited atomic configurations that can
be actually mixed into the states of interest in the
condensed system, say, over one to two valence-

TABLE I. Tests for the stability of the Mn ground-state pseudopotential against electronic
excitations. Energies are given in eV and moments in a.u. AE, PS, and PS-ortho. denote,
respectively, all-electron, pseudo, and core-orthogonalized pseudo.

€34 €45 €4 AE, (M)3a (Mss (Mup
Mn® 3d%4 s%p0

AE - 5.994 — 4.264 - 0.776 0.000 1.225 3.173 4.915

PS -~ 5.9% — 4.264 - 0.778 0.000 1.225 3.074 - 4.895

PS-orth. 3.173 4.915
Mn?3d%s14p°

AE - 2.634 - 3.385 - 0.430 - 0.626 1.392 3.412 5.867

PS — 2.685 —~ 3.410 — 0461 - 0.619 1.394 3.381 5.689

PS-orth, : 3.408 5.806
Mn® 3d5%4sl4pt

AE - 7.603 — 5.301 - 1.517 3.401 1.207  3.065  4.453

PS — 7.615 - 5.331 - 1.531 3.402 1.206 2.998 4.387

PS-orth. 3.053 4.424
Mn* 3d%s%p?

AE — 9.814 — 9.642 - 5.694 6.013 1.316 _ 3.003 3.895

PS —~ 9,915 - 9.681 - 5.631 6.106 1.320 2.972 3.803

PS-orth. 2.998 3.870
Mn* 3d%4sl4p?

AE -13.991 —-11.000 - 6.524 7.537 1.191 2.856 3.605

PS —-14.026 -11.109 —~ 6.605 7.600 1.190 2.781 3.558

PS-orth. 2.846 3.598
Mn* 3d%s%p°

AE -19.321 -12.561 — 17.566 12.326 1.093 2.697 3.328

PS —~19.400 ~12.604 ~ 17.603 12.341 1.089 2.599 3.284

PS-orth. 2.685 3.314
Mn*? 3d%4s%p°

AE —23.254 -18.377 —-13.038 22,230 1.152 2.623 3.123

PS —23.591 —18.435 ~13.204 22.435 1.151 2.585 3.094

PS-orth. 2.604 3.100
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band widths of the solid. Clearly, if one wants to
study different energy regions in the condensed
phase (e.g., outer-core states or highly excited
Rydberg states), one would have to construct a
new potential based on a different electronic re-
ference state such that the stability range AE,
would cover the relevant energy region (cf. Sec.
VI).

We have performed numerous tests on the stabil-
ity of the first-principles pseudopotentials in the
atomic limit. Typical examples are given in Ta-
bles II and III, in which we summarize the result-
ing eigenvalues, total energy differences AE, (rel-
ative to the reference state), and orbital moments
obtained both with the pseudopotential and the all-
electron calculations. The accuracy in determin-
ing the energy eigenvalues and total energies in
the self-consistent numerical integration scheme
is of the order of 3.10-° eV. It is seen that the
ground-state pseudopotential, which exactly re-
produce the eigenvalues of the reference state
(e.g., Mn® 3d5%4s%4p°), accumulates only small er-
rors as AE, is raised to about 22 eV above the
ground state. Likewise, the description of the val-
ence wave functions remains accurate over a range
of 2%-40% of variation in the orbital moments.
The worst case in Table II is the highly excited
Mn®* configuration (AE, =22 eV), for which the er-
rors in the eigenvalues are 0.2-0.4 eV, or 1%-2%;
however, this configuration is hardly of relevance
for the states around the Fermi level in the metal.
In general, we find that a neutral-atom potential

is stable until roughly two or more of its electrons
are ionized. Above this limit the core is already
appreciably modified for the underlying frozen-
core approximation to be valid. We note that many
of the empirical and semiempirical model poten-
tials previously employed have used the observed
excitation energies of the single-valence-electron
ions as basic input for fitting the poten-
tials,1%:242%,32,35,47,48 while these procedures in-
volve the considerations of only low excited states
for the first columns of the Periodic Table, their
application to the right-side part of the Table ac-
tually implies the extension of the frozen-core ap-
proximation to wide energy regions (e.g., 152 eV
for Nb®*). These highly excited states are usually
characterized by wave functions that are substan-
tially different from those pertaining to the vicin-
ity of the ground state (e.g., in going from Nb° to
Nb®*, the orbital kinetic energies per electron
vary by 26 and 34 eV for the 4s and 4p;

the 5s, 5p orbital moments vary by 34% and 46%,
respectively, etc.) and their use in fitting the po-
tential might induce an unwarranted energy depen-
dence. Indeed, some workers®® have found that it
is sometimes necessary to rescale the Hamilton-
ian matrix elements when such as ionic potential
is used, in order to get agreement with the all-
electron results.

Tables II and III also indicate the effect of ortho-
gonalizing the valence pseudo-wave-functions to
the (frozen) ground-state core orbitals. It is evid-
ent that this yields remarkably improved accuracy

TABLE II. Tests for the stability of the Ge ground-state pseudopotential. Energies are
given in eV and moments in a.u. AE, PS, and PS-orth. denote, respectively, all-electron,
pseudopotential, and core-orthogonalized pseudopotential results.

€4s €4p AE, {Ths (Map
Ge!? 4s"’4p2
AE —10.524 - 3.121 0.000 2.101 2.973
PS —10.524 - 3.121 0.000 2.081 2.944
PS-orth. 2.101 2.973
Gel 4si4p®
AE —-11.430 - 3.747 7.564 2.119 2.844
PsS —-11.441 - 3,751 7.559 2.093 2.771
PS-orth. 2.118 2.841
Ge*! 4s¥p! ,
AE —-18.490 -10.369 6.612 2.069 2.591
PS -18.601 -10.421 6.661 1.998 2.550
PS-orth. 2.061 2.571
Ge? 4s14p Ut
AE —-15.893 - 7.601 13414 2.049 2.575
PS -15.892 - 7.621 13.392 1.988 2.558
PS-orth. 2.039 2.574
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in the moments over a wide energy range; while
the pseudo-wave-functions are usually character-
ized by smaller first-moments due to their core
components [Eq. (12)], the orthogonalization pro-
cedure annihilates these states, the remaining
discrepancies being due to small deviations from
the frozen-core approximation.

A different way of examining the stability of the
first-principles pseudopotentials involves their
generation from a set of reference states and
their subsequent application to a given test state.
For example, one can generate a potassium po-
tential from a number of configurations of the
form K 4s94p'"9 with 0<s@ <1, and test their ac-
curacy in reproducing the characteristics of the
ground state (@ =1). We find that the errors in-
troduced in the calculated energy eigenvalues and
orbital moments are less than 0.02 eV and 1%, re-
spectively, indicating a low energy dependence.
We conclude that the presently developed pseudo-
potentials can be used to replace the core elec-
trons in a wide variety of bonding situations span-
ning large ranges of orbital localization.®*

VI. DIFFERENT CORE-VALENCE SEPARATION SCHEMES

In constructing the pseudopotentials (Figs. 1-5),
we have so far adopted the classical chemical de-
finition of core versus valence orbitals (the form-
er belonging to the nearest rare-gas closed shell).
Although this definition underlies much of the
chemical periodicities, it is by no means unique;
the partitioning of the all-electron states into the
“passive” and the “active” subgroups can be based
on their response to relevant external perturb-
ations. An example for the type of considerations
involved in invoking such a partitioning is given in
Fig. 15, where we plot the variation in the all-
electron energy eigenvalues and kinetic energies
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FIG. 15. All-electron energy eigenvalue gap €;—¢,
and the orbital kinetic energy per electron gap T,— T,
of the outer orbitals of the (a) third-row and (b) fourth-
row atoms,

of the outermost s and d electrons for atoms of
rows 3 and 4. It is seen that while at the left-hand
side of each row the €, — €, energy gap is very
small and the corresponding degrees of local-
ization of the orbitals are not too different, the
right side of these rows is characterized by large
differences in the one-electron energies and kin-
etic energies, making s-d hybridization less likely.
On this basis one would assume that for suffic-

Potential (a.u.)

===23d in core
—— 3d in valence

FIG. 16 Atomic core po-
tentials of the third-row
atoms computed with the
3d orbitals as a part of the
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iently low energy bonding (or external) perturb-
ations, the outer d states of, say, Zn, Ga, Ge,

In, and Sn can be considered as part of the inert
core. The first-principles pseudopotential scheme
developed here provides the flexibility of construc-
ting the core potentials for various core-valence
partitioning schemes, since the only invariant
quantity for a given choice of the nodeless valence
orbitals in (12) is the fotal effective potential in
Eq. (5), and not its components. Clearly, adding
a given set of orbitals as a part of the core would
result in different core potentials in Eq. (19); the
accompanying changes in the screening field would,
however, lead to a similar effective potential,
provided the principal quantum numbers of the
lowest valence orbitals are unchanged. We next
examine here the potential usefulness of such core
redefinitions.

Figure 16 shows the [=0,1 components of the
atomic core potentials of Cu, Zn, Ga, Ge, and As.
computed with the 3d orbitals as a part of the core
(dashed lines). For comparison, we give in the
same figures the Cu and Zn potentials computed
with the 3d as a part of the valence shell (full
lines). It is seen that incorporation of the 3d or-
bitals into the core results in much shallower s
and p potentials. The core potentials of Ga, Ge,
and As are now more in line with those of Al, Si,
P, etc. The association of the Ga-Ge-As com-
pounds with the other “covalent” systems of col-
umns III-V rather than with the transition series
is hence based on the passivity of their 3d elec-
trons to hybridization with the s,p states, and is
clearly revealed in their corresponding core po-
tentials.

The incorporation of the 3d orbitals into the core
results in two additional effects: (i) the nonlocal-
ity of the [=0,1 core potential is enhanced, i.e.,
W,(r) = W,(») increases in magnitude in the region
0.8 a.u.<7. In general, one expects such nonlo-
cality enhancements whenever the valence sub-
space is reduced, and conversely, a gradual ap-
proach to a fully local potential is obtained as
more of the states are treated by a dynamic re-
sponse V,(r) rather than by a static pseudopoten-
tial.®” Clearly, at the limit where all states are
treated by V,(r) (the all-electron limit), all angu-
lar momentum species experience the same local
potential (in the local-density formulation). (ii)
The energy dependence of the potential increases,
i.e., the new core potential is expected to be sta-
ble only in the perturbation energy ranges that
leave the 3d orbital unchanged relative to the ref-
erence state.

From the practical point of view, the use of
these pseudopotentials with a redefined core poses
some attractive features. For example, methods

that employ a reciprocal space expansion of W,(r)
becomes more readily convergent with shallower
potentials (i.e., require fewer plane waves). The
added nonlocality does not pose serious difficul-
ties, since most of it is localized in the regions
of space where the valence state changes very lit-
tle upon bond formation.

Similar arguments pertain to the 4f electrons in
the fifth row in the Periodic Table. Their inclu-
sion as a part of the valence in tungsten results
in adeep core potential (with Wir=—-2.8a.u., Wi
=-2.T4a.u., WH"=_11.8 a.u., and »™*=1.56 a.u.,
y3ir=1.64 a.u., and F=0.51 a.u.). It is hence
clear from the foregoing discussion that the choice
of a core-valence partitioning scheme in the pres-
ent formalism is largely arbitrary, and can be
carried out to suit particular applications and the
desired accuracy.

VII. IMPROVEMENTS AND GENERALIZATION OF THE
UNDERLYING INTERACTION MODEL

We have seen so far that the first-principles lo-
cal-density pseudopotential approach reproduces
the properties of the all-electron solutions re-
markably well, over large energy ranges. Since
we have adopted a completely nonempirical ap-
proach, we expect these potentials to similarly
carry over the major disadvantages and shortcom-
ings of the underlying all-electron interaction mo-
del. Numerous applications of the all-electron
local-density formalism to the description of
structural and electronic properties of mol-
ecules® % and solids®™*! have yielded excellent
results for ground-state properties such as co-
hesive energy, bond length and equilibrium unit-
cell parameters, bulk modulii, x-ray scattering
factors, etc. Its major shortcoming lies in the
lack of a simple correspondence between the as-
sociated energy eigenvalues and the actual elec-
tronic elementary excitations in the system.*6-63
Viewed from a slightly different point, while the
eigenvalues of the HF equations correspond rig-
orously to the difference in fofal energies of the
ionized system and the ground-state system at the
limit of no orbital relaxation (Koopman’s theorem)
and hence can be used as reference points for an-
alyzing the observed ionization spectra and, in
general, the calculated one-electron spectra of
solids, no such theorem holds for the local-den-
sity Hamiltonian. The implications of this situ-
ation from the theoretical point of view are that
the conventional local-density one-electron band

‘'model does not represent the actual independent-

particle states. From the practical point of view,
one finds that if the predictions of the local-density
model are not obscured by empirical parametri-
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zations or systematic adjustments, the resulting
band gaps of insulators are often too small by
20%-30% compared to optical data (notable exam-
ples are LiF,% 8i,%2CdS,%® and many rare-gas sol-
ids®), the d-band width of transition metals is
15%-25% off the observed photoemission data,®®
and that the negative of the atomic eigenvalues are
in error by a similar amount from the observed
ionization photoelectron spectra.**% Quantitative
analysis of these effects®%? suggests that a major
part of these discrepancies arise from the noncan-
cellation of the Coulomb and exchange self-inter-
actions in the local-density model; while both the
Hartree and HF models provide explicitly for a
cancellation of these unphysical interactions, the
local-density model treats the electronic Coulomb
and exchange self-interactions in a state-indepen-
dent (local) fashion, which results in only a partial
compensation of the self-interactions. An obvious
example is the hydrogen atoms,® for which in the
LDF model the entire “interelectronic” Coulomb
and exchange potentials V, + V, are due to the
spurious self-interactions. The partial success

of the local-density model in interpreting one-elec-
tron spectra of solids is largely due to the fact that
in extended electronic states, the self-interaction
effects are often small (inversely proportional to
the number of particles. While this condition holds
for many of the free-electron-like metals, many
of the electronic states in transition metals, insu-
lators, and semiconductors do maintain some de-
gree of spatial localization, resulting in nonneglig-
ible self-interaction corrections. This deficiency
of the local-density model is quite often dealt with
in atoms or simple molecules by evaluating direc-
tly the fotal energy differences between ground and
excited states [via the “transition state”3 or direct
ASCF (change in self-consistent-field energy, in
which the threshold energy is taken as the differ-
ence in total energies of two self-consistent-field
calculations)®*” calculations] and by inclusion of
spin-polarized electron-liquid correlation terms®®
that act to partially offset these deviations. With
only few exceptions, similar methods are extreme-

ly difficult to carry over to the study of solids.
We propose here a partial solution and simpli-
fication of the problem within the first-principles
pseudopotential model. We will later discuss the
possibility of further generalizations of the LDF
model within the pseudopotential context.

One first realizes that the noncancellation of the
self-interactions in the LDF model stems from
the local nature of the corresponding all-electron
potential V,(p(¥)); as the self-interaction

Vo= [ BEMIE) gy oo e2)

is explicitly state dependent, it is not represent-
able in a conventional local model. One expects
this term to dominate the calculated spectra of
one-electron atoms or that of systems for which
Y;(r)*(r) has appreciable magnitude over small
regions of space. While in the all-electvor model
the first case is realized only for the hydrogen
atom, the first case appears in many more situ-
ations in the pseudopotential model (e.g., the en-
tire first column, Cu*, etc.). We illustrate this in
Table IV, where we compare the calculated
pseudopotential atomic total energies Ef5 of the
first-column atoms, with the observed ionization
potentials®® IP(exp). Since these pseudoatoms are
one-electron systems, their total pseudopotential
energy is expected to represent the interaction of
the electron with the core, and hence to be com-
parable to the ionization energy. One finds, in
turn, a roughly constant deviation A, from the ob-
served value of 15%-20%. These deviations re-
sult both from the fact that the electron is allowed
to spuriously interact with itself, and from the in-
completeness of the correlation interaction under-
lying the local-density pseudopotential.

A straightforward treatment of the self-interac-
tion can be achieved through its direct cancel -
lation in the all-electron potential.®® Hence one
treats all the interelectvonic exchange interactions
statistically via the standard local-density formal-
isms, while the self-exchange is treated separately

in the spirit of the Hartree approach. This results

TABLE IV. Total pseudopotential energies of the alkali atoms, compared with the observed
ionization potentials (Ref. 68). Efg and ELySIC are, respectively, the local-density and self-
interaction cancelled pseudopotential total energies (in eV). Ay and A, are the percent
deviations of EL§ EL$SIC from the observed values, respectively.

Atom -Ep, IP (exp) A, —E®S,SIC A, HF, ASCF™
Li 4.504 5.39 16.4% 5.341 0.91% 5.34
Na 4.361 5.14 15.1% 4.982 3.1% 4.95
K 3.635 4.34 16.2% 4.103 5.5% 4.00
Rb 3.458 4.18 17.3% 3.910 6.5% 3.81
Cs 3.138 3.89 19.3% 3.598 7.5% vee
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in a nonlocal exchange potential of the form
Ve (@), by PN =V () = VIR, () (23)
and the corresponding state-dependent total poten-
tial
VEDDE), B ) = =Z/7+ Vo (p))
+VED(R@), @), (24)

This form has been suggested by Lindgren® and
applied in the all-electron context to the Cu* ion.
Clearly, this considerably complicates the solu-
tion of the all-electron problem due to the need to

solve a self-consistently coupled state-dependent
N

problem. However, since the pseudopotential
transformation of even a local all-electron Hamil-
tonian [e.g., Eq. (11)] results in an angular-mo-
mentum-dependent nonlocal core potential (19),
one might make use of the fact that the nonlocality
in Eq. (24) is of similar orbital nature and generate
a self-interaction compensated pseudopotential
with no additional complexity over the regular
pseudopotentials.

Proceeding along the lines outlined in Sec. II,
one performs a similar pseudopotential transform-
ation on the potential (24), characterized by the
eigenstates ¢,,(7). The resulting core potential is

S, ()= W, 0r)+ [ff;"’ ) - <Z é,,,,,,,,ff;"”(r)z'/),,,(v)>/ (Z Corty iV (r))] , . (25)

where quantities marked by a tilde indicate that
they are computed from the nonlocal all-electron
problem, with potential (24), and W, () has the
same form as in Eq. (19). This self-interaction
compensated core potential is different from the
original form (19), both in the occurrence of mod-
ified wave functions ,,;(¥) in the regular core po-
tential form W,(»), and in the new term (in large
square brackets), which measures the difference
between the valence exchange self-interaction
term V{"'() and the configurational average core-
valence self-interaction.

Table IV shows the resulting pseudopotential total
energies E {5 5'® computed with this modified core
potential. They are also compared with the ASCF
(total energy differences) results obtained from an
all-electron HF calculation.” One observes that
a large part of the discrepancy which existed be-
tween the observed ionization potentials and the
previous pseudopotential calculation has been elim-
inated. The new results are somewhat better than
the HF results, and show now a smaller but sys-
tematic error which increases with atomic num-
ber, much like the trends in the HF results. Since
the HF ASCF results include the effects of orbital
relaxation and are performed with high accuracy,
‘the remaining differences with experiment reflect
correlation corrections. The next step in improv-
ing the pseudopotentials would hence have to deal
with correlation effects in the all-electron repre-
sentation. Before commenting on this possibility,
we will further examine the implications of the
self-interaction corrections on the core potentials.

Figure 17 shows the state-dependent exchange
potential (23) multiplied by » for the various or-
bitals of Li, compared with the usual local-ex-
change vV, (p(r)). The marked difference between
the two types of the exchange potentials is that the
self-interaction corrected one approaches -1/7 at

—
large distances from the origin (as expected elec-
trostatically), while the regular local-exchange
potential decays to zero much faster because of its
self-interaction terms.

The nonlocality of the exchange is seen to be
most pronounced for the more localized 1s core
state and decreases for the more diffused 2s and
2p valence orbitals. We have shown that the
pseudopotential approach to the self-interaction
compensated problem results in a significant sim-
plification over the corresponding all-electron
problem in that only the valence states have to be
treated by a nonlocal screening field, while the
core nonlocality is absorbed into the usual pseudo-
potential nonlocality. The fact that most of the ex-
change nonlocality is carried by the more localized
core states suggests a simplifying approximation.
One can still approximately treat the valence field
in Eq. (5) in a local fashion, and include all the es-
sential nonlocalities simply by using the modified
core potentials S;(r). This approach should enable
a much better characterization of the localized
nature of narrow d bands in transition metals as
well as the valence bands of the alkali-halides and
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FIG. 17, 7 times the nonlocal all-electron exchange
potential of the various orbitals in the Li atom (full
lines) compared with the density functional local form
(broken line),
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TABLE V. Energy eigenvalues and orbital moments
(in a.u.) for Cu* obtained with the LDF and self-interac-
tion compensated (SIC) LDF potential, compared with HF
results.

SIC

LDF HF (Ref. 70) LDF
€15 ~321.02 -329.11 -330.10
€9 - 38.38 - 41.13 — 40.04
€9 - 33.74 - 35.93 - 35.77
€35 - 4.32 - 5.32 - 4.82
€3p - 2.87 . - 3.64 - 3.36
€34 - 047 - 0.81 - 0.81
(Me 0.053 0.053
(Pgs 0.239 0.238
(Pap 0.208 0.206
(M3s 0.725 0.724
(M3p 0.756 0.753
(M3q 1.017 0.949

rare-gas solids by taking account of a sizable part
of intrasite Coulomb and exchange interactions.

The self-interaction compensated exchange po-
tential is in general more attractive than the local
exchange (Fig. 17) and leads to more tightly bound
states. The energy eigenvalues are now more in
line with the HF results, as can be seen from Ta-
ble V for Cu*.™ The largest effects are observed
for the localized core states, as discussed above.
The resulting wave functions tend similarly to be
more localized. Note that both these effects tend
to produce a more localized core potential with
smaller classical turning point radii }. We find,
however, that the effect on the radii 7§ is much
smaller for many-valence electron atoms, and
hence in our applications of these radii for par-
titioning of structural phases of crystals®® we use
the modified radii only for the alkali atoms.

We close this section by commenting on possible
improvements of the correlation functional in the
pseudopotential problem. The need for these im-
provements is apparent in the systematic devi-
ations shown in Table IV and in the similar devi-
ations observed in the past®® ™ between the local-
density and the exact exchange energies. Although
the explicit treatment of the self-interaction al-.
ready results in a marked improvement in the cal-
culated total exchange energy (i.e., in Li, the LDF
result is —1.4805 a.u., as compared to the exact
HF value™ of —1.7385 a.u. and our self-interaction
corrected value of —1.6805 a.u.), it has been
shown®® that when the spin-polarized electron-lig-
uid correlation functional is used instead of the
simpler p!/® local exchange, a systematic partial
cancellation of errors occurs. Although outside
the scope of the present work, it would seem that
such corrections could be easily incorporated into

the first-principles core potential along the lines
outlined in Sec. IL. This would result in a spin-
and angular-momentum-dependent core potential,
and would enable first-principles studies of mag-
netic problems within the pseudopotential frame-
work. Similar comments apply to the inclusion of
gradient corrections to the correlation®® in the to-
tal all-electron potential and its corresponding
core potentials. We have incorporated the homo-
geneous electron-liquid non-spin-polarized cor-
relation functional of Singwi et al.** into our pseudo
potential formalism, and calculated the corres-
ponding core potentials self-consistently for few
atoms. We find that the general effect is to some-
what localize these potentials (e.g., the turning
points 75 for carbon are reduced by 1% and 2% for
1=0and I=1, respectively). We have used these
potentials to calculate the self-consistent band
structure of silicon and germanium, obtaining ex-
cellent agreement with photoemission data.>?

We would like to emphasize that the experimental
data pertaining to the electronic structure of atoms
and solids plays a distinctly different role in the
presently developed first-principles pseudopoten-
tails than in the various empirical model potential
approaches. This data is no longer used to fix the
parametric form of the potential, but rather serves
as a feedback in understanding the microscopic
nature of the underlying electronic interactions.
This permits a critical analysis of the many-body
theory derived correlation functionals, and might
hopefully lead to their systematic improvement in
light of the available comparisons with experi-
mental data.

VIII. SUMMARY

We have presented a method for obtaining a
first-principles nonlocal atomic pseudopotential
in the density-functional approach by directly in-
verting the exact pseudopotential eigenvalue prob-
lem. The resulting pseudopotentials yield the ex-
act LDF ground-state eigenvalues valence spectra
and wave functions which are unitarily rotated rel- -
ative tothe all-electron functions within maximum
similarity and smoothness constraints. These pseu-

-dopotentials are only weakly energy dependent inan

energy range of about a Rydberg, and hence yield
very accurate wave functions, energy eigenvalues,
and total energy differences over a wide range of
excited configurations. We find that these poten-
tials reproduce the chemical regularities of the
Periodic Table, and that their characteristic fea-
tures (classical turning points, radii of minimum
potential, etc.) form nondigital coordinates which
reflect the scattering power of the atomic cores
by electrons in various angular-momentum states.
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TABLE VI. Expansion coefficients of the pseudo-orbitals [Eq. (17)] for the 3d series. (Pc)n; denotes the expectation

value of the core-projection operator.

Valence
Element configuration Cis Cas Css Cys Co ) Csp Cup Peras  Podap
Cr slp0gs —0.0001163 0.01332 ~0.2646 0.9643 0.004436 —0.1545 0.9879 0.0702 0.0239
Mn s2p0q5 —0.0001310 0.01487 —0.2833 0.9589 0.005612 —0.1791 0.9838 0.0805 0.0321
Fe s2p0q8 ~0.0001323 0.01464 -0.2782 0.9604 0.005357 -0.1708 0.9853 0.0776 0.0292
Co s2p0q7 —0.0001354 0.01445 —0.2733 0.9618 0.005121 -0.1628 0.9866 0.0749 0.0265
Ni s2plad —0.0001357 0.01418 —0.2684 0.9632 0.004858 —0.1551 0.9879 0.0722 0.0241
Cu sip0q10 —0.0001157 0.01207 —0.2389 0.9709 0.003215 -0.1106 0.9939 0.0522 0.0121
Zn 52p0g10 —-0.0001338 0.01860 —0.2593 0.9657 0.004381 -0.1407 0.9900 0.0674 0.0198
Ga s¥plqld —0.0001716 0.01728 —0.3121 0.9499 0.008 177 —0.2359 0.9717 0.0977 0.0557
Ge s2p2ql0 -0.0001761 0.01793 —0.3153 0.9488 0.008217 -0.2254 0.9742 0.0991 0.0508
As s?piq1o —0.0002115 0.,02078 -0.3461 0.9379 0.01096 —0.2765 0.9609 0.1202 0.0766
Se s?ptqlo —0.0005208 0.02652 —0.3687 0.9292 0.01293 —0.2967 0.9548 0.1367 0.0882
Br s2p5410 ~0.0005629 0.02848 —0.3826 0.9234 0.01444 —0.3131 0.9496 0.1471 0.0982

The nonempirical nature of these potentials per-
mits systematic improvements in the underlying
interaction model. As an example, we show how
self-interaction and free-electron correlation cor-
rections can be directly incorporated in the poten-
tials, leading to improved results. These poten-
tials are readily applicable to studies of molecular
and solid-state electronic properties and phase
stabilities, as they correctly represent both the
low- and high-momentum components. In a sub-
sequent paper we show how these potentials are
used for studies of the electronic structure of
bulk Si and Ge, and the transition metals Mo and
W and for providing accurate phase separation of
various octet and suboctet compounds.
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APPENDIX A

To demonstrate the nature of the maximum sim-
ilarity constraint of the pseudo-wave-function, we
give, in Table VI, the wave-function expansion
coefficients Cy;, ,; [Eq. (12)] and the expectation
value of the core projection operator (P,),, for the
first transition series. The coefficients are given
for the outermost valence s function x,,(r) as well
as for the p function y,,(»):

X4s(1’) = Clswls ('V) + Czszpzs(lr) + Caslpas ('V)

+C s (7); (A1)

x”(?’) = Czpzl)zp (r)+ Cspd)ap(y) + C4plp4p (). ) (A2)
As no core states of d symmetry occur in this ser-
ies,

Xsd(y) = 11’34(7’) . (A3)

All the results given are obtained from a Kohn and
Shan atomic calculation with an exchange coeffic-
ient of @=%. The departure of the (P,),, values
from zero [measuring the amount of core admix-
ture in x,, (v)] reflects the global similarity of the
latter to the true wave function ,,(r): as (P,
decreases, the similarity is increased. These
values of (P,),, describe the least amount of core
admixture into §,,(r) necessary to cancel all nodes
in the latter and to obtain a low kinetic energy
smooth pseudo-orbital with minimal amplitude in
the core region (where the pseudopotential descrip-
tion of the electronic interaction is deficient). It
is seen that even for the heaviest members of this
series, the core admixture does not exceed 15%
for the s wave functions and 10% for the p func-
tions.

The values of the coefficients change with the
configuration and with the fashion in which the
electrons are partitioned into core and valence,
as discussed in the text. These changes affect,
however, the resultant pseudopotential [Eqs. (14),
(15)] only to second order. Tables of these coef-
ficients with a larger number of significant figures
as well as values for other elements are available
from the authors upon request. These can be used
to conveniently construct the pseudopotential from
Egs. (14) and (15) once the solutions to the all-
electron atomic problem are known.
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