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Electronic structures of †110‡-faceted self-assembled pyramidal InAs/GaAs quantum dots

Lin-Wang Wang, Jeongnim Kim, and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 27 July 1998!

We calculate the electronic structures of pyramidal quantum dots with supercells containing 250 000 atoms,
using spin-orbit-coupled, nonlocal, empirical pseudopotentials. We compare the results with previous theoret-
ical calculations. Our calculation circumvents the approximations underlying the conventional effective-mass
approach: we describe the potential, the strain and the wave functions using atomistic rather than continuum
models. The potential is given by a superposition of screened atomic pseudopotentials, the strain is obtained
from minimizing the atomistic strain energy, and the wave function is expanded using a plane-wave basis set.
We find the following.~1! The conduction bands are formed essentially from single envelope functions, so they
can be classified according to the nodal structure ass, p, andd. However, due to strong multiband coupling,
most notably light hole with heavy hole, the valence states cannot be classified in the language of single-band
envelope functions. In fact, the hole states have no nodal planes.~2! There is a strong anisotropy in the
polarization of the lowest valence state to conduction state optical transition. This is in contrast to the eight
bandk•p model, which finds essentially zero anisotropy.~3! There are at least four bound electron states for
a 113-Å-based quantum dot. This number of bound states is larger than that found in eight bandk•p calcu-
lations.~4! Since our atomistic description retains the correctC2v symmetry of a square-based pyramid made
of zinc-blende solids, we find that the otherwise degeneratep states are split by about 25 meV. This splitting
is underestimated in the eight-bandk•p calculation.@S0163-1829~99!00608-6#
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I. INTRODUCTION

Nanometer-sized semiconductor quantum dots can
grown in the Stranski-Krastanow mode using molecu
beam epitaxy1 or metal-organic chemical vapor deposition2

These growth techniques afford different sizes and shape
InAs quantum dots grown on top of a GaAs substrate, on
critical layer thickness (;1.7 ML! of InAs has been depos
ited. The driving force for the formation of such quantu
dots is the elastic energy associated with the InAs/GaAs
tice mismatch.3 The potential applications of such quantu
dot systems range from high yield lasers to single-elect
devices.4,5

A few spectroscopic techniques have been applied
study the electronic structures of such InAs/GaAs quan
dots. These include photoluminescence~showing quantum
confinement effects6!, infrared absorption ~showing
conduction-band splittings7!, capacitance measurements a
charged exciton absorption~demonstrating electron-electro
interaction and state filling8!, and high-resolution single
exciton and multiexciton spectroscopy of isolated dots.9–11

Theoretical studies of such quantum dots are complica
by the facts that~i! their shapes are nontrivial~they are often
faceted!; ~ii ! they are subjected toinhomogeneousstrain;~iii !
they exhibit wave-function localization, implying stron
multiband coupling; and~iv! single-particle energy spacing
are comparable to the electron-hole Coulomb interactio
Theoretical investigations of such quantum dots have so
been based on the effective-mass approximation, ran
from single-band models ~amenable to analytic
solutions12–14!, to few-band models.15–18 These models are
distinguished primarily by their varying abilities to hand
different shapes and strain profiles, and by the numberN of
Brillouin-zone-center Bloch functions of the underlying bu
PRB 590163-1829/99/59~8!/5678~10!/$15.00
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solid that are used to expand the states of the quantum d
The sophistication of current theoretical methods increa
from one-band effective mass12–15 to an N54 band k•p
model,16 to anN58 bandk•p model,17–19and finally to the
pseudopotential method.20 There are a number of reason
suggesting thatk•p approaches may be insufficient for em
bedded quantum dots.

~i! Wave-function localizations in a segment of the dot: As
was demonstrated recently by Pryor18 and by Jiang and
Singh,17 the eight-bandk•p model gives quite different re
sults from the simpler~lower N) models. However, in the
case of free-standing quantum dots,21,22 it has been shown
that even the 6–8 bandk•p model are still insufficient to
describe the extensive interband coupling. On the one h
the size of the embedded quantum dots is usually a few ti
larger than that of the free-standing~colloidal! quantum dots
~InP or CdSe!. Thus, one might think that the eight-ban
k•p model will be more applicable here than in the case
free-standing quantum dots. On the other hand, however,
to the inhomogeneous strain present in embedded dots
wave functions are often localized in a small segment of
quantum dot;20 thus the limiting physical dimension of th
wave function might still be similar to that of free-standin
quantum dots.

~ii ! The continuum treatment of interfaces: When quan-
tum dots become small, the atomic nature of the interfac
neglected by continuum approaches, may become impor
For example, the conventionalk•p model15,17–19 treats an
unstrained, square-based, pyramidal quantum dot as ha
C4v symmetry. In reality, the system has onlyC2v symmetry
since the atomic structure is different in the@110# and@ 1̄10#
directions.

~iii ! Retention of only the linear effects of strain on t
5678 ©1999 The American Physical Society
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PRB 59 5679ELECTRONIC STRUCTURES OF@110#-FACETED . . .
electronic states~Ref. 18!: The adequacy of this linear ap
proximation has not been tested in the case of InAs/Ga
where large~7%! strains exist.

~iv! The neglect or the simplification of the electron-ho
Coulomb interaction: As shown recently,23 the calculation of
Coulomb energies from envelope functions, rather than fr
microscopic wave functions of the quantum dots overe
mates the Coulomb energy by as much as 40%.

Points~i!–~iv! above suggest that it might be desirable
calculate the electronic structure of quantum dots usin
method which has fewer approximations than the conv
tional k•p model. Here we offer a treatment that avoids a
proximations~i!–~iv!.

In this paper, we study the electronic structure of InA
GaAs quantum dots using our newly developed atomi
pseudopotential method.5 This approach describes the pote
tial, the strain, and the wave functions usingatomistic, rather
than continuum models. The potential is given by a super
sition of screened atomic pseudopotentials, the strain is
culated from minimizing the atomistic strain energy, and
wave functions are not restricted to envelope functions
retain the microscopic part. Consequently, multiband c
pling is not limited, atomic features in the density are reso
able, and the deformation potentials are not linearized, t
avoiding the approximations underlying thek•p calcula-
tions. The approximations that are involved include lack
charge self-consistency and a phenomenological treatme
the size- and position-dependent dielectric screening.
same approach has achieved very good agreement with
periment for free-standing quantum dots, including band
vs size for Si,24 InP,25 and CdSe,26 high-energy excitonic
spectra of InP~Ref. 27! and CdSe,22 pressure effects on
InP,28 and exchange splitting in InP~Ref. 29! and CdSe.5,30

This approach has also been applied to study embed
nanostructures, including pressure effects on InAs/Ga
quantum dots31 and a GaAs/AlAs ‘‘Russian doll.’’32 Here we
report atomistic calculations~including the spin-orbit inter-
action! for large embedded dots~containing a 250 000 atom
in the supercell!. This is made possible by the developme
of a parallel computer code on the Cray T3E computer. H
we present the results of this calculation for an InAs/Ga
pyramidal quantum dot, analyzing the electron and h
wave functions in real space, and calculating the polar
tions of the interband optical transitions and the size dep
dence of the confined energy levels. We compare our res
with the previousk•p calculations.

II. METHODS OF CALCULATIONS

A. Shape and strain

Despite a few years of experimental studies, the shap
Stranski-Krastanow ‘‘self-assembled’’ quantum dots is s
controversial. Indeed, various shapes have been propose
InAs/GaAs quantum dots, including@110#-faceted square
based pyramids,33 lens shape,34 flat oblate pancake shape,35

and @136#-faceted pyramid.36 Since the main purpose of thi
study is to compare the present approach to other theore
methods, and since others have chosen to study mo
@110#-faceted square-based pyramidal quant
dots,15–18,33,37we will do the same here. In another paper20
s,
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we studied the effects of various shapes on the electro
structures of the quantum dots~but without including the
spin-orbit interactions!.

Figure 1 provides a schematic view of the square pyram

with @101#, @ 1̄01#, and @011# facets. Although, in a rigid-
body description, a square-based pyramid impliesC4v
symmetry,15,16 the actual symmetry of the pyramid~made of
zinc-blende crystal! is38 C2v . This is because at the atomist
level, the@110# and @ 1̄10# directions are not equivalent

We place an As atom at the origin~0,0,0! of the coordi-

nate system and a Ga atom at the (1
4 , 1

4 , 1
4 )a position~wherea

is the zinc-blende lattice constant!. In our notation, the pyra-
mid’s tip points to the positivez direction. Our@110# direc-
tion is thus defined as the line pointing from the~0,0,0! site
to the~1,1,0! site. Considering the bottom interface betwe
the InAs pyramid and the GaAs substrate, this is the dir
tion of the As-In-As-In atomic chain on the InAs side of th
interface. Note that others, e.g., Lee and co-workers,19 used
different convention by placing Ga atom at~0,0,0! and As at

( 1
4 , 1

4 , 1
4 )a. Thus their@ 1̄10# direction is equivalent to our

@110# direction.
We calculate the electronic structure of four quantum d

with bases sizesb equal to 12a, 16a, 18a, and 20a, re-
spectively, wherea55.6533 Å is the lattice constant of bul
zinc-blende GaAs. We model the wetting layer using
monolayer-thick InAs layer at the base of the pyramid~Fig.
1!. To calculate the strain and the electronic structure,
place the InAs pyramid and its wetting layer in a large bo
filled with GaAs, and repeat this ‘‘supercell’’ periodically, t
create a mathematically convenient periodicity. Once the
ometry of the pyramid is so determined, the atomic displa
ments due to the InAs/GaAs lattice mismatch are calcula
by minimizing the strain energy using Keating’s atomis
valence-force-field~VFF! ~Refs. 39 and 40! model. The VFF
potential and the parameters we used are the same as in
17, and are also described in Ref. 38. To relax the ato
positions, we use a 40a340a350a periodic supercell. Such
a large supercell is needed to reduce the unphysical ela
dot-dot interaction, so its effect in the electronic energy le
is less than 3 meV. The resulting strain profiles for su
pyramidal dots are reported in Ref. 38. Comparison with
continuum elasticity model shows that the atomistic calcu
tion gives an anisotropic strain profile along@110# and@ 1̄10#
directions. The difference with regard to the continuu
model is particularly large near the InAs/GaAs interface.

FIG. 1. Schematic view of the pyramidal quantum dot. The In
quantum dot is buried in the GaAs matrix. The wetting layer is o
monolayer thick. The base lengthb of the pyramid equalsn3a,
wherea is the zinc-blende lattice constant. We have calculated f
systems withb equal to 20a,18a, 16a and 12a. The pointsA andB
are used in Figure 5.
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TABLE I. The pseudopotential parameters~in atomic units!. See Eqs.~2!–~4! for the definitions.

a0 a1 a2 a3 ga ba

Ga 6.1553104 2.270 3.2103103 0.6248 1.6295 -0.010
In 101.3 1.883 5.052 0.4881 1.336 -0.037
As ~in GaAs! 6.15 2.884 1.151 0.2606 0.0 -0.010
As ~in InAs! 46.53 2.620 1.972 0.6931 0.0 -0.010
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Since the electronic states are confined mostly inside
dots, a smaller supercell is adequate for a description of
wave functions. Indeed, the dot-dot interaction due to wa
function overlap is much smaller than the long-range dot-
interaction due to elastic strain. Consequently, for the p
pose of calculating the wave functions, we have remove
few GaAs layers from the original 40a340a350a super-
cell, reducing it to a 28a328a330a supercell. The atomic
positions of the atoms inside and near the pyramid are k
the same as in the original 40a340a350a supercell. The
atoms in the periphery layers of the 28a328a330a box
have been relaxed again, so that a smooth, periodic boun
condition can be formed. The single-particle electronic lev
calculated~by the method to be described below! using this
reduced supercell differ by less than 0.1 meV from tho
obtained using the original 40a340a350a supercell, al-
though the saving in computational effort is substantial. W
emphasize that the shapes of the dot and wetting layer
‘‘inputs’’ to the calculation, and any choice can be ente
tained.

B. Electronic structure calculations

Having formulated the atomic structures of the dot, w
ting layer, and barrier, the electronic structure is obtain
next using a direct-diagonalization approach to the sing
particle Schro¨dinger equation in a pseudopotential repres
tation,

H 2
1

2
¹21(

na
v̂a~r2Rna!J c i~r !5e ic i~r !. ~1!

Due to the spin-orbit coupling, the wave functionc i(r ) is
complex and has both spin-up and spin-down compone
Rna denotes the positions of the nth atom of typea, deter-
mined from the strain minimization described in Sec. II
above.v̂a(r2Rna) is the screened pseudopotential41 of atom
type a. It contains a local part and a nonlocal spin-or
interaction part.

Since our calculation is non-self-consistent, we have
construct screened potentials that emulate as much as
sible the effects of self-consistency. This is done in t
ways. First, the potential for the common anion~As! is al-
lowed to differ slightly, depending on if its nearest-neighbo
are Ga or In~Table I!. Second, we introduce in the potenti

v̂a
loc(r2Rna) a dependence on thelocal atomic environment,

e.g., the hydrostatic strain Tr(e) of the atoms atRna,

va
loc~r ;e!5va

eq~r ;0!@11ga Tr ~e!#, ~2!
e
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where ga is a fitting parameter. The zero strain potent
va

eq(r ;0) is expressed in reciprocal spaceq as

v~q!5a0~q22a1!/@a2ea3q2
21#. ~3!

The local hydrostatic strain Tr (e) for a given atom atR is
defined asVR /V021, whereVR is the volume of the tetra-
hedron formed by the four atoms bonded to the atom
R. V0 is the volume of that tetrahedron in the unstrain
condition ~bulk InAs or GaAs!. The explicit dependence o
the pseudopotential on strain is a feature necessitated by
requirement to fit the local density approximation~LDA !-
derived self-consistent absolute deformation potential of
valence band.41 In the absence of this term, one obtains
incorrect sign~positive, instead of negative! for the deforma-
tion potential of the valence band.

The nonlocal spin-orbit interactionv̂a
nonloc in v̂a(r2Rna)

is described by a Kleinmen-Bylander separable form42

v̂a
nonloc5ba(

i , j
u i &B~ i , j !^ j u, ~4!

where u i & and u j & are reference functions, andB( i , j ) is a
matrix representation of the spin-orbit interaction:B( i , j )
5^ i uL–Su j &, whereL andS are the spatial angular momen
tum operator and spin operator, respectively. We only c
sidered the spin-orbit coupling betweenp-like states.
Thus there are six reference statesu i & (5upx

↑&, upy
↑&, upz

↑&,
upx
↓&, upy

↓&, and upz
↓&). Each stateu i & is normalized. Details

of the implementation of Eq.~4! are given in Ref. 43.
The pseudopotential of Eqs.~2!–~4! is fitted to the mea-

sured bulk band structures, hydrostatic and biaxial deform
tion potentials, and spin-orbit splittings.41 Where direct ex-
perimental data are not available, we have used L
calculated results. These include the band offset betw
InAs and GaAs~at the InAs and at the GaAs lattice con
stants!, and the absolute deformation potentials of the v
lence bands. The pseudopotential parameters used are
in Table I. Some of the bulk band structure properties o
tained with this potential are listed in Table II.

The wave functionc i in Eq. ~1! ~complex, having a
spin-up and a spin-down components! is expanded by plane
waves. An energy cutoff of 5 Ry is used to select the pla
wave basis.44 This cutoff suffices, since it was designed
the outset in the fitting process of the pseudopotential. F
Fourier transforms are used to transform the wave func
back and forth between a real space grid and a recipr
space grid. A 16316316 real space grid is used for eac
eight-atom zinc-blende cubic cell. Equation~1! is solved by
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the folded spectrum method,45 which solves for only a few
states near the valence-band maximum~VBM ! and
conduction-band minimum~CBM!. The computational time
of the folded spectrum method scales linearly with the nu
ber of atoms. Using a parallelized code on a Cray T3E m
chine, we are able to calculate a 250 000 atom system wi
10 cpu hours on 128 nodes.

III. RESULTS

A. Confined electron and hole levels

We have calculated four conduction states and four
lence states for each quantum dot. The four conduction s
energies for the pyramid with a base size ofb520a are
24.4230, 24.3305, 24.3068, and24.2483 eV~measured
from the vacuum level!, and are labeled from CBM to
CBM13, respectively. The four hole-state energies for
same system are at25.3823, 25.3926, 25.4027, and
25.4094 eV and are labeled from VBM to VBM23, respec-
tively. In Fig. 2 , weshow the quantum size dependence
the electron and hole energy levels. The energies are c
pared with the CBM and VBM of the monolayer-thick we
ting layer, which are calculated separately in a cohere
strained quantum-well geometry with atomic positions cal
lated from the VFF model. From Fig. 2 we see that there
at least four bound-electron states for theb520a system,
consistent with our previous, non-spin-orbit interacti
calculations.20 The four calculated hole states are well abo
the VBM of the wetting layer. As the dot size is reduced, t
valence-band energies become more negative while the
duction band energies become less negative. As expe
quantum confinement thus causes the number of bou

TABLE II. Properties of the InAs and GaAs pseudopotent
band structures at their respective nature lattice constants of 6.
and 5.6533 Å .Eg is the band gap, whileEvbm is the VBM energy
relative to the vaccum level.D0 is the spin-orbit splitting, and
ag(G), ac(G), and av(G) are the deformation potentials of th
gap, the conduction-band minimum, and the valence-band m
mum, respectively.b andd are the uniaxial and shear deformatio
potentials of the valence band. To calculated, a shear strain with
elongation along thê111& direction is applied, and the interna
atomic displacement is calculated using the VFF method.

InAs GaAs

Eg ~eV! 0.404 1.518
Evbm ~eV! -5.570 -5.622
EX1c

2Evbm ~eV! 2.270 1.949
EL1c

2Evbm ~eV! 1.410 1.745
me 0.032 0.092
mhh@100# 0.48 0.47
mlh@100# 0.040 0.122
D0 ~eV! 0.35 0.33
ag(G) ~eV! -5.34 -8.63
ac(G) ~eV! -6.19 -9.63
av(G) ~eV! -0.85 -1.00
b ~eV! -1.85 -1.77
d ~eV! -3.32 -3.1
-
-
in

-
te

e

f
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-
e
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electron states to decrease as the size of the quantum d
reduced. As we can see, the number of bound-electron s
is reduced to 2 for theb512a pyramid system.46

B. Confined wave functions

In Fig. 3 we show the isosurface plots of the conductio
and valence-band wave-function amplitudeuc i(r )u2 for the
b520a pyramidal dots, while Fig. 4 shows similar resul
for b512a dot. The blue and green isosurface levels a
selected as 0.75 and 0.25 of the maximum wave-func
amplitude, respectively.

For both pyramids, the lowest conduction state is ans-like
state, while the next two conduction states CBM11 and
CBM12 arep-like states localized along@ 1̄10# and @110#
directions, respectively. Thes-p splitting Dsp5ECBM11
2ECBM is 93 meV for theb520a pyramid. The energies o
the p-like CBM11 and CBM12 states are different due t
the existence ofC2v , rather thanC4v symmetry. This is true
even in the absence of strain. Strain further splits these st
~since the strain profile along@110# and@ 1̄10# are unequal.38!
We find ap-state splittingDpp5ECBM122ECBM11 of about
25 meV, almost independent of the quantum dot size~Fig.
2!. On the other hand,k•p models, using continuum elastic
ity to describe strain15, or neglecting strain,13,14assume aC4v
symmetry, so they predict a degeneracy of such lev
(Dpp50) for a square-based pyramid. To split these sta
such models need to distort the shape of the square-b
pyramid19 to, e.g., a rhombohedral base. The piezoelec
effect can also split these two states. But, according to

l
83

i-

FIG. 2. The conduction- and valence-band bound-state ener
as functions of the pyramid base lengthb (5n3a5n
35.6533 Å ). The horizontal lines represent the CBM and VB
energy of the 1-ML wetting layer.
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FIG. 3. ~Color! Isosurface
plots of the charge densities of th
conduction- and valence-ban
states for theb520a pyramids.
The charge density equals th
wave-function square, including
the spin-up and -down compo
nents. The level values of the
green and blue isosurfaces equ
0.25 and 0.75 of the maximum
charge density, respectively.

FIG. 4. ~Color! Isosurface
plots of the charge densities o
conduction- and valence-ban
states for theb512a pyramids.
See the caption of Fig. 3 for more
details.
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recent eight-bandk•p calculation by Pryor,18 the piezoelec-
tric effect only splits the twop-like states by 2 meV for the
b520a quantum dot. This is ten times smaller than the sp
ting caused by the anisotropy of the atomic structure. T
the piezoelectric effect can be safely neglected.

The CBM13 conduction state in theb520a dot isd like,
with two nodal planes along the@110# direction. This is also
true for the CBM13 state in theb516a and the 18a based
dots. However, for theb512a dot, the CBM13 state is
resonant with a wetting layer state, so the wave funct
leaks into the wetting layer.

In a previous study,20 we showed the isosurface plots fo
conduction states and valence states calculated withou
spin-orbit interactions. As expected, the current calculat
~which includes the spin-orbit interaction! yields almost the
same results for the conduction states, but different res
for the valence states. For example, the VBM calculated w
spin-orbit interaction has fewer structures than its coun
part in the non-spin-orbit interaction calculation. Note th
although the corresponding isosurfaces of the valence s
of theb520a andb512a quantum dots look different, the
are actually qualitatively the same state with the same po
ization properties.47 Thus, as the size of the pyrami
changes, there is no valence-band state crossing.

An interesting result obtained from our atomistic calcu
tion is that while the conduction states of the dot are m
essentially of single-envelope functions, and so can be c
sified as beings like ~CBM!, p like (CBM11 and CBM
12), d like (CBM13), etc., the valence states represe
such a strong band mixing that they cannot be classi
according to their nodal structure as beings like, p like, etc.
In fact, our calculated valence state of Figs. 3 and 4 show
nodal planes.47 We conclude that the valence states can
be classified according to their nodal structures beings like,
p like, etc. The approximation15,48 of using a single heavy
hole band to describe the valence state is thus qualitati
incorrect. This is because, unlike the case of one dimensi
quantum well or superlattice, in dots the heavy hole and li
hole are mixed very strongly so as to be inseparable.

C. Electron-hole Coulomb energies

The Coulomb interaction between the valence states
the conduction states is calculated as

Ji , j5E E uc i ,v~r1!u2uc j ,c~r2!u2

ē~r12r2!ur12r2u
d3r1d3r2 , ~5!

whereucu2 includes the sum of spin-up and spin-down co
ponents.ē(r12r2) is a distant dependent dielectric functio
consisting of an electronic part and an ionic part. The det
of this function have been described elsewhere.22,30 Here, in
Eq. ~5! we use the dielectric functionē(r12r2) of bulk InAs.
The interactionJi , j between the valence and conducti
states are listed in Table III for theb520a pyramid. The
values of Jvbm,cbm for the b512a, 16a, 18a, and 20a
pyramids are 42.5, 34.2, 30.8, and 27.7 meV, respectiv
These values are slightly larger than the eight-bandk•p re-
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sults reported by Pryor,18 bearing in mind that a dielectric
constant~instead of a function ofur12r2u) is used there.
Notice that the Coulomb interaction energies are of sim
magnitudes as the single-particle splittings among the
lence bands~Fig. 2!. Thus these Coulomb energies are im
portant to explain the spectroscopic fine structures, es
cially when multiexcitons are involved.10

D. Polarizations and dipole matrix elements
of interband transitions

The valence (v) to conduction~c! interband optical tran-
sition matrix elementsz^c i ,vupuc j ,c& z2 and their polarization
directions are given in Table IV for theb520a quantum dot.
None of the calculated transitions have a ‘‘pure polarizat
direction’’ ~we define ‘‘pure polarization direction’’ as th
direction along which the optical transition is not zero, wh
transitions along orthogonal directions have zero am
tudes!. Nevertheless, there are some preferred polariza
directions. In Table IV, we list the polarization direction
corresponding to the strongest transition amplitudes. Ta
IV shows that the VBM to CBM transition is allowed fo

TABLE III. The Coulomb interaction energyJi , j @Eq. ~5!# be-
tween the valence states and conduction states, for theb520a pyra-
mid. The numbers are in meV units.

CBM CBM11 CBM12 CBM13

VBM 27.7 24.4 27.2 22.8
VBM-1 24.3 22.1 25.9 21.3
VBM-2 23.5 23.7 23.0 22.9
VBM-3 25.7 24.8 24.3 23.5

TABLE IV. First line: the transition matrix elements
( i , j u^cv i

upuccj
&u2/2, summed over the Kramer’s doublet for ea

valence- and conduction-band state. The numbers shown here a
atomic units and pertain to theb520a quantum dot. Second line
the major polarization directions. We use the notationsu1

5@110#, u25@ 1̄10#, and z5@001#. The first polarization given
corresponds to the strongest transition amplitude. Only the po
izations which have transition amplitudes larger than one-fifth
the first polarization are listed. Third line: the amplitude ra
u1 /u2 /z.

CBM CBM11 CBM12 CBM13

VBM 0.1475 0.0045 0.0046 0.0073
u1 , u2 z,u2 z,u2 u1 , u2

1/0.8/0.001
VBM-1 0.0006 0.0336 0.1049 0.0036

z,u2 u2 ,u1 u1 , u2 z,u2 ,u1

1/0.6/0.009
VBM-2 0.0146 0.0013 0.0002 0.0684

u2 z,u2 u2 ,u1 u1 , u2

1/1.0/0.0005
VBM-3 0.0215 0.0867 0.0160 0.0014

z,u2 ,u1 u1 , u2 u1 , u2 u2 ,u1

1/0.9/0.01
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both @110# and @ 1̄10# polarizations, but forbidden forz po-
larization, while the transitions to the second and th
(p-like! conduction bands are allowed inz polarization. The
transition from the second valence band to the CBM is rat
weak, and isz polarized. Table IV shows the following.~i!
All valence-to-conduction transitions are allowed.~ii ! The
strongest transition occurs along the@110#[u1 and @ 1̄10#
si
yr

he
lo
r

[u2 directions. ~iii ! There are significant polarizatio
anisotropies betweenu1 andu2 directions. Defining the in-
tensity ratio along the two substrate directions as

I i j @110#

I i j @ 1̄10#
5

z^c i ,vuP[110]uc j ,c& z2

z^c i ,vuP[1̄10]uc j ,c& z2
~6!

we have, for the VBM to CBM transitions,
I i j @110#

I i j @ 1̄10#
55

1.35, Expt. Ref. 19,

1.26, Square-based pyramid: present calc.

0.97, Square-based pyramid:k•p1VFF calc. Ref. 19,

1.80, @136#2shaped-dot;k•p1VFF calc. Ref. 19.

~7!
1,

e

in

rt of
y a
ar-
We see that the present atomistic calculation predicts a
nificant polarization anisotropy even for a square-based p
mid, while a continuum, eight-bandk•p calculation predicts
for the same structure a polarization ratio of 0.97~if the
strain is calculated19 atomistically via the VFF model! or 1
~if the strain is modeled via continuum elasticity!. This is
because effective mass based methods do not capture
correct physical symmetry, e.g., they incorrectly view t
square-based pyramid as having the same symmetry a
g-
a-

the

ng

@110# and@ 1̄10#. To obtain a polarization ratio larger than
thek•p model needs to distort the pyramid, e.g., to the@136#
rhombohedral shape19

„note that the present definitions of th

@110# and @ 1̄10# directions are the reverse of that used
Ref. 19, while Eq.~7! uses a consistent set of definition…. We
see that, based on the current calculation, the major pa
the experimental anisotropy can already be explained b
square-based pyramidal quantum dot. While we are not
as
ther

f

om
ation

th

t

TABLE V. Summary of the assumptions~‘‘input’’ ! and main results~‘‘output’’ ! of various theoretical
calculations for the InAs/GaAs quantum dot. Under ‘‘shape’’ we recognize the square-based@110#-faceted
pyramid ~P! as P@110#. Under ‘‘strain’’ we denote calculations using a continuum elasticity description
‘‘CE,’’ and those using atomistic, valence-force-field, strain as ‘‘VFF.’’ ‘‘Strain anisotropy’’ means whe

or not the model distinguishes strain along@110# and @ 1̄10#. ‘‘Number of bands’’ refers to the number o
Bloch states used to expand the dot states.me andmhh are electron and heavy hole effective masses.Ecbo and
Evbo, respectively, are ‘‘natural’’~unstrained! conduction- and valence-band offsets:Ecbo5ECBM(InAs)
2ECBM(GaAs) andEvbo5EVBM(InAs)2EVBM(GaAs). In the present calculation, they are determined fr
accurate LDA results~Ref. 51!. ac andav are the conduction- and valence-band-edge absolute deform
potentials. The values used here are from accurate LDA calculations~Refs. 49 and 50!. In the ‘‘output’’
section,Nbound

e are the number of bound electron states~excluding spin degeneracy!. Thes-p splitting in the
conduction band isDsp5ECBM112ECBM . The splitting of the upper two valence-band states isDvb

5EVBM2EVBM21 . The single-particle band gap~without Coulomb correction! is Eg . The quantum dot
calculated in Ref. 13, is not pure InAs, but an In0.5Ga0.5As alloy. The results listed are for a quantum dot wi
a base diameter~or the size of the square! equal to 113 Å.

Ref. 13 Ref. 14 Ref. 15 Ref. 16 Ref. 17 Ref. 18 Curren

Shape Lens Cone P@110# P@110# P@110# P@110# P@110#
Strain None None CE CE VFF CE VFF
Strain anisotropy None None None None Yes None Yes
No. of bands 1 1 1 4 8 8 Many
me ~InAs! 0.067 0.067 0.023 0.04 0.022 0.022 0.032
mhh

[001]~InAs! 0.34 0.034 0.34 0.34 0.34 0.48
Ecbo ~eV! -0.35 -1.167 -1.085 -1.085 -1.085 -1.015 -1.062
Evbo ~eV! 0.053 0.025 0.025 0.025 0.085 0.052
ac~InAs! ~eV! -5.08 -5.08 -5.08 -6.66 -6.19
av~InAs! ~eV! 1.00 1.00 1.00 0.66 -0.85
Nbound

e 1 1 1 1 3 3 >4
Dsp ~meV! 100 100 – 150 88 97 93
Dvb ~meV! 77 17 14 25 10
Eg ~eV! 1.4 1.09 1.17 1.01 1.20 0.96
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guing that the experimental shape is a square-based pyra
this calculation does demonstrate that the measured pola
tion ratio cannot, by itself, determine the shape. This co
parison further highlights the importance ofatomisticcalcu-
lations when quantitative comparisons are needed betw
experiment and theory.

E. Comparison with other calculations

As mentioned in Sec. I, one of the purposes of the curr
study is to compare the current pseudopotential calculat
with previous calculations for similar systems. In Table
we list some important ‘‘input parameters,’’ and the resu
for some of the previous calculations for the InAs/Ga
quantum dots. As we can see, in addition to differences
the assumed quantum dot shapes and number of Bloch b
used in the basis and treatment of strain, different rese
groups have also used different parameters for the value
the effective masses, deformation potentials, and band
sets. Our absolute deformation potentialsav andac , as well
as the band offsets, are obtained from accurate L
calculations.49,50Note that while the energy of bulkG1c con-
duction band goes up as the material is compressed (ac,0
in Table V!, most groups have assumed that the energy
the bulk valence band maximum goes down (av.0 in Table
V!. Accurate LDA calculations50 show that this is not the
case.

For a similar-sized quantum dot, our calculation predi
the largest numberNbound

e of bound-electron states and th
smallest valence-band splittingDvb5EVBM2EVBM21 . The
electronic Hamiltonian used in the literature ranges from
one-band effective mass, to the four-bandk•p approxima-
tion, to the eight-bandk•p approximations, and to the cur
rent many-band coupled pseudopotential representation.
comparisons between one-band, four-band, and eight-b
k•p results were carried out by Pryor.18 His main result was
that, compared to the 1–4-bandk•p models, the eight-band
k•p model predicts smaller quantum confinement effe
~smaller Eg), and thus a larger number of bound sta
Nbound

e . From Table V, we see that the same trend contin
from the eight-bandk•p calculation to the current pseudo
potential calculation. The number of bound-electron sta
increases fromNbound

e 53 in the eight-bandk•p calculation
to Nbound

e >4 in the pseudopotential calculations. While thes-
p splitting we find between the CBM and CBM11 is similar
to that obtained in previous calculations, the splittingDvb we
find between the VBM and VBM21 is much smaller than
the results of previous calculations. While Pryor18 used con-
tinuum elasticity to calculate the atomic relaxations, and t
found no p-state splitting between CBM11 and CBM12
states, Jiang and Singh17 used the same VFF model and p
rameters as in the present study. So, at least, the st
induced portion of the CBM11 and CBM12 splitting is
included in their calculation. Thisp-state splitting in their
eight-bandk•p calculation is about 10 meV~Fig. 3 of Ref.
17!, which is a factor of 2 smaller than our 24-meV resu
Note that, even if there is no strain anisotropy~for example,
when all atoms are fixed at the ideal GaAs lattice position!,
our pseudopotential model still produces ap-state splitting
and polarization anisotropy due to the atomistic difference
id,
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the interface, while the eight-bandk•p model will not pro-
duce such splitting and anisotropy.

More complicated and interesting than the conductio
band states are the valence-band states. As discussed a
our valence state cannot be described by single-band e
lope function as suggested in Ref. 33. Unfortunately, we c
not make a direct comparison with the eight-bandk•p re-
sults, since detailed descriptions of the valence states are
given in Ref. 18 and 17. However, the polarizations we o
tain are different from the results in Ref. 17. This is an in
cation that our valence states are different from those of R
17. Furthermore, our energy vs size curve in Fig. 2~b! does
not resemble its counterpart in Fig. 4 of Ref. 18~for ex-
ample, we do not have state crossing atb;105 Å!. This is
another indication that the pseudopotential and the eig
bandk•p models might not have the same valence state
valence state order.

The importance of strain effects on the band structure w
emphasized by Pryor.18 Here, we point out that, not only th
linear part~deformation potential!, but also the nonlinear par
of the strain effect are important for accurate calculations
Fig. 5 we show the dependence of the valence- a
conduction-band energy on the ratio between the ac
strain and the maximum strains~taken from pointsA andB
in the pyramid, as shown in Fig. 1!. We can see that if only
the linear deformation potential is used~dashed lines in Fig.
5!, a ;50 meV error might result. This not a small erro
since the order of the valence state is often determined b

FIG. 5. The energy of the conduction-band edge~a! and
valence-band edge~b! for different strains. The strain is normalize
to its value at pointsA and B shown in Fig. 1 for theb520a
pyramid. The solid lines show the changes of energies of bulk C
and VBM as obtained by the pseudopotential method. The st
changes from that in natural bulk InAs (x50), to the actual strain
at theA andB points (x51). The dashed lines show the predictio
obtained using linear deformation potentials.
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;10-meV energy difference. These nonlinear strain effe
are not represented in the current eight-bandk•p
models.13–15,17–19 In our pseudopotential model, we hav
taken into account the nonlinear effects by fitting to the LD
band structures at a few different strains relevant to the
ramidal quantum dot. Since our pseudopotential of Eq.~3! is
close to theab initio potential, it represents the nonline
effects in an intrinsic way.44,41

IV. SUMMARY

We have used the pseudopotential approach, includ
spin-orbit interactions, to calculate the electronic structure
square-based pyramidal quantum dots. We find the follo
ing. ~1! While the conduction bands are essentially deriv
from well-defined single-envelope functions, the valen
states show massive interband coupling. As a result, the
lence states have no nodal planes and therefore canno
classified ass, p, andd states. As a consequence, the op
cal spectrum of such dots cannot be interpreted using sim
fied descriptions~successful in quantum wells! that include
only heavy-hole states or only light-hole states. Another c
sequence of the strong coupling between hole states is
t

l

.

P

G

-

cia
ts

y-
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-
li-

-
at

the lowest interband transition has a very different intens
along each of the two in-plane substrate directions@110# and

@ 1̄10#. This anisotropy exists even in the absence of stra~
thus reflecting pure band coupling! and is absent in typica
k•p calculations.~2! There are>4 bound electron states fo
the b520a pyramidal quantum dot. This number is larg
than that obtained in thek•p model, and consistent with th
current experimental results. The energy splitting betwe
the p-like conduction bands found in the present study is
factor of 2 larger than thek•p results. ~3! The current
method and thek•p method appear to have different valen
states or different orders of the valence states.
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