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Electronic structure induced by lateral composition modulation
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It has been recently shown that growth [@f01]-oriented short period AC),/(BC), vertical
superlattices rf~1—2) spontaneously createslaeral composition modulation in the substrate
plane ([110] direction, where wire-like AC-rich and BC-rich domains alternate with a period of
~100-200 A. This creates a new type of lattice structure with orthogp®@1] and[110] strain

fields and compositional waves. Using a three-dimensional plane-wave pseudopotential approach,
we study here the electronic properties of this type of structure in a GalnAs alloy, predicting valence
band splittings into distinctly polarized componentss<400 meV band-gap reduction and strong,
type | electron and hole confinement in the In-rich lateral channels19@8 American Institute of
Physics[S0003-695098)02817-4

When a short-period superlattic6(SPS of (GaP),/ —2 monolayey period encountered here. Here we provide a
(InP),1*or (InAs),/(GaAs),> " or (AlAs),/(InAs),'®are  full three-dimensional band structure description of lateral
grown intentionally along th€001] direction with periodn composition modulation structures, clarifying the role of am-
=1 —2 monolayers, an unintentiondhteral composition  plitude, periodicity and orientation on the energy levels, po-
modulation develops spontaneously in the substrate plararization and wave function localization. We use a direct-
([110] or [110] directions with a surprisingly long coher- diagonalization pseudopotential plane-wave approach for the
ence length. Typically, the lateral modulation has a period€lectronic structuré? while obtaining the three-dimensional
icity of A~100-200 A, the composition fluctuates by Strain field from minimizing the strain energy in atomistic
~10% about the average value, and the band gap is redtather than continuuimdescription®>®
shifted by ~100—300 meV with respect to a random alloy Atomic structure and strain field$n this study we con-
of equivalent composition. In all cases, the photoluminescentrate on modeling a=1.5 SPS. The assumed sequence

cence exhibits a strong polarization anisotropy with respec®f cation monolayers alon@01]is[Ga /Ga gnos/Iny/...J.
to the [110] and [110] directions: in general, polarization Note that in this SPS structure the second layer is mixed; if

orthogonal to the modulation direction is strongly enhancec}hls Iayer. ;egregates, 'a‘efa' CM results automatically. Hav-
over that in the parallel directichi*7° This lateral compo- ing specified thg001] periodicity, we next construct the

sition modulation(CM) is distinct from thevertical [001] simulat_ion _ceII which exhibits compositional waves |n the
platelet modulation occurring in growth of, e.g., InAsSb [110) direction. We selecins (110 planes, each containing

(Ref. 10 or InAlAs (Ref. 11, or from the CuPt-like sponta- M1 atoms in the[110] direction andm, atoms in the 001]

neous orderin§ occurring along thg111] direction with  direction. The planar composition(R) for the Rth (110
monolayer periodicity. Lateral CM, vertical CM and sponta- G@-xINx plane will follow
neous ordering were all reviewed in Ref. 12.

_Lateral com_positi_on moduIaFion creates a new type of x(R)=x0(1+Asin E) (1)
lattice structure in which nearly sinusoidatl0] translational
symmetry with periodicity of~20 lattice constants coexists ] N ]
with a ~1— 2 monolayer periodicity in the orthogondl01] where X, is the ;ample-average composmop gboqt which
direction. This structure thus exhibits an interference fromX(R) fluctuatesA is the fluctuation amplitudey is its direc-
two orthogonal strain fields, superimposed on two correfion and\ is its wavelength. Fok =149 A we have a total
sponding compositional waves. Previous descriptions of sucAf 2X My XMy X mMg=2X20X9X72=25920 atoms forn
effecté¢ ignored the explicit strain and explicit vertical short- = 1.5- Having created these composition profiles along the
period monolayer structure, considering it instead as &ertical and lateral direction by specifyifg,A,Xo, A, U}, we
pseudo-alloy;! while treating the lateral modulation within a "€t permit all atomic positions to relax, so as to minimize
simplified k- p approach with one-dimensional strain. While the three-dimensional strain energy.GWe do so by minimizing
inclusion of the vertical monolayer structure withinkap ~ the valence force fieldVFF) energy® that includes bond-
description is technically possible, this effective-mass basegtrétching and bond-bending forcéthis atomistic technique

approach breaks dowhfor superlattices of such short-@ _ differs'® from continuum elasticity The resulting minimum-
energy atomic positions are illustrated in Fig. 1 for 1.5,

A=16.7%,X,=0.50,\ =149 A andu=[110]. Note that the

dElectronic mail: tmattila@sst.nrel.gov T . .

PPresent address: Rutgers University, Dept. of Physics and Astronomy, P. I’.](_jIVIdual planes afe bUCkI.ed'.TO see this mo_re clearly, Fig.
Box 849, Piscataway, NJ 08855-0849. 2 illustrates the main ato!'nlq dlsplacemfents. Figures &nd

9Electronic mail: alex_zunger@nrel.gov 2(b) show the change in inter-row distance between the

0003-6951/98/72(17)/2144/3/$15.00 2144 © 1998 American Institute of Physics



Appl. Phys. Lett., Vol. 72, No. 17, 27 April 1998 Mattila et al. 2145

] ) 0.02 1
[001] vertical SPS (GaAs), /(InAs), . @
with sinusoidal lateral segregation 000 | L0 inter-row distance ]
a) relaxed structure: ~0.02 - \_/
EE
- < 002 1
Galn | Ga,,, 2 (b) . "
In - [110] inter-row distance

As .3 0.00 - 1

Gn—|
As_| Gai -0.02 ¢ 1

In 7]
L e As | Ing, 0.20 F g

|(c) buckling along [001] |

Galn| Gag, 1st laver Ga 3rd layer In
As_| Ing, 0.00 | t><i =

Ga

[D01]) e As Ga, 2nd layer Galn
[110] g 0" |
F o020rF ;

[110) A=149 A & I(d) buckling along [001] | 1st As layer
by x(R) profile: 0.00 2nd As layer 1
A=16T% ~Tnetich
o n=rich -

. . . Position R along the [110] modulation direction
FIG. 1. The calculated minimum-energy atomic positions fog §B® sAs g the [110]

system with SPSr(=1.5) and CM withA=16.7%, =149 A andu
=[110]. The system consists of 25920 atoms of which only 8640 are showrf!G. 2. The calculated atomic relaxations for the structure illustrated in Fig.
(three of the total nine units cells [801] direction. For clarity, distancesin 1. (8) and (b) in-plane displacements of the three cation layers and three
the [001] direction are magnified by a factor of 4. Yellow, red and blue anion layers, respectively, along tfe10] CM direction, described by the
spheres correspond to As, Ga and In atoms, respectively. inter-row distance d—d;;9/d;1 [lvhere d,q0 is the distance in the unre-
laxed (idea) structurg between[110] oriented atomic rows. All planes
o relax equally, showing thus vertical phase lockig. and (d) buckling of
[110] oriented atomic rows for eactD01) plane. In this the(001) planes along th€001] z direction, described by the displacement

in-plane view we see contraction of the inter-row distance ir{z_— Zo)/dgo1, Wherez andz, are vertical positions of the relaxed and ideal
the Ga-rich regior(left) and an equivalent expansion in the [110] orie_nted_ rows, respectively, anlgy, is the ideal monolayer separation
. . . - . . in [001] direction.
In-rich region(right). This is consistent with the smaller co-
valent radius of Ga relative to the In atom. Surprisingly, all
(001) planes behave nearly identically, i.e., th#10] in-  density approximationLDA)-calculated band offsets and
plane displacements avertically phase-lockethetween the  deformation potentials. This potential depends analytitally
different (001) planes despite the changing composition ofon the local strain tensof;;, so as to reliably describe
these planegranging from pure layers to segregated mixedstrain-modified band offsets and masses. The wave functions
layers. Figures 2c) and 2d) show the out-of-plan¢001]  are expanded in plane wavsEquation(2) is diagonalized
displacements of001) planes in units of ideal monolayer via the folded spectrum methtfdwhose computational cost
separation doo1) . We seesignificant bucklingvhich follows  scales only as the number of atoiisin the supercellcon-
the composition wave and is largest for the As layers suryentional methods scale &, thus restrictingN to <10°
rounding the segregated Galn layer. In the absence of SPRoms.
(.e., considering pure CMour analysis shows n¢001] Effects of CM on band structuréFigure 3 shows the
buckling: the relaxation occurs only in tH&10] direction  offect of the composition modulation amplitude on the
and is analogous to Figs(& and 2b). Thus, the significant \51ence bandgc), on the conduction bantb), and on the
effect of the combination of fractional period SPS and CM ispgnq gap(a); the referencedashed horizontal lineis the
to creatg_helght variations in addition to relaxation along theequivalent Gasing sAs supercell, where all cation sites are
compositional wave. , occupied randomly and relaxed. Figure 4 shows the corre-
_ Elect_romc structure For each chmce of lateral modula- sponding wave function amplitudes fév=16.7%. We see
tion profile x(R) [Eq. (1)] and vertical SPS we solve the yhat cv+SPS split the valence band into the statgs V,
Schralinger equation and V;, whose wave functiongFig. 4(b)] are localized
1 within the In-rich lateral domains. The conduction band

- §V2+2m V(T =rom: &ij) |Vi(r)=¢¥i(r), (20 minimum[Fig. 4@)] is also localized within the In-rich do-

“ main. Hence, thdV,,V,,V3} — CBM transitions are all
wherer , ,, are the strain-minimizing positions of atom spe- “type 1" (direct in coordinate and momentum spacde
cies @ (m running over individual atomsand v, is the  strong confinement of these hole states and electron state into
screened atomic pseudopotentialt’fib the measured bulk the In-rich lateral channel$Fig. 4) defines the quantum
band struciure and eftective masses, as well as to the localirelike characteristics of this system. The¢-V, and
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‘ ' ' ] gap reduction of~16 meV, indicating that the pure SPS
(a) [Band gap reduction | T structure induces a significant contribution to the redshift.
] Our calculations further reveal that the dependence of the

redshift on CM wavelengtix is rather weak. On the other
hand, the redshifincreasesas one goes from sinusoidal lat-
eral modulation to square-wave lateral modulation 10
‘ ] meV for A~16%), and as one goes from integer-period SPS
to fractional-period SP%for n=2 SPS with the same CM
parameters as for SP$=1.5 we find a~5 meV smaller
redshifd.

Effect of CM on polarization(i) For puren=1.5[001]
SPS we find the transition from the CBM ,(V,) to be

polarized in thd110] ([110]) direction. The transition prob-
ability to V5 is small, and thu$001] polarization should not
be detected among these lowest energy transitions. On the
other hand(ii) a pure[110] CM createq 110]-allowed tran-
sitions toV,; and[001]-allowed transitions td/; (whereas
the [110] polarization is blocked The transition toV, is
forbidden.(iii) A combinationof SPS+CM retains only the
polarization allowed both for pure SPS and for pure CM,
namely the 110] to V,. This shows that SPS and CM act as
modulation amplitude A (%) sequential “filters”, each blocking a certain type of polar-
FIG. 3. Behavior of the valence and conduction band edges and the banlgatlon' The§$7r§:-sults _are consistent Wlth_ the experimental
gap as a function of the composition modulation amplitédeThe SPS observations™*" showing that the polarized component

+CM system is described by the parameters1.5, A\=149 A andu perpendicular to the CM direction clearly dominates the par-
=[110]. A=0.0 corresponds to the=1.5 SPS only with no CM, where the  allel component.
mixed Galn is randomly occupied. The reference, illustrated by dashed

random alloy
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lines, is the equivalent Galn, sAs supercell with random occupation of all This work was supported by the U.S. Department of En-
the cation sites. For the valence band, three uppermost levels are iIIustrate(g:]I,gy Contract No. OER-BES-DMS. Grant No. DE-AC36-
83-CH10093.
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