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An atomistic direct diagonalization pseudopotential approach has been used to analyze the optical excitation
spectra of CdSe quantum dots for up to 1.5 eV about the band gap. Good agreement is obtained with
experiment for all the eight excitonic transitions, without resorting to fitting to the experimental data on dots.
The observed excitonic transitions are identified in terms of specific pairs of valence and conduction single-
particle states. For the lowest few transitions, the assignments agree with the conventional k.p effective-
mass result, but this is not the case for the higher peaks. Indeed, we find in our atomistic approach that many
more valence states exist within a given energy range than in the continuum k.p approach. Furthermore, we
find that the mixing of even and odd angular momentum symmetry, disallowed in the contemporary simple
k.p models, is actually permitted in the more general atomistic approach.

Semiconductor quantum dots are sometimes referred to asvides rich experimental details and, at the same time, a stringent
“artificial atoms”! Indeed, one of the goals of the theory of test for our theoretical understanding of the problem.
quantum dots is to understand the optical spectroscopy at a level Norris and Bawendianalyzed the excitonic spectra of CdSe
of accuracy and detail similar to that underlying atomic physics. dots using an effective mass>6 6 k.p model, familiar from
The ability to control the laboratory size of the quantum dot, the theory of bulk exciton: In this k.p approach, the quantum
the existence of atomistic features in the potential experienceddot Hamiltonian has both spherical and inversion symmetries.
by the electrons in a quantum dot, and the absence of continuoudonly the six p-like, bulk states at the top of valence band
rotation symmetry even in spherical dots (because of the atomic(HOMO) are used to describe the states of the dot. The
nature) all make the spectroscopy of quantum dots rich in details Hamiltonian parameters are fitted to the bulk effective masses
and challenging to understand. While most spectroscopic &1d: in the cases of ref 4, are further fitted explicitly to the
studies of quantum dots have focused on the splitamgl red- energy Ievel; of the quantum d.OI' Using this pro_cedure, qurls
shift® of the lowestexcitonic transition, interest has recently and Bawend‘iwere. able to obtain calculate.d transition energies
focused on higher excited states. While semiconductor- that agree well with the observed energies (.)f th_e _absorptlon

. - peaks. However, as recently sho¥rif one avoids fitting the
emk.)e.ddeat]uantum dots (e.g:, In.As n Qa@xsr IPP n Ga|9). , theory to the measured data in the quantum dots, the k.p theory
exhibit only two to three excitonic transitions, *free-standing” eqits in significantly different predictions for the lowest
colloidal dots have a narrower size distribufidrand large excitation energy and for the symmetry (s,p) of the near edge
electron and hole confinement energies, so that a larger numberstates relative tatomisticmodels, such as the direct diagonal-
of excitonic transitions have been resolVé#® One of the  jzation (DD) of the screened pseudopotential HamiltoAfa#,
best studied colloidal quantum dots is Cd3i which as many  Indeed, for colloidal InP dots, the applicatidrof the same 6
as 10 excitonic transitions have been detected in size selectivex 6 k.p that was successful in CdSe ddtads to significant

photoluminescence excitation (PLE) spectroscbpihis pro- discrepancies with experimelitwhose explanation required DD
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approach? It is thus interesting to revisit CdSe and to study appropriate surface effects), rather than iterated self-consistently
the higher energy excitonic spectra using the same atomisticfor the dot. Our calculation differs from the k.p approach in
DD approach. This will examine our theoretical understanding that it permits the dot orbitals to be constructed from an arbitrary
of the system by observing whether agreement with experimentsuperposition of bulk bands throughout the Brillouin zone.
can be obtained without explicitly fitting to the data. This study Furthermore, the effects of surface and shape are treated
can also be used as a benchmark for the applicability of the atomistically and not perturbatively.

direct diagonalization pseudopotential method and for our (b) The electror-hole two-body problemin the second step,
detailed understanding of the exciton spectroscopy in a quantumwe calculate the excitonic transition energy

dot.

In the following, we show that, using the direct diagonaliza- Ej=¢€c— €6y (2)
tion pseudopotential method, one can obtain very good agree-
ment with experiment for as many as eight excitonic transitions. whereJ; is the Coulomb energy between the electron and holes.
Furthermore, the atomistic theory reveals many surprises whenHere we have neglected the exchange interaction and correlation
compared with the continuum-type k.p approach. In particular, effects, which give rise to “fine structure splitting” that will be
the direct diagonalization pseudopotential approach (i) gives discussed in another publication, using the many-body expansion
many more single-particle valence states within the experimen- approach?® Jj is calculated by
tally relevant energy window, (ii) produces different assignment , )
of excitons in terms of pairs of valence states and conduction _ [y; (XD |1/)j,c(x2)| s
states, (iii) yields larger averaged total angular momenkum Jj = ff e(r =), —1)| dx,d°, ()
for hole states, and (iv), in contrast with the commonly practiced voodnL e
spherical k.p method, mixes the even and odd angular momen-
tum envelope functions symmetries.

The direct diagonalization of a pseudopotential Hamiltonian
method has two steps: the single-particle problem and the
electror-hole interaction problem:

(a) The single-particle problemin this first step, we solve
the single-particle Schrodinger equation for the wave function
Y (x) [herex = (r, o) and wheres =1, | are the spin variable]:

Unlike the case in bulk excitons, here the electron and hole are
very close to each other, so a distance-dependent dielectric
functioné(r, — ry) is needed to obtain an accurate description
of the Coulomb interaction energy. Using the polaronic model
of Haken?® the Fourier transform of ~(r; — r) [here, 1{(r,
—r)|ry —ra} = fe Y(ry — r)(L/r — ry|) d®r] can be expressed

as e 1(k) = €,'(K) + A n(K), containing the electronic (el)
and ionic (ion) contributions, respectively. Using the Thomas
Fermi model of Rest& these two terms have the analytical

[— gVZ + n’zaaa(” - Rn,a')} Pi(X) = €p;(X) (1) forms of

L. K+ SinKR, (e KR,)
Hereo,(r) is the screened pseudopotential of atom of tyme car (K= K2+ q2 )
positionRn,. The pseudopotentidl,(r) contains a local part
and a nonlocal part that includes spiorbit interactions(r) “1qa [ 1 1 1/2 1/2
Aer(K) = == — == (5)

was previously obtained by “inverting” the self-consistently
calculated ab initio bulk total potentials of CdSe in a few crystal
structures and unit cell volumes. This assures that the wave
functions have ab initio quality. Furthermore, special attention
is directed® at obtaining experimentally realistic effective . |
masses and bulk band stgructupres througr{out the Brillouin Zone_effectlve masses, respectlvel_y. In eqq_4,= 212 (_37{2”0)1/3

This is particularly important as dot orbitals represent an all- (Whergno IS the electron der;gtlty), arRL,dL? thedftolutlon of the
zone superposition of the bulk wave functidsEquation 1is ~ €duation sinfiR.)/(qR.) = ¢,;". Also, ;™ = Coo + Aéion and
solved for ~10° atom dots using the linear scaling “folded Aé€ion = 3.5 for CdSe derived from the bulk;” is calculated
spectrum method” (FSMY, which directly obtains the eigen-  in ref 15. The resulting® used for the current four quantum
solutions of the band edge states without having to solve for dots (from small size to large size) are 4.87, 5.10, 5.38, 5.54,
the many states below the band gap. While the observed CdSeespectively (the bulk value is2™ = 6.2). The Coulomb
quantum dots have the wurtzite crystal structure, we assumeenergies calculated from eq 3 range from 150 to 400 meV, and,
here instead the zince blende structure so as to compare withusually, the higher energy excitons have smaller Coulomb
the k.p results that are under this assumption. Our bulk zince energies. If one uses instead the standard effective mass
blende pseudopotential calculation has a band gap of 1.835 eVformule?! to calculate the Coulomb energy (with a constant
in agreement (within a few millielectron volts) with the eg“'k=9.7), one finds thad; ranges from 140 to 260 meV, and
experimental bulk band gap at 10 K. We studied spherical, the variation ofJ; for different pairs ofy; , andy; c are smaller
Se-centered quantum dots of sizegdSeo, Cdis;Ses1, Cthir than what eq 3 gives. These are significant errors, avoided here
Seyp;, and CdgsSergs, with effective diameters of 19.9, 25.0, by calculatingJ; explicitly for eachi andj pair.

32.4, 37.4 A, respectively. The surface of the quantum dots  Once the excitonic energi&s; are calculated, the transition
were passivated with “ligand potentials”, which remove all the probability I for each electrorthold pair is obtained via the
surface states a few electronvolts away from the band*yap. Fermi Golden rule:lj = 4€%E;;|[@i | V|y; JP/3mPc3, wherem

As a result, all the wave functions of our calculated states are is the electron mass ardlis the speed of light. The optical
extended throughout the interior of the quantum dot (see later absorption spectrum is obtained by a 25 meV broadening of
Figure 5 for an example), rather than being surface-localized. each transition peak, i.d(E) = Y Ijf (E — E;), wheref(E —

Our method differs from the ab initio self-consistent calculations E;) is the broadening function. In summing over ij, we
(e.g., Hartree-Fock or density functional theory) in that the calculated 40 single-particle valence states (80, counting the
screened pseudopotential in eq 1 is extracted from the bulk (with Kramer’s doubling) and 10 (20 with Kramer's doubling)

egm 63001 1+,oﬁk2 1+,o§k2
Here pne = (2n}, owio/h) Y2, and wio is the longitudinal
optical-phonon frequency antf and nj are electron and hole
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; 4 g ' T T i considering.the line shapes and intensity of the transition peaks
03} 4 | | _ and a consstgnt trend frpm the small to large quantum dots.
Thus, each major peak might contain a few closely spaced small
peaks. For the cases where there is no obvious peak position,
the center of mass of the major peak is used as the position of
the peak. There is some uncertainty in assigning the peak
positions, especially in the higher energy part of the spectrum,
] i.e., peaks f, g, and i. Indeed, had we based our assignments
on the spectrum of a single-size dot alone in Figure 1, this
uncertainty could have been as large as the separation between
the peaks. However, we based our assignments on the observa-
tion of the development of peaks as the dot size varies.
Consequently, as can be seen in Figure 1, this uncertainty is
d much reduced. Notice that we have used the full optical spectra
0.3 r a | g Cds12Ses21 | to assign the peaks. This is more reliable (especially for the
| i . higher energy peaks) than assigning peak positions according
to transition energies onky.

Before comparing with experiment, we note that the experi-
. mental data in Figure 4 of ref 4 contains the effect of phonon
replica, exchange splitting, and crystal field splitting, which are
not considered in our (or in the k.p) calculatidfisTo subtract

. these fine-structure effects from the data, we have used the fine
structure model of ref 2. On the basis of this model, we
calculate from ré2 a new band gafgap, Which corresponds to

: : . . : the lowest excitation enerdy, in the absence of the exchange

('j R e splitting and crystal field splitting. The experimental data in
03 | - Figure 4 of ref 4 is replotted in Figure 2 using this new definition
of E, (see footnote 22 for a more detailed descriptions of this
procedure). We also plotted the calculated relative peak energies
Ei — E4 (i = atoi) as a function of the effective gap, in
Figure 2a.

Overall, Figure 2 shows that the present calculation is in very
good agreement with experiment. However, not all of the
observed transition peaks are accounted for: (1) Our calculation
here is limited to dots witlEga, > 2.1 eV. Dots with smaller
band gaps correspond to dot size 1000 atoms that are not
. l A . . . . . calculated here. (2) The energy of the experimental peak j is
' i i ' ' ! i T beyond the energy range of our calculation; thus, there is no
corresponding calculated value for it. (3) The experimental peak
h is weak and very close to g. Furthermore, it is in the high-
energy range of our spectrum, where many small peaks exist.
Thus, without analyzing all these details, and without doing an
ensemble averages over the different shapes, we do not feel
confident to assign such a peak. (4) At the lakgg, value
(small quantum dot size), experiment does not find peak ¢ at
the calculated energy. This is not fully understood at this time
and remains to be investigated in the future. One complication
is that there is another peak (i.e., the peak between ¢ and d in
X . . , ‘ . ‘ . . the Cad1,Ses2; panel of Figure 1), which moves from d to b
00 02 04 06 08 10 12 14 16 18 when the quantum dot size is reduced fronyda8e;95to0 Cdsg-

E- Egap (€V) Seq. Better experimenta] data (Q.g., single-dot spectra) are
needed to analyze such fine detalils.
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Figure 1. Optical transition spectra of spherical zince blende CdSe

dots calculated using the screened pseudopotential Hamiltonian. Arrows Aroupvdlg%ag m; 2.0 e|V, IWthICh I?h Olétst'de r:he rang_etof tht?
point to the main peaks. The short vertical negative bars denote the presen atom caiculations, the data shows an interesting

transition energiek;; of eq 2, and the vertical positive bars denote the anticrossing between peaks g and e. This can be explained,
magnitudes of the transition matrix elements. however, via a simple model. The anticrossing involves two
states, labeled andg: (o) a low quantum number state derived
conduction states, covering @& range of ~1.4 eV. The from the split-off bulk band (which approach& — Egap =
resultingl(E)’'s are shown in Figure 1, where the short vertical 0.42 eV at the bullEgs, of 1.84 eV) and §) a high quantum

negative bars denote the excitonic transition energigof number state derived from the heavy hole and light hole bulk
eq 2, while the positive bars indicate the matrix elements bands (which approach& — Egap= 0 eV at the bulkEgp of
|@i,»| V];,cP for each transition. 1.84 eV). The occurrence of the anticrossing is thus expected

We next identify the major transition peaks and assign indices because the energy of statshould rise slower a5gapincreases
a—i to them (arrows in Figure 1). The assignment is done by (smaller dot size) than the energy of stgte This model and
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Figure 3. Accumulated number of valence states starting from the
L ! L 1 1 top of valence band. The parameters € 2.52,7 = 0.83,Ag = 0.42
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1.6 T T eV) of the 6x 6 k.p (set 1) are derived from DD bulk band structure,
: k.p(set 2) and the parameterg(= 2.04,y = 0.58,A, = 0.42) of the 6x 6 k.p
-K.p (set 2) are taken from ref 4.

14 o ,+ exp. a

experimental peak e than to f. Note that the direct diagonal-
ization pseudopotential results without fitting are closer to
experiment than the explicitly fitted k.p results.

Some inconsistency of the k.p model with experiment is
reflected in the relative peak intensity in the optical spectra. In
ref 23, it was shown that in the k.p model for CdSe, peak c is
stronger than peak b. However, experimentéllpeak b is
stronger than peak c. This feature is reproduced correctly by
our results in Figure 1. Indeed, for the higher energy peaks
e—i, the k.p model used only the positions of the energy levels
(rather than their intensity) to establish the assignments. Here,
we base the spectroscopic assignment on the spectral shape of
Figure 1, in the same way as the experimental peaks are derived.
The interpretation is thus more robust.

The difference between direct diagonalization pseudopotential
results and the k.p results in Figure 2 has two sources: one is
due to differences in the single particle energiegeq 1), and
the other is due to differences in the Coulomb enekgleq 3).

The Coulomb energy difference can cause%0 meV overall
shift for the positions of higher energy peaks. However, the
Figure 2. Transition energies in spherical zince blende CdSe dots major difference between the k.p results and the direct diago-
(relative to the first excited state) vs the energy of the first excited nalization pseudopotential results comes from the difference in
state (effective band gap). The experimental data are taken from ref 4,the single-particle energy. In Figure 3, we have plotted the
g{:ggtrg{gggigﬁ;;{i‘gnegg:f:%GF?SSreC?’Ztg Slilt?ezﬁaéséﬁ}e(c‘ia)éirﬂgs ;, umber of single-particle valence states starting from the top
(b), the k.p curves are copied from ref 4 without change. The letters in of Valence“ band“. We use the k.p parameters of Norris and
parentheses (si) in (b) denote the k.p transitions, and the unbracketed Bawendf (“set 27) as well as the parameters extracted from
letters a-i are for the experimental results. the bulk pseUdOpOtentlal band structure of CdSe (“Se%zﬂ’he

k.p energy levels are calculated using the formalism of ref 11.
the appearance of the crossing remain to be tested by our direciVe see that there are almost twice as many states in the
diagonalization method in the future. atomistic calculation than in the continuum k.p calculation

In Figure 2b, we have copied the k.p result of ref 4 to compare within the same energy rangelo understand this surprising
with the adjuste#? experimental data. Thus, the same correction difference, we have compared the angular momenta of the
is applied to the experimental data as they are compared to theenvelope functions of the k.p and the direct diagonalization
direct diagonalization results and the k.p results. As we can pseudopotential wave functions (Figure 4). This figure shows
see, the k.p transitions labeled (a), (b) and (d), which were the energies of the individual single-particle valence states within
explicitly fitted to the raw experimental data, still agree well the energy range studied. The k.p states are labeled as
with the adjuste®? experimental results. However, the k.p follows: the first number is the principle quantum number; the
energy for the other transitions are shifted away from the capital letters before “-” denote the angular momentaf the
experimental peaks. Notably, the k.p transition energy (e) is envelope functions of the heavy and light hole bands; the capital
too low for largeEyap and the k.p transition (f) is closer to the  letter after “-” is the angular momentum of the split-off band,;
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Figure 4. Valence state analysis of the ££5e;;; quantum dot. See
caption of Figure 3 for the definition of k.p (set 1) and k.p (set 2). The
length of the bar indicates the degeneracy (without counting the
Kramer’s doubling).

2
| Wpa_s2s]

Dot Surface [001]

Figure 5. Wave function charge density contour plot of DD state
Ype_sz2. Of the Cdi:Se; quantum dot on a [001] cross section.

the final half-integer is the total angular momentém We
have similarly decomposed our directly diagonalized wave
functionsy;y(x) into k.p-style envelope functions

Y =3 W RO =5 w0 [ " rDYLa6, 4)
n n ,m (6)

whereun(X) is thenth bandbulk Bloch function at thd” point

(k = 0), fa(r) is the corresponding envelope function, afagh-

(0, ¢) is the spherical harmonics of angular momentumThe
total integrated weight oy __ | If h'm(|r|)|2 for each{n, L} is
denoted asv,.. We have used the heavy hole, light hole, and
split-off bands forn, and the total weights on these bands
> Ln=3-8 Wn is around~0.9. Figure 4 depicts the dominant
weightsw, | of each single-particle state: The capital letter

J. Phys. Chem. B, Vol. 102, No. 34, 1998453

TABLE 1: Assignments of the Excitonic Transition Peaks in
the Cdsz1.S6,; Quantum Dot to Pairs of Hole and Electron
States

DD k.p (set 2)
transition valence— conduction valence— conduction
a (1-2)S_D1.6— (1) 1SD_D3/2— 1%
b (9-10)SD_GD2.1— (1)S 2SD_D3/2— 1%
c (14)DG_S2.8— (1)S: 1D_S1/2— 1S
d (3—4)P_PL1L.7— (2—4)P: 1PF_P3/2— 1P,
e (5-6)PF_PF2.6— (3—4)P. 2D_S1/2— 1S
f (17)PF_F3.0— (2—4)P: 1PF_F5/2— 1P,
(20)FP_P3.0— (2—4)P. 1P1/2— 1P,
(23—24)PF_P3.2— (2—4)P.
g (7—-8)D_D2.6— (5-7)D. 3D_S1/2— 1S

(9—10)SD_GD2.1— (5—6)D¢
(11)D_D2.7— (7)De
(7—8)D_D2.6— (8—9)De
2The numbers in the bracket of the direct diagonalization (DD)
assignments are the running indices of the valence (conduction) states
counted from the top of valence band (bottom of conduction band).

before “-” indicates those angular momeitfa whose sum of
Wy, on the heavy hole and light hole bands are larger than 0.1.
Thel’s are in descending order according to their weights. The
letter after “-” indicates the highest weight angular momentum
L for the split-off band. The last number is an averaged total
angular momentunf, calculated as

FF+ 1) =D ufil(Fu+ B unfi0 7)
n m

Here the angular momentum operafﬁr=Air x V+T5 (Sis
the Dirac spin matrix) applies only tg, andF = ir x V applies
only to f.

In analyzing the results, we note that unlike the spherical
k.p model, the atomistic Hamiltonian we use has Theoint
group symmetry. Consequently, the largest degeneracy of the
direct diagonalization state is only 2, while in k.p, the
degeneracy is 2+ 1)/2. We have made a tentative connection
in Figure 4 between the DD and k.p states to indicate how does
each k.p state breaks down into DD states. Our conclusions
are:

(i) The averagedF for a given direct diagonalization state is
usually significantly larger than its k.p counterpart. This is due
to the existence of high components (allowed because the
is no longer a good quantum number) in the DD envelope
function.

(i) Owing to the lack of inversion symmetry ifiy, the even
and oddL envelope functions can coexistu, for the same
bandn, while in the spherical 6< 6 k.p model, the envelope
functions are either even or odd.

(iii) The k.p model uses a parabolic bulk band dispersion,
which deviates from the exact bulk band structure wherkthe
vector shifts away from th& = 0 I" point. As a result, the
energy difference between k.p and DD dot eigenstates increases
for higher quantum number states (which correspond to larger
k point values). This trend is evident in Figure 4. As a result,
the k.p states that correspond to the DD “extra states” have
energies outside the range of Figure 4. This leads to a smaller
number of k.p states (Figure 3) within the experimentally
relevant energy window.

(iv) The quantitative features of the connected k.p and DD
states in Figure 4 can be very different. This is manifested by
their value ofF, the weightsw,, |, and the real space shape of
the wave function. For example, Figure 5 shows the contour
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plot of the DD wave function DGD2.8. Its envelope function (7) Last, the energy peak positions in Figure 2 given by the
shows orientational preferences in the (110) an@) directions. atomistic approach are different from the k.p results and compare
On the other hand, the corresponding k.p state_$/2 is better with the experiment than the explicitly fitted k.p results.
spherically symmetric.
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