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An atomistic direct diagonalization pseudopotential approach has been used to analyze the optical excitation
spectra of CdSe quantum dots for up to 1.5 eV about the band gap. Good agreement is obtained with
experiment for all the eight excitonic transitions, without resorting to fitting to the experimental data on dots.
The observed excitonic transitions are identified in terms of specific pairs of valence and conduction single-
particle states. For the lowest few transitions, the assignments agree with the conventional k.p effective-
mass result, but this is not the case for the higher peaks. Indeed, we find in our atomistic approach that many
more valence states exist within a given energy range than in the continuum k.p approach. Furthermore, we
find that the mixing of even and odd angular momentum symmetry, disallowed in the contemporary simple
k.p models, is actually permitted in the more general atomistic approach.

Semiconductor quantum dots are sometimes referred to as
“artificial atoms”.1 Indeed, one of the goals of the theory of
quantum dots is to understand the optical spectroscopy at a level
of accuracy and detail similar to that underlying atomic physics.
The ability to control the laboratory size of the quantum dot,
the existence of atomistic features in the potential experienced
by the electrons in a quantum dot, and the absence of continuous
rotation symmetry even in spherical dots (because of the atomic
nature) all make the spectroscopy of quantum dots rich in details
and challenging to understand. While most spectroscopic
studies of quantum dots have focused on the splitting2 and red-
shift3 of the lowestexcitonic transition, interest has recently
focused on higher excited states.4-7 While semiconductor-
embeddedquantum dots (e.g., InAs in GaAs8 or InP in GaP9)
exhibit only two to three excitonic transitions, “free-standing”
colloidal dots have a narrower size distribution10 and large
electron and hole confinement energies, so that a larger number
of excitonic transitions have been resolved.4,5,8,9 One of the
best studied colloidal quantum dots is CdSe,10 in which as many
as 10 excitonic transitions have been detected in size selective
photoluminescence excitation (PLE) spectroscopy.4 This pro-

vides rich experimental details and, at the same time, a stringent
test for our theoretical understanding of the problem.

Norris and Bawendi4 analyzed the excitonic spectra of CdSe
dots using an effective mass 6× 6 k.p model, familiar from
the theory of bulk excitons.11 In this k.p approach, the quantum
dot Hamiltonian has both spherical and inversion symmetries.
Only the six p-like, bulk states at the top of valence band
(HOMO) are used to describe the states of the dot. The
Hamiltonian parameters are fitted to the bulk effective masses
and, in the cases of ref 4, are further fitted explicitly to the
energy levels of the quantum dot. Using this procedure, Norris
and Bawendi4 were able to obtain calculated transition energies
that agree well with the observed energies of the absorption
peaks. However, as recently shown,12 if one avoids fitting the
theory to the measured data in the quantum dots, the k.p theory
results in significantly different predictions for the lowest
excitation energy and for the symmetry (s,p) of the near edge
states relative toatomisticmodels, such as the direct diagonal-
ization (DD) of the screened pseudopotential Hamiltonian.15-17

Indeed, for colloidal InP dots, the application13 of the same 6
× 6 k.p that was successful in CdSe dots4 leads to significant
discrepancies with experiment,13 whose explanation required DD
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approach.14 It is thus interesting to revisit CdSe and to study
the higher energy excitonic spectra using the same atomistic
DD approach. This will examine our theoretical understanding
of the system by observing whether agreement with experiment
can be obtained without explicitly fitting to the data. This study
can also be used as a benchmark for the applicability of the
direct diagonalization pseudopotential method and for our
detailed understanding of the exciton spectroscopy in a quantum
dot.

In the following, we show that, using the direct diagonaliza-
tion pseudopotential method, one can obtain very good agree-
ment with experiment for as many as eight excitonic transitions.
Furthermore, the atomistic theory reveals many surprises when
compared with the continuum-type k.p approach. In particular,
the direct diagonalization pseudopotential approach (i) gives
many more single-particle valence states within the experimen-
tally relevant energy window, (ii) produces different assignment
of excitons in terms of pairs of valence states and conduction
states, (iii) yields larger averaged total angular momentumF
for hole states, and (iv), in contrast with the commonly practiced
spherical k.p method, mixes the even and odd angular momen-
tum envelope functions symmetries.

The direct diagonalization of a pseudopotential Hamiltonian
method has two steps: the single-particle problem and the
electron-hole interaction problem:

(a) The single-particle problem: In this first step, we solve
the single-particle Schrodinger equation for the wave function
ψ(x) [herex ≡ (r , σ) and whereσ ) v, V are the spin variable]:

HereV̂R(r) is the screened pseudopotential of atom of typeR at
positionRn,R. The pseudopotentialV̂R(r) contains a local part
and a nonlocal part that includes spin-orbit interactions.V̂R(r)
was previously obtained by “inverting” the self-consistently
calculated ab initio bulk total potentials of CdSe in a few crystal
structures and unit cell volumes. This assures that the wave
functions have ab initio quality. Furthermore, special attention
is directed16 at obtaining experimentally realistic effective
masses and bulk band structures throughout the Brillouin zone.
This is particularly important as dot orbitals represent an all-
zone superposition of the bulk wave functions.14 Equation 1 is
solved for ∼103 atom dots using the linear scaling “folded
spectrum method” (FSM),17 which directly obtains the eigen-
solutions of the band edge states without having to solve for
the many states below the band gap. While the observed CdSe
quantum dots have the wurtzite crystal structure, we assume
here instead the zince blende structure so as to compare with
the k.p results that are under this assumption. Our bulk zince
blende pseudopotential calculation has a band gap of 1.835 eV,
in agreement (within a few millielectron volts) with the
experimental bulk band gap at 10 K. We studied spherical,
Se-centered quantum dots of sizes Cd68Se79, Cd152Se141, Cd312-
Se321, and Cd484Se495, with effective diameters of 19.9, 25.0,
32.4, 37.4 Å, respectively. The surface of the quantum dots
were passivated with “ligand potentials”, which remove all the
surface states a few electronvolts away from the band gap.15

As a result, all the wave functions of our calculated states are
extended throughout the interior of the quantum dot (see later
Figure 5 for an example), rather than being surface-localized.
Our method differs from the ab initio self-consistent calculations
(e.g., Hartree-Fock or density functional theory) in that the
screened pseudopotential in eq 1 is extracted from the bulk (with

appropriate surface effects), rather than iterated self-consistently
for the dot. Our calculation differs from the k.p approach in
that it permits the dot orbitals to be constructed from an arbitrary
superposition of bulk bands throughout the Brillouin zone.
Furthermore, the effects of surface and shape are treated
atomistically and not perturbatively.

(b) The electron-hole two-body problem: In the second step,
we calculate the excitonic transition energy

whereJij is the Coulomb energy between the electron and holes.
Here we have neglected the exchange interaction and correlation
effects, which give rise to “fine structure splitting” that will be
discussed in another publication, using the many-body expansion
approach.18 Jij is calculated by

Unlike the case in bulk excitons, here the electron and hole are
very close to each other, so a distance-dependent dielectric
functionεj(r1 - r2) is needed to obtain an accurate description
of the Coulomb interaction energy. Using the polaronic model
of Haken,19 the Fourier transform ofε-1(r1 - r ) [here, 1/{εj(r1

- r2)|r1 - r2|} ) ∫ε-1(r1 - r)(1/|r - r2|) d3 r] can be expressed
as ε-1(k) ) εel

-1(k) + ∆εion
-1(k), containing the electronic (el)

and ionic (ion) contributions, respectively. Using the Thomas-
Fermi model of Resta,20 these two terms have the analytical
forms of

Here Fh,e ) (2mh,e
/ ωLO/p)-1/2, and ωLO is the longitudinal

optical-phonon frequency andme
/ and mh

/ are electron and hole
effective masses, respectively. In eq 4,q ) 2π-1/2 (3π2n0)1/3

(wheren0 is the electron density), andR∞ is the solution of the
equation sinh(qR∞)/(qR∞) ) ε∞

dot. Also, ε0
dot ) ε∞

dot + ∆εion and
∆εion ) 3.5 for CdSe derived from the bulk.ε∞

dot is calculated
in ref 15. The resultingε∞

dot used for the current four quantum
dots (from small size to large size) are 4.87, 5.10, 5.38, 5.54,
respectively (the bulk value isε∞

bulk ) 6.2). The Coulomb
energies calculated from eq 3 range from 150 to 400 meV, and,
usually, the higher energy excitons have smaller Coulomb
energies. If one uses instead the standard effective mass
formula21 to calculate the Coulomb energy (with a constant
ε0

bulk ) 9.7), one finds thatJij ranges from 140 to 260 meV, and
the variation ofJij for different pairs ofψi,v andψj,c are smaller
than what eq 3 gives. These are significant errors, avoided here
by calculatingJij explicitly for eachi and j pair.

Once the excitonic energiesEi,j are calculated, the transition
probability Iij for each electron-hold pair is obtained via the
Fermi Golden rule:Iij ) 4e2Ei,j|〈ψi,V|∇|ψj,c〉|2/3m2c3, wherem
is the electron mass andc is the speed of light. The optical
absorption spectrum is obtained by a 25 meV broadening of
each transition peak, i.e.,I(E) ) ∑ij I ij f (E - Eij), wheref(E -
Eij) is the broadening function. In summing over ij, we
calculated 40 single-particle valence states (80, counting the
Kramer’s doubling) and 10 (20 with Kramer’s doubling)

{-
1

2
∇2 + ∑

n,R
V̂R(|r - Rn,R|)}ψi(x) ) εiψi(x) (1)

Ei,j ) εj,c - εi,v - Jij (2)

Ji,j ) ∫∫ |ψi,V(x1)|2|ψj,c(x2)|2
εj(r1 - r2)|r1 - r2|

d3x1d
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εel
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dot kR∞)

k2 + q2
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conduction states, covering aEij range of ∼1.4 eV. The
resultingI(E)’s are shown in Figure 1, where the short vertical
negative bars denote the excitonic transition energiesEi,j of
eq 2, while the positive bars indicate the matrix elements
|〈ψi,V|∇|ψj,c〉|2 for each transition.

We next identify the major transition peaks and assign indices
a-i to them (arrows in Figure 1). The assignment is done by

considering the line shapes and intensity of the transition peaks
and a consistent trend from the small to large quantum dots.
Thus, each major peak might contain a few closely spaced small
peaks. For the cases where there is no obvious peak position,
the center of mass of the major peak is used as the position of
the peak. There is some uncertainty in assigning the peak
positions, especially in the higher energy part of the spectrum,
i.e., peaks f, g, and i. Indeed, had we based our assignments
on the spectrum of a single-size dot alone in Figure 1, this
uncertainty could have been as large as the separation between
the peaks. However, we based our assignments on the observa-
tion of the development of peaks as the dot size varies.
Consequently, as can be seen in Figure 1, this uncertainty is
much reduced. Notice that we have used the full optical spectra
to assign the peaks. This is more reliable (especially for the
higher energy peaks) than assigning peak positions according
to transition energies only.4

Before comparing with experiment, we note that the experi-
mental data in Figure 4 of ref 4 contains the effect of phonon
replica, exchange splitting, and crystal field splitting, which are
not considered in our (or in the k.p) calculations.18 To subtract
these fine-structure effects from the data, we have used the fine
structure model of ref 2. On the basis of this model, we
calculate from ref 2 a new band gapEgap, which corresponds to
the lowest excitation energyEa in the absence of the exchange
splitting and crystal field splitting. The experimental data in
Figure 4 of ref 4 is replotted in Figure 2 using this new definition
of Ea (see footnote 22 for a more detailed descriptions of this
procedure). We also plotted the calculated relative peak energies
Ei - Ea (i ) a to i) as a function of the effective gapEa in
Figure 2a.

Overall, Figure 2 shows that the present calculation is in very
good agreement with experiment. However, not all of the
observed transition peaks are accounted for: (1) Our calculation
here is limited to dots withEgap > 2.1 eV. Dots with smaller
band gaps correspond to dot size. 1000 atoms that are not
calculated here. (2) The energy of the experimental peak j is
beyond the energy range of our calculation; thus, there is no
corresponding calculated value for it. (3) The experimental peak
h is weak and very close to g. Furthermore, it is in the high-
energy range of our spectrum, where many small peaks exist.
Thus, without analyzing all these details, and without doing an
ensemble averages over the different shapes, we do not feel
confident to assign such a peak. (4) At the largeEgap value
(small quantum dot size), experiment does not find peak c at
the calculated energy. This is not fully understood at this time
and remains to be investigated in the future. One complication
is that there is another peak (i.e., the peak between c and d in
the Cd312Se321 panel of Figure 1), which moves from d to b
when the quantum dot size is reduced from Cd484Se495 to Cd68-
Se79. Better experimental data (e.g., single-dot spectra) are
needed to analyze such fine details.

Around Egap ∼ 2.0 eV, which is outside the range of the
present∼1000 atom calculations, the data shows an interesting
anticrossing between peaks g and e. This can be explained,
however, via a simple model. The anticrossing involves two
states, labeledR andâ: (R) a low quantum number state derived
from the split-off bulk band (which approachesEi - Egap )
0.42 eV at the bulkEgap of 1.84 eV) and (â) a high quantum
number state derived from the heavy hole and light hole bulk
bands (which approachesEi - Egap ) 0 eV at the bulkEgap of
1.84 eV). The occurrence of the anticrossing is thus expected
because the energy of stateR should rise slower asEgapincreases
(smaller dot size) than the energy of stateâ. This model and

Figure 1. Optical transition spectra of spherical zince blende CdSe
dots calculated using the screened pseudopotential Hamiltonian. Arrows
point to the main peaks. The short vertical negative bars denote the
transition energiesEi,j of eq 2, and the vertical positive bars denote the
magnitudes of the transition matrix elements.
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the appearance of the crossing remain to be tested by our direct
diagonalization method in the future.

In Figure 2b, we have copied the k.p result of ref 4 to compare
with the adjusted22 experimental data. Thus, the same correction
is applied to the experimental data as they are compared to the
direct diagonalization results and the k.p results. As we can
see, the k.p transitions labeled (a), (b) and (d), which were
explicitly fitted to the raw experimental data, still agree well
with the adjusted22 experimental results. However, the k.p
energy for the other transitions are shifted away from the
experimental peaks. Notably, the k.p transition energy (e) is
too low for largeEgap, and the k.p transition (f) is closer to the

experimental peak e than to f. Note that the direct diagonal-
ization pseudopotential results without fitting are closer to
experiment than the explicitly fitted k.p results.

Some inconsistency of the k.p model with experiment is
reflected in the relative peak intensity in the optical spectra. In
ref 23, it was shown that in the k.p model for CdSe, peak c is
stronger than peak b. However, experimentally,23 peak b is
stronger than peak c. This feature is reproduced correctly by
our results in Figure 1. Indeed, for the higher energy peaks
e-i, the k.p model used only the positions of the energy levels
(rather than their intensity) to establish the assignments. Here,
we base the spectroscopic assignment on the spectral shape of
Figure 1, in the same way as the experimental peaks are derived.
The interpretation is thus more robust.

The difference between direct diagonalization pseudopotential
results and the k.p results in Figure 2 has two sources: one is
due to differences in the single particle energiesεi (eq 1), and
the other is due to differences in the Coulomb energyJij (eq 3).
The Coulomb energy difference can cause a∼50 meV overall
shift for the positions of higher energy peaks. However, the
major difference between the k.p results and the direct diago-
nalization pseudopotential results comes from the difference in
the single-particle energyεi. In Figure 3, we have plotted the
number of single-particle valence states starting from the top
of valence band. We use the k.p parameters of Norris and
Bawendi4 (“set 2”) as well as the parameters extracted from
the bulk pseudopotential band structure of CdSe (“set 1”).12 The
k.p energy levels are calculated using the formalism of ref 11.
We see that there are almost twice as many states in the
atomistic calculation than in the continuum k.p calculation
within the same energy range.To understand this surprising
difference, we have compared the angular momenta of the
envelope functions of the k.p and the direct diagonalization
pseudopotential wave functions (Figure 4). This figure shows
the energies of the individual single-particle valence states within
the energy range studied. The k.p states are labeled as
follows: the first number is the principle quantum number; the
capital letters before “-” denote the angular momentaL of the
envelope functions of the heavy and light hole bands; the capital
letter after “-” is the angular momentum of the split-off band;

Figure 2. Transition energies in spherical zince blende CdSe dots
(relative to the first excited state) vs the energy of the first excited
state (effective band gap). The experimental data are taken from ref 4,
after removal of the exchange and crystal field effects.22 In (a), the
direct diagonalization peaks in Figure 1 are plotted as filled circles. In
(b), the k.p curves are copied from ref 4 without change. The letters in
parentheses (a-i) in (b) denote the k.p transitions, and the unbracketed
letters a-i are for the experimental results.

Figure 3. Accumulated number of valence states starting from the
top of valence band. The parameters (γ1 ) 2.52,γj ) 0.83,∆0 ) 0.42
eV) of the 6× 6 k.p (set 1) are derived from DD bulk band structure,
and the parameters (γj1 ) 2.04,γj ) 0.58,∆0 ) 0.42) of the 6× 6 k.p
(set 2) are taken from ref 4.
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the final half-integer is the total angular momentumF. We
have similarly decomposed our directly diagonalized wave
functionsψi,v(x) into k.p-style envelope functions

whereun(x) is thenth bandbulk Bloch function at theΓ point
(k ) 0), fn(r ) is the corresponding envelope function, andYL,m-
(θ, φ) is the spherical harmonics of angular momentumL. The
total integrated weight of∑m)-L,L |f n

L,m(|r |)|2 for each{n, L} is
denoted aswn,L. We have used the heavy hole, light hole, and
split-off bands forn, and the total weights on these bands
∑L,n)3-8 wn,L is around∼0.9. Figure 4 depicts the dominant
weights wn,L of each single-particle state: The capital letter

before “-” indicates those angular momentaL’s whose sum of
wn,L on the heavy hole and light hole bands are larger than 0.1.
TheL’s are in descending order according to their weights. The
letter after “-” indicates the highest weight angular momentum
L for the split-off band. The last number is an averaged total
angular momentumF, calculated as

Here the angular momentum operatorF̂u ) ir × ∇ + sb, (sb is
the Dirac spin matrix) applies only toun, andF̂f ) ir × ∇ applies
only to fn.

In analyzing the results, we note that unlike the spherical
k.p model, the atomistic Hamiltonian we use has theTd point
group symmetry. Consequently, the largest degeneracy of the
direct diagonalization state is only 2, while in k.p, the
degeneracy is (2F + 1)/2. We have made a tentative connection
in Figure 4 between the DD and k.p states to indicate how does
each k.p state breaks down into DD states. Our conclusions
are:

(i) The averagedF for a given direct diagonalization state is
usually significantly larger than its k.p counterpart. This is due
to the existence of highL components (allowed because theF
is no longer a good quantum number) in the DD envelope
function.

(ii) Owing to the lack of inversion symmetry inTd, the even
and oddL envelope functions can coexist inwn,L for the same
bandn, while in the spherical 6× 6 k.p model, the envelope
functions are either even or odd.

(iii) The k.p model uses a parabolic bulk band dispersion,
which deviates from the exact bulk band structure when thek
vector shifts away from thek ) 0 Γ point. As a result, the
energy difference between k.p and DD dot eigenstates increases
for higher quantum number states (which correspond to larger
k point values). This trend is evident in Figure 4. As a result,
the k.p states that correspond to the DD “extra states” have
energies outside the range of Figure 4. This leads to a smaller
number of k.p states (Figure 3) within the experimentally
relevant energy window.

(iv) The quantitative features of the connected k.p and DD
states in Figure 4 can be very different. This is manifested by
their value ofF, the weightswn,L, and the real space shape of
the wave function. For example, Figure 5 shows the contour

Figure 4. Valence state analysis of the Cd312Se321 quantum dot. See
caption of Figure 3 for the definition of k.p (set 1) and k.p (set 2). The
length of the bar indicates the degeneracy (without counting the
Kramer’s doubling).

Figure 5. Wave function charge density contour plot of DD state
ψDG•S2.8 of the Cd312Se321 quantum dot on a [001] cross section.

ψi,v(x) ) ∑
n

un(x) fn(r ) ) ∑
n

un(x) [∑
L,m

f n
L,m(|r |)YL,m(θ, φ)]

(6)

TABLE 1: Assignments of the Excitonic Transition Peaks in
the Cd312Se321 Quantum Dot to Pairs of Hole and Electron
Statesa

transition
DD

valencef conduction
k.p (set 2)

valencef conduction

a (1-2)S•D1.6f (1)Se 1SD•D3/2 f 1Se

b (9-10)SD•GD2.1f (1)Se 2SD•D3/2 f 1Se

c (14)DG•S2.8f (1)Se 1D•S1/2f 1Se

d (3-4)P•P1.7f (2-4)Pe 1PF•P3/2f 1Pe

e (5-6)PF•PF2.6f (3-4)Pe 2D•S1/2f 1Se

f (17)PF•F3.0f (2-4)Pe 1PF•F5/2f 1Pe

(20)FP•P3.0f (2-4)Pe 1P1/2f 1Pe

(23-24)PF•P3.2f (2-4)Pe

g (7-8)D•D2.6f (5-7)De 3D•S1/2f 1Se

(9-10)SD•GD2.1f (5-6)De

(11)D•D2.7f (7)De

(7-8)D•D2.6f (8-9)De

a The numbers in the bracket of the direct diagonalization (DD)
assignments are the running indices of the valence (conduction) states
counted from the top of valence band (bottom of conduction band).

F(F + 1) ) 〈∑
n

unfn|(F̂u + F̂f)
2|∑

m

umfm〉 (7)
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plot of the DD wave function DG•D2.8. Its envelope function
shows orientational preferences in the (110) and (11h0) directions.
On the other hand, the corresponding k.p state 1D•S1/2 is
spherically symmetric.

Table 1 compares the assignments of the absorption peaks
(in terms of pairs of valence states and conduction states)
between the k.p model and DD approach. The same assign-
ments are achieved for the lowest energy peaks a-d, but not
for the higher energy peaks e-g. For peak f, the conduction
state assignments are the same, but the valence states are
different. For peaks e and g, both the conduction-state and
valence-state assignments are different. To explain the higher
energy absorption peaks (e.g., g), the k.p model relies on the
lowest conduction states 1Se, 1Pe, and on the very deep valence
states (e.g., 2D•S1/2, 3D•S1/2). On the other hand, in the
DD approach, the higher energy transitions originate both from
the shallow valence states and from the higher conduction states
(De). This different assignment also explains the roles of the
“extra” DD states (compared to k.p results, Figure 3) in the
optical transition: combined with higher conduction states, these
extra valence states form the higher energy transitions, thus
providing a different interpretation than the k.p assignment.
Finally, our calculated electron s and p state energy splittings
agree well with the experimental results24 if the s-p splitting
is plotted as a function ofEgap as in Figure 2.

In summary, we have shown that an atomistic direct-
diagonalization pseudopotential approach can be used to explain
the energies, intensities, and symmetries of as many as eight
excitonic transition peaks in CdSe dots. We have identified
the observed excitons in terms of specific pairs of valence and
conduction orbitals. The results differ from conventional k.p
method in a number of important ways:

(1) The Coulomb energies have a strong dependence on the
orbitals of the electron and the hole. This is neglected in
standard effective mass treatment.

(2) Considering the top 1 eV below the HOMO, there are
many more valence energy levels in the atomistic pseudopo-
tential approach than in the continuum k.p approach (Figures 3
and 4).

(3) The spatial anisotropy of k.p and pseudopotential wave
function is very different (Figure 5).

(4) The relative intensities of peaks c and b are inverted in
k.p results relative to pseudopotential calculations and experi-
ments.

(5) The average angular momentumF is larger in the
atomistic approach than in k.p approach (Table 1).

(6) The atomistic approach shows significant mixing of even
and odd angular momentum envelope function symmetries,
which is not allowed in the spherical k.p approach.

(7) Last, the energy peak positions in Figure 2 given by the
atomistic approach are different from the k.p results and compare
better with the experiment than the explicitly fitted k.p results.
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