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The “Standard Model” of the
Electronic Structure of Dots

Progress made in the growth of “free-
standing” (e.g., colloidal) quantum dotslt2
(see also articles in this issue by Nozik
and MiCi6,  and by Alivisatos) and in the
growth of semiconductor-embedded
(“self-assembled”) dots3p4  (see also the
article by Bimberg, Grundmann, and
Ledentsov in this issue) has opened the
door to new and exciting spectroscopic
studies of quantum structures. These have
revealed rich and sometimes unexpected
features such as quantum-dot shape-
dependent transitions, size-dependent
(red) shifts between absorption and emis-
sion, emission from high excited levels,
surface-mediated transitions, exchange
splitting, strain-induced splitting, and
Coulomb-blockade transitions. These
new observations have created the need
for developing appropriate theoretical
tools capable of analyzing the electronic
structure of 103-106-atom  objects. The
main challenge is to understand (a) the
way the one-e/e&on  levels of the dot re-
flect quantum size, quantum shape, in-
terfacial strain, and surface effects and
(b) the nature of “many-particle” inter-
actions such as electron-hole exchange
(underlying the “red shift”), electron-
hole Coulomb effects (underlying exci-
tonic transitions), and electron-electron
Coulomb (underlying Coulomb-blockade
effects).

Interestingly, while the electronic-
structure theory of periodic solids has
been characterized since its inception by
a diversity of approaches (all-electron
versus pseudopotentials; Hartree Fock
versus density-functional; computational
schemes creating a rich “alphabetic
soup,” such as APW, LAPW, LMTO,
KKR, OPW, LCAO, LCGO, plane waves,
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ASW, etc.), the theory of quantum nano-
structures has been dominated mainly by
a single approach so widely used that I
refer to it as the “Standard Model”: the
effective-mass approximation (EMA)
and its extension to the “k - P”~-~ (where
k is the wave vector and p is the momem-
turn). In fact, speakers at nanostructure
conferences often refer to it as “theory”
without having to specify what is being
done. The audience knows.

The essential idea5-7  is sweeping in its
simplicity: The single-particle wave
functions tit(r) of three-dimensional
(3D)-periodic  bulk, two-dimensional
(2D)-periodic  film/well, one-dimen-
sional (lD)-periodic  wires, or zero-
dimensional (OD)-periodic dot are
expanded by a handful of 3D-periodic
Bloch orbitals taken from the Brillouin
zone center (I’ point) of the underlying
bulk solid. The physical accuracy of this
representation is naturally highest for
systems closest to the reference from
which the basis functions are drawn
(E point of the 3D bulk). It decreases as
one wanders away from the Brillouin
zone center and as dimensionality (D) is
reduced in the sequence 3D-+  2D+
lD+  OD. For example,” reproducing the
energy of the X1,  3D bulk state in GaAs
within 1 meV  requires Nb  = 150 (T-like)
Bloch bands. However if only Nb  = 10 (I-
like) bands are used, the error increases
to 300 meV. If Nb is further reduced to
eight bands, the error in X1,  goes up to
20 eV  and the curvatures (hence, effec-
tive masses) of the bulk valence bands
develop an unphysical negative sign.8
Application of direct diagonalization and
“first-principles k - p” to the 2D GaAs/
AlAs superlattices  showed that the k - p
errors versus Nb parallel those in bulk
GaAs.  The severity of such errors is miti-

gated by the central feature of the Stan-
dard Model: Instead of computing the
parameters of the Hamiltonian from the
basis set used, they are fit to the ob-
served band properties of the bulk5-7
(bandgaps, masses) or the nanostruc-
tures themselves.lOJ

The Standard Model has been emi-
nently successful in describing the
spectroscopy and transport of high-
dimensional nanostructures such as 2D
quantum-well structures7  and laser
devices.12 Its success in describing lower
dimensional nanostructures such a OD
quantum dots, while very impressive
(e.g., see the good agreement with the
excited-state energies of the CdSe
dotl’*“),  is sometimes clouded by the fact
that the parameters were fitted to the
data on the nanostructure itself,“,” and
that improvements via an increase in the
number of basis functions come with an
unpleasant increase in the number of
adjustable parameters. Consequently in
designing an alternative theoretical de-
scription of the electronic structure of
nanostructures, we set the following
requirements:
H No adjustable parameters, except for
the 3D bulk, in which “local-density-
approximation (LDA) errors”13  must be
corrected.
n The accuracy of the physical descrip-
tion should be the same for nanostruc-
tures of all dimensions (3D,  2D,  lD, and
OD). Likewise, zone-center (I) and off-r
states should be described equivalently.
. The atomistic symmetry of the object
at hand should be preserved. This is per-
tinent because previous Standard-Model
calculations showed that the difference
between odd and even symmetries in an
(AlAs), (GaAs), (001) superlattice’ or in
(Si),, film’” (as the number n of monolay-
ers changes) is absent (see Figure 1). Fur-
thermore the distinction between the
u_nequal  symmetries of the (110) and
(110) faces of InAs pyramidal dots15J6  is
also lost (Figure 2). These misrepresenta-
tions of the true, atomistic symmetries
by the continuum approach underlying
the Standard Model introduced errors in
the energy levels.9,‘4-16
m The real atomistic suy$ce’7  of the nano-
structure should be included in the
description rather than an (infinite)
“potential barrier” lacking “chemical
personality.”
n Flexibility: The basic constructs deter-
mining the electronic structures should
be incorporable in a flexible/modular
manner and on equal footing. This in-
cludes the ability to incorporate different
chemical species (e.g., dots made of either
ionic or covalent materials), arbitraryc
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shapes of the nanostructure, crystal-field
and spin-orbit splittings, and the re-
sponse to pressure and strain. Our ap-
proach, satisfying these requirements,
consists of two steps described in the fol-
lowing two sections.

First, one needs to model the atomic
geometry-that is, to specify {Ratom).
There are two cases here.
(1) For ‘freestanding” nanostructures rep-
resenting: colloidal structures,1,2  the
atomic positions of the core are essen-
tially known in advance. For example,

The New Model, Step 1: The
Single-Particle Problem

experimental structural measurements
on’Si  quantum dots with more than

Instead of inventing a specialized ap-
proach for nanostructures, we formulate
the problem such that the same concep-
tual methods and sophistication with
which bulk solids have been successfully
treated in the past can be applied to
nanostructures. We first surround the
nanostructure, which is periodic in n di-
mensions, by a few “monolayers of vac-
uum” in the remaining 3 - n dimensions.
For example a dot is surrounded by vac-
uum in three dimensions, while a film
(periodic in n = 2 dimensions) is sur-
rounded by vacuum in the one remaining
dimension. We then place this (nano-
structure + vacuum) object in a periodi-
cally repeated “supercell.” Because this
creates an artificial 3D periodic lattice,
ordinary band-theoretic methodology
can now be applied. As the thickness d of
the vacuum layers increases, the unphys-
ical interaction between the periodically
repeated nanostructures diminishes,
and we approach the desired limit of an
isolated nanostructure.

Si (001) film thickness (monolayers)
6 8 10 12 14 16 18
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Film thickness (A)

The potential felt by the electrons is
represented by a superposition of atom-
centered screened potentials?

V(r) = C zI atom(r  - &,,),
atom

(1)

Figure 1. Calculated near-gap energy
levels of (OOl)-oriented  hydrogen-free
(a) and hydrogen-covered (b) Si films.
Note the oscillations in the highest
occupied (valence-band maximum,
VBM) and next-to-highest occupied
(V-l) valence bands, absent in the
effective-mass- approximation (EMA)
description (dashed line). The shaded
area denotes the bulk bandgap
region. The zero-confinement VBM
state having a size-independent
energy is apparent in (a). From
Reference 74.

100 atomsi’ show that the atomic posi-
tions and the interatomic distances in the
interior of the quantum dots are very
close to the values of the extended bulk
solid. Atomic relaxations exist only near
the surface. However one usually has a
reasonably good idea how to model such
relaxations using either first-principle
calculations or experimental data on the
relevant bulk surfaces.18  Arbitrary shapes
(spheres, cubes, plates, pancake, cigars) of
colloidal dots can be treated in this
method, simply by positioning the atoms
in the desired places. Free surfaces of col-
loidal dots are passivated by adatoms
that remove surface states from the
bandgap.i7
(2) For embedded nanos true t w-es represent-
i n g - f o r  example-“self-assembled”3~4
structures, we surround the “well mate-
rial” (e.g., InAs)  by the “barrier material”
(e.g., GaAs)  and permit relaxation of all
atoms to minimize the strain energy rep-
resented by an atomistic force field. We
use for this purpose Keating’s valence
force field.20  For example the center of
Figure 3 shows a 45-W-tall  InAs pyramid
(containing 3273 InAs molecules) with
(110) and (710)  faces, lying on top of a
l-monolayer InAs  “wetting layer” and
capped by GaAs.  Relaxing all (InAs and
GaAs)  atomic positions produces the
strain asymmetry depicted in Figure 2.
The symmetry of the pyramid made of
zinc-blende material is C2, not the ideal
C4 symmetry of an ideal pyramid. This
lower symmetry is missed by continuum
elasticity models. l5 As will be described
later, this misrepresentation of the sym-
metry can affect the energy levels.

and the wave functions are conveniently
expanded in plane waves:

(2) Anisotropy of Strain Profiles
E[llO]-&[liO]

0500  7

Here (R)atom  are the atomic-position vec-
tors, and a,(q) are the variationally de-
termined expansion coefficients at the
reciprocal lattice vector q of the super-
cell. The single-particle problem is then
addressed by explicitly solving
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{- +V2  + V(rN(r)  = Wbi(r) - (3)

The terms in the cur-p  brackets consti-
tute the Hamiltonian H. The matrix ele-
ments of V2  and V(r) in the basis (2) are
computed analytically and via a numeri-
cal Fourier transform, respectively.

Modeling of L103 atom systems using
Equations 1-3 requires three stages. We
will use Figures 1 and 3 to illustrate them.

PosItIon  along  [I 101

Figure 2. Difference in atomi$ic
strain energy ~,~[l lo] - ~,~[llO] on
the two opposite faces of an InAs
pyramid. In simple continuum models,
this difference vanishes. From
Reference 15.

The second stage in using Equations l-
3 requires determination of the atom-
centered potentials vatom(r).  We use for
this purpose the empirical pseudopoten-
tial method.21  Rather than fit vatom(Gl)  at
a few discrete reciprocal lattice vectors
(G t} of the primary unit cell (as is done
in classic calculations21  for bulk solids),
we fit l8 a continuous zJatom(q)  to a series of
experimental data values and to detailed
first-principles calculations on relevant
prototype systems. This includes the
bulk band structures, effective masses,
deformation potentials, the surface work
function, interfacial band offsets, and
the density of states of chemisorbed sur-
faces. Unlike the case in tight-binding
approac  hes,22 we are able to compare24
the ensuing potential V(r) with screened
first-principles LDA results. Unlike the
case with LDA,13  experimentally sensible
excitation energies are obtained. Strain
effects are explicitly “felt” by the potential
through its dependence on the atomic
positions. Thus “crystal-field splitting”
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Figure 3. The electronic structure of a 45-A -high, 90-A base, strained InAs (I 10)
pyramidal quantum dot embedded within GaAs. The strain-modified band offsets
(for holes and electrons) are shown above the atomic structure. They exhibit a well
for both heavy holes and electrons. These are localized within the pyramid and
wetting layer as shown by the blue raised (lowered) triangle and ridge (trough),
respectively. lsosurface plots of the four highest hole states and four lowest electron
states, as obtained from pseudopotential calculations, appear on the left and right.
The lowest electron state-the conduction-band minimum (CBM)-is s-like, while
the next two states (CBM+ 1 and CBM+2) are nondegenerate p-like. From J. Kim,
L. W Wang, A. J. Williamson, and A. Zunger (unpublished). The calculation was
performed using the Cray T3E at the National Energy Research Scientific
Computing Center, University of California -Berkeley.

(as well as spin-orbit splitting) is repre-
sented directly and nonperturbatively.
This is illustrated in Figure 3 showing the
strain-modified confining “conduction-
band (CB) potential offset” and “heavy-
hole potential offset.” We see that the
wetting layer and the pyramid itself pose
an electron-attracting potential for the
conduction electron and a hole-attracting
potential for the valence holes.

The thivd  stage of using Equations 1-3
involves solving Equation 3 for a given
geometry and given pseudopotential.
This is nontrivial for N - 103-106-atom
systems because the number of plane-
wave basis functions in Equation 2 scales
IS the order of N [denoted O(N)]. For
nost semiconducting systems made up
If main-group elements, one needs about
50 plane waves per atom. So for N = 1,000,
)ne typically has a 50,000 X 50,000 Hamil-
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tonian problem. (With inclusion of the
“vacuum region” in the cell, the basis is
much larger.) The conventional varia-
tional approach to EqFation  3 is to
minimize the energy ($IHI$)  by varying
the expansion coefficients a(q)  of I/J
(Equation 2); the first $ obtainei  is then
the lowest energy eigenstate of H. To find
a higher state, one needs to orthogonal-
ize $ to all previously converged energy
eigenstates below it. The effort needed to
accomplish this orthogonalization scales
N3.  Consequently only small systems
(N 5 100 atoms) can be conveniently ad-
dressed by such conventional methods.
However in order to study-for ex-
ample-the near-edge optical properties
of semiconductor quantum structures,
one does not really need to know the
-103-lo6  lower states. What one typically
needs to know about such systems in-

cludes the eigenvalues and eigenfunc-
tions within -1 eV of the band-edge states
(the valence-band maximum [VBM] and
the conduction-band minimum [CBM]).
To this end, we have developed a novel
method23,24  that enables calculation of ei-
gensolutions around a given, “interest-
ing” reference energy without the need
to calculate any of the eigensolutions be-
low it. The effort involved scales linearly
with the system’s size, thus enabling cal-
culations of bandgap  properties in meso-
scopic systems. The method is exact in
that the solutions are identical to those of
Equation 3. The central point of this ap-
proach23,24 is that the eigensolutions (@is;)
of Equation 3 also satisfy

(A - Gef)2$i = (8, - Gef)2$~ - (4)

Here the original spectrum {E,] of fi
(Equation 3) has been folded at the refer-
enccpoint  into the spectrum {(E, - s,,J*}
of (H - s,J2. The lowest solution of this
“folded” spectrum is the eigenstate with
si closest to s,,f. Hence by placing .sref in
the physically interesting range, one
transforms an arbitrarily high eigensolu-
tion into the lowest one, thus obviating
the need for orthogonalization. For ex-
ample, if E,,f  is placed inside the energy
window comprising the bandgap,  solv-
ing Equation 4 results either in the VBM
state or the CBM state, depending on
which is closer to s,,f.  Changing sref
within the bandgap  region then assures
that both the VBM and the CBM are
found. The effort scales as O(N), so large
systems can be calculated. Figure 3 illus-
trates the wave-function-square isosur-
faces obtained for the GaAs-embedded
InAs pyramid of a 90-A base size.

We see that the approach described in
the last three steps satisfies the design
criteria listed in the first section:
(1) Adjustable parameters underlying
uat,,(r)  are fixed once and for all for the
bulk solid. The bulk band structure &,& is
hence “exact” throughout the Brillouin
zone.
(2) The “universal” basis set of Equation
2 assures equivalent treatment of nano-
structures of all dimensions.
(3) The full atomic symmetry is retained
via specification of {Rat,,}.
(4) v atom(r - Rat,,) encodes explicitly
spin-orbit effects, and through {Ratom}
the effects of strain, pressure, crystal
structure, and crystal field are all treated
nonperturbatively.
Furthermore the approach is simple to
use: Once you have the pseudopotentials
and you specify the atomic positions,
solving a -l,OOO-atom  problem requires
less than an hour on a table-top Rise
workstation. The results are energies,
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wave functions, transition probabilities,
etc. On a massively parallel CRAY T3E,
we routinely handle up to a million atoms.

So what is the weakness/approximation
involved? Our central approximation is
that the screened atomic pseudopotential
vat,,,,,(r)  isfixed at the outset, and is not al-
lowed to respond self-consistently to
charge rearrangements underlying ei-
ther electronic excitations or changes in
size/shape. This is the price we pay for
not calculating all occupied orbitals. At
this point, this appears to be a reasonable
tradeoff.

We next provide three illustrations for
applications of “Step 1” of the model to a
film (Figure l), a freestanding quantum
box (Figure 4),  and an embedded quan-
tum pyramid (Figure 3).
n The solid lines in Figure 1 show the
pseudopotential calculated energy levels
of a Si(OO1) quantum film as a function of
its thickness.14  All states shown are film-
interior, not surface states. The dashed
lines are EMA results. The shaded areas
denote the bulk bandgap  region. We see
that (1) the exact VBM of the film (a) has
no size dependence. We call this a “zero-
confinement state.” This behavior I4 is
missed by the EMA. (2) The state next to
the VBM (“V-l”) exhibits odd-even os-
cillations. This too is missed by the con-
tinuumlike EMA that lacks atomistic
information on odd versus even num-
bers of monolayers.
n Figure 4 shows the calculated25  single-
particle wave functions of the VBM and
the CBM of a freestanding  6,000-atom
GaAs  quantum box (left), compared with
the EMA results (right). We see that the
pseudopotential wave functions are more
extended than the EMA wave functions
and do not exhibit the simple, sinelike
envelope function predicted by the EMA.
These differences will affect profoundly
the electron-hole interactions discussed
in the next section.
w Figure 3 shows the calculated single-
particle wave functions of the valence and
conduction states of a “self-assembled”
InAs pyramidal dot embedded within
GaAs.  The lowest conduction band
(CBM) is s-like, located 177 meV  above
the bulk GaAs  CBM. The next two states
(CBM + 1 and CBM + 2) are p-like, lo-
cated 113 meV  above the s-state and split
(by 28 meV)  via the C2 symmetry. The
VBM is located 265-meV  below the bulk
GaAs  VBM. The next three valence states
are also shown. By calculating larger
pyramidal dots, we find that (1) the s-p
splitting in the CB is reduced as the
pyramid-base size (90 A in Figure 3) in-
creases, (2) the splitting between the two
p states is almost independent of the
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Figure 4. The VBM and CBM wave functions of a 6,000-atom  (110) x (110) x (001)
GaAs quantum dot, as obtained from a plane-wave pseudopotential calculation
(left-hand side), are compared with the EMA (right-hand side). The wave-function
amplitude, averaged along the [OOl] direction, is plotted in the (001) plane. From
Reference 25.

pyramid size but is reduced as the facet
orientation (highest-to-base ratio) is low-
ered from (110) to (113),  and finally
(3) the confinement energies of the VBM
and the CBM s-states scale within the
vo&ze  of the dot.

The New Model, Step 2:
Electron-Hole (Exciton) and
Electron -Electron Interact ions

The ground state @, of the nanostruc-
ture is obtained when all single-particle
valence (v) orbitals (el,“}  fully occupied
and all conduction (c) orbitals {I,!J,,~)  are
empty. These single-particle states (+,}
and energy levels {E,} obtained from
Equation 3 represent average interelec-
tronic interactions. Upon excitation the
hole in $,,” and the electron in I,!J],~ interact

both via Coulomb, exchange, and corre-
lation interactions missing from Equa-
tion 3. The low-lying excited states of
a quantum dot are calculated by a
configuration-interaction expansion of
the many-particle wave function in
terms of single-substitution Slater deter-
minants ((a,,). These are obtained26  from
the ground-state @o by exciting an elec-
tron from the valence state $Jx)  of en-
ergy E,,, to the conduction ccl,,Jx)  of energy
E,,~. [Here x = (r,a)  where u = T 1 is the
spin variable.] By taking the ground-
state energy as energy zero, the matrix
elements of the many-particle Hamilto-
nian ‘X in the representation {a,,} are
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where J and K are the Coulomb and ex-
change integrals:

h,,kl  =

and

Kgkl =

(6)

(7)
The screening of the e-h interaction
caused by the polarization of the me-
dium is described_ by the microscopic di-
electric constant &,rZ), which depends
on the electron/hole positions. &,rz)
consists of an electronic piece and an
ionic piece.Z6 The former depends on the
macroscopic dielectric constant e,(R),
which is a function of the dot size27  R
(not the electron position r), reflecting
the total polarization response of a quan-
tum dot to a constant field. Figure 5b
showsz6  the microscopic dielectric con-
stant E(S)  as a function of the electron-
hole separation Ire  - rh\  = S for a fixed
dot size. When the electron and the hole
are in the same Wigner-Seitz cell, they
“see” a much reduced screening relative
to the bulk value.

The integrals appearing in Equations 6
and 7 are computed directly in real space
via multigrid or multipolar expansions26
using the solutions of Equation 3. A diag-
onalization of the Hamiltonian matrix of
Equation 5 then yields the low-energy
excitonic states of the nanostructures.
Four effects are included here: (1) The
first term of Equation 5 represents pure
single-particle effects (discussed in the
previous section), and (2) electron-hole
Coulomb interactions J shift the single-
particle energy difference (by a level-de-
pendent amount), while (3) electron-hole
exchange interactions K split the levels.
Finally (4) the inclusion of numerous elec-
tron-hole configurations in the Hamilto-
nian matrix introduces electron-electron
and hole-hole correlation. (The effect is
small for the “strong-confinement” limit
where the size of the nanostructure is
smaller than the bulk excitonic radius.)

Electron-Hole Coulomb and
Exchange Effects on the
Spectra of Dots

Despite the great importance28,29  of
electron-hole Coulomb and exchange ef-
fects, only the highly simplified one-
band EMA  has been almost universally
used to estimate these quantities even

12 1 I I I I
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CdSe
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0 1 2 3 4 5 6

s (b

Figure 5. (a) The unscreened exchange integral K&(S) (normalized by its
converged value at S-00) appears in part (a) as a function of the e-h distance S for
GaAs (R = 22.5 A), InP (R = 124 A), and CdSe (FI = 19.2 A) spherical quantum
dots. The asymptotic values of K *vc,vc(~) are 78.7,_26.9, and 18.2 meV, respective/y.
(b) The distance-dependent dielectric constant E(S). From Reference 26. (c) and (d)
Electron-hole splitting of /nP and CdSe spherical quantum dots as a function of the
dot radius R. The experimental data for CdSe were taken from Reference 29
(crosses) and Reference 28 (circles). The dotted line in the InP plot is a fit to the
experimental results of Reference 32. Calculated results (Reference 26) are shown
both with and without spin-orbit coupling.

when the calculation of the single-
particle energy gap requires more so-
phisticated and reliable methods. In fact
the EMA provides simple, analytical ex-
pressions for the Coulomb energy and
the exchange energy: Assuming an infi-
nite potential barrier at the boundaries of
the quantum dot and using the envelope
functions of a noninteracting electron-
hole pair, one obtains the well-known
equations30

JEMA=c
eL

Cod cou1-
ER (8)

and

K EMA = c
exch exch

where R is the dimension of the quan-
tum dot; E, and ox are the bulk exciton
exchange splitting and exciton radius, re-
spectively; and Ccoul,  Cexch are dimen-
sionless constants that depend only on
the shape of the quantum dot. For ex-
ample in the case of a spherical dot of ra-
dius R, the EMA yields for Equations 8
and 9 Ccoui  = 1.786 and Cexc,, = 2.111. Us-

ing however microscopic pseudopoten-
tial wave functions from Equation 3, the
unscreened Coulomb interaction (taking
E = 1 in Equation 6) is different from the
commonly used EMA values of Equa-
tion 8: The ratio of EMA to pseudopoten-
tial unscreened Coulomb energies for
say the lowest exciton in rectangular
GaAs  quantum dots ranges from 1.39 to
1.20 for box sizes 9.8-46 A, respectively.25
Furthermore the size dependence of the
Coulomb energy is R-* with (Y < 1, while
EMA (Equation 8) gives (Y = 1. There are
two main reasons for the 20-40%  overes-
timation of the Coulomb energy by the
EMA. First the EMA envelope functions
are required unrealistically to vanish ex-
actly at the boundary of the quantum
dot, while the pseudopotential wave
functions are allowed to decay variation-
ally and spill out into the vacuum region
(Figure 4). Second the contribution to the
Coulomb energy resulting from the mi-
croscopic oscillations of the wave func-
tion (Figure 4) are neglected in the EMA.
These effects lead to an overestimation of
up to 40% of the electron-hole Coulomb
interactions of the standard expression
(Equation 8).
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How about electron-hole exchange
interactions? In general the exchange in-
teraction contains a short-range (SR)
component that decays ex onentially
with the e-h separation S = re - ri-,l  andP
a long-range (LR) component that decays
as a power law. Conventional wisdom30,31
suggests that the LR exchange interac-
tion in quantum dots originates, as in
bulk semiconductors, from dipole-dipole
coupling of the transition density be-
tween unit cells. Under this assumption,
the LR contribution to the exchange
splitting of s-like excitons in spherical
quantum dots vanishes.31  In the EMA,
the e-h exchange is thus describedz9  by
an SR term of Equation 9 with an Re3
size scaling, while the LR contribution is
set to zero. While this approach fits well
the observed red shift in CdSe  nanocrys-
tals,28,29  in the case of spherical zinc-
blende quantum dots, Equation 9 predicts
a l/R3  scaling of the red shift with size-
which is not observed in either 32  InP or
InAs nanocrystals. In both cases, the ob-
served scaling is R-*.

Direct calculations26  of the excitonic
spectra using our approach in Equa-
tions l-7 on CdSe, InP,  and GaAs dots
have shown the following:
(1) The e-h exchange interaction has a
sizable LR contribution, comparable in
magnitude with the SR contribution. This
is evident in Figure 5a,  which shows the
(unscreened) exchange integral 26K  (Equa-
tion 7) as a function of the electron-hole
separation S. We see that the SR ex-
change contained in a Wigner-Seitz cell
(S I 2.5 A) is only -15% of the total ex-
change (S -+ 00).
(2) The LR component does not originate
however from dipole-dipole interactions
between unit cells, as in the case of bulk
excitons, but from monopole-monopole
interactions that are peculiar to quantum-
confined systems and scale as R-‘,  not
R-3.
(3) The calculated26  screened exchange
splitting (Figures 5c and 5d) is in reason-
ably good agreement with available ex-
perimental results,29,32  even though no
empirical adjustments are used.
(4) The reason why the phenomenologi-
cal model of Equation 9, which neglects
LR interactions, agrees with experiment
for CdSe  quantum dots29  (but not for 321nP
or InAs dots) is that the SR exchange pa-
rameter used in Reference 29 is roughly
twice as large as our directly calculated
SR parameter.
(5) For zinc-blende InP dots, both the di-
rectly calculated exchange splitting and
the experimentally measured red shifts32
scale as -l/R2  with the dot radius R.
This is in contrast with the l/R3  scaling
law predicted by Equation 9.
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Figure 6. Calculated ‘7;34 and
measured 33.35 excitonic gaps of
(a) CdSe34J35 and (b) lnP1”33 dots.

Dependenceof Bandgaps
of Dots on Quantum Size
and Shape

Figure 6b depicts our calculated’7
variation of the excitonic bandgap  of
freestanding, spherical InP dots with
size. The calculated bandgap  is seen to
agree well with experiments.33  Similar
results were presented by us for CdSe
dots34  (Figure 6a)35  and for Si dots.24  This
confirms the validity of our approach
to the single-particle problem and to
electron-hole interactions.

How well does the Standard Model
describe band-edge states? Figure 7a
compares the results of the present
direct-diagonalization pseudopotential
approach36  (solid lines) and 6 X 6 k - p
(dotted lines) for the energies of the VBM
and CBM of InP dots. The k - p equations
for dots are solved via the spherical-wave
representation using a 6 X 6 k - p model
fully parallel with the work of Norris
and Bawendi.”  The striking feature of
Figure 7a is that the k - p approach pro-
duces (1) an incorrect order of the valence
states: The state of (envelope function) p
symmetry is above that of s symmetry.
This order occurred in other 6 X 6 k . p
calculations of dots with small spin-orbit
energies-for example in37  CdS and in38
InP.  Because the lowest dot conduction
state always has s symmetry, the 6 X 6
k - p method predicts that the lowest
transition (p+s) is forbidden in one-
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Dot diameter (A)

I I 1 I ,. .

6- qb
4 - . .

X Ic
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0.2 0.4 0.6 0.8 1.0
X

Wave vector k along (100)

Figure Z (a) The orbital energies of
the lowest conduction state and of the
two highest valence states in InP
dots. Solid lines: direct
diagonalization (DO), dotted lines:
k - p mode/. (b) Band dispersions of
bulk /nP along the TX direction as
calculated by pseudopotential direct
diagonalization (DO, solid lines) and
by the 6 x 6 (for valence) and 2 X 2
(for conduction) k - p model (dotted
lines). The notation bb, (n = 2 to 5)
indicates the second to fifth bulk
bands in the order of increasing
energy All curves are calculated with
the spin-orbit parameter A, = 0.
From Reference 36.

photon-absorption experiments while a
direct diagonalization predicts that the
lowest transition (s+s)  is one-photon-
allowed. Thus k - p predicts a large  red
shift between absorption and emission
that is not seen experimentally.32  (2) The
k l p energy levels are considerably deeper
(larger confinement) than the exact re-
sult. For a dot with a 20-w  diameter, the
k - p error for valence states is -600  meV
and (3) the curvature of conduction ener-
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gies versus size is consistently too large
in k - p.

A recent analysis36  explained these
discrepancies in the k l p model. It turns
out that these errors can be traced to k - p
errors in the bulk band structure (see Fig-
ure 7b). The k l p produces a too-deep
bulk light-hole band (bb2  in Figure 7b),
and exaggerates the off-l? dispersion of
the bulk heavy hole (bba4  in Figure 7b)
and conduction bands. Calculating the
projections of the dot wave functions
e,(r)  onto the bulk Bloch  bands then re-
veals the following:
(1) The s-like dot valence state has a large
contribution from the bulk light-hole
band, while the p-like dot valence state
has no contribution from the bulk light-
hole band. Given that the k - p approxi-
mation places the bulk light-hole band
at spuriously deep energies (see Fig-
ure 7b),36 we expect that the k - p will
also place the dot’s s-like state at too deep
an energy (overconfinement). This is in-
deed shown to be the case by Figure 7a.
(2) The k points that contribute most sig-
nificantly to the dot p-like state are gen-
erally more distant from k = 0 than
those k points contributing significantly
to the dot s-like state. Given that the k - p
approach does not describe well the bulk
dispersion away from c we expect that
the k l p model will not describe well the
p-like dot valence state either. This is
also shown to be true by Figure 7a.
(3) The s-like dot valence state has a
larger contribution from the bulk con-
duction band than the p-like dot valence
state, indicating that the s-like dot va-
lence state is more affected by the neglect
of coupling with the CBS  in the standard
k - p model.

Effects (l)-(3)  explain why the 6 X 6
k l p produces an incorrect order of s and
p valence states for small dots while over-
estimating the global confinement.
(4) The lowest s-like dot conduction state
has a large contribution from the lowest
bulk CB away from the k = 0 zone cen-
ter. Since the k l p overestimates signifi-
cantly the up-dispersion of the bulk CB,
we expect it to also overestimate the dot’s
conduction-state energy. This is indeed
shown to be true by our direct calcula-
tion (Figure 7a).

The analysis just described suggests
that in order to improve the description
of the nanostructure energy levels in the
Standard Model, two main points should
be taken into consideration: (1) a correct
description of the bulk dispersion &,k and
(2) introduction of interband coupling
within a significant set of bulk bands.

Surprisingly bandgaps  depend strongly
not only on size but also on shape. If one
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considers a Si quantum dot with fixed
number of atoms (say,24  1,100) and fixed
interatomic distances but arranges them
in different shapes, pseudopotential cal-
culations (Figure 23 in Reference 24)
show that the largest bandgap  can be
achieved using an elongated box while
the fastest radiative lifetime is achieved
with a near-cubic shape.

Prediction of Charge Separation
in GaAs/AIAs “Russian Dolls”

Our previous discussion showed that
capturing the physics of quantum dots
requires a realistic description of inter-
band coupling. Models that describe the
dot using just a few bulk bands are often
insufficient. This is illustrated by the ex-
istence of charge separation in “Russian
D01ls,“~~ an effect that vanishes when in-
terband coupling is ignored.

It is well-known that in a sequence of
flat, type-1 (GaAs),/(AlAs),/(GaAs),/
(AlAs),  . . . multiple quantum wells
(MQWs),  the wave functions of both the
VBM and the CBM are localized on the
widest well. Thus electron-hole charge
separation is not possible. On the other
hand, for short-period superlattices
(“type II”), the electron and hole are lo-
calized on different materials (electron
on AlAs and hole on GaAs)  and different
band-structure valleys (hole at the Bril-
louin  zone center at l? and electron at the
Brillouin zone corner at X). Using our
plane-wave pseudopotential direct-
diagonalization approach, we predict39
that electron-hole charge separation on
different layers of the same material
(GaAs)  and same valley (r)  is possible in
curved (but not in flat) geometries. This is
predicted for a set of concentric, nested
cylinders (“Russian Doll”) of GaAs  and
AlAs  (Figure 8). Because the flat
multiple-quantum-well (MQW) struc-
ture and the Russian-Doll structure with
the same layer thicknesses have the same
band offset diagram, the difference in be-
havior is not due to the potential. Rather
it reflects different interband coupling
induced by the curvature present in the
Russian-Doll geometry but absent in the
MQW. This identifies a new geometric
degree of freedom-curvature-that can
be used to tailor electronic properties.

Conclusions
We have shown that a theory of the

electronic structure of quantum dots re-
quires primarily (1) a correct depiction of
the dispersion relation in the underlying
bulk material and (2) incorporation of
coupling between a variationally signifi-
cant number of bulk states. The Standard
Model is lacking in both respects but can

be improved along these lines.
Our model, based on considering the

dot as a new structure in its own right
(rather than viewing it as a perturbation
on the bulk material), is made possible
computationally by a series of innova-
tions rendering a 103-106-atom  problem
tractable within a pseudopotential frame-
work using common workstations. The
approach includes no adjustable parame-
ters outside the bulk band structure;
treats nanostructures of all dimensional-
ity (including the bulk) on equal footing;
captures the correct atomistic structure,
strain, and symmetry (including surface
effects); and incorporates Coulomb and
exchange effects without any further ap-
proximations. It can be applied to “free-
standing” (e.g., colloidal) dots as well as
to embedded (“self-assembled”) dots.
We have applied it to Si,14r24  Inl?,‘7,1s,36
InAs/GaAs,15,16  CdSe,34,36  GaAs
AlAs,%, and4’ InP/GaP  nanostructures.
These studies revealed the dependence
of bandgaps on size and shape,14-17,24,34
the origin of the red-shifted emission,‘“32
the microscopic origin of electron-hole
exchange,26 and size-dependent screen-
ing,27  the scaling of the Coulomb interac-
tion,25  the existence of “zero-confinement
states”14 and odd-even oscillations’4 in
films, the nature of states in strained
pyramids,16 and charge-separation in
Russian D01ls.~~
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