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Applicability of the k –p method to the electronic structure of quantum dots
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National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 18 September 1997!

Thek•p method has become the ‘‘standard model’’ for describing the electronic structure of nanometer-size
quantum dots. In this paper we perform parallelk•p ~636 and 838! and direct-diagonalization pseudopo-
tential studies on spherical quantum dots of an ionic material—CdSe, and a covalent material—InP. By
using an equivalent input in both approaches, i.e., starting from a given atomic pseudopotential and deriving
from it the Luttinger parameters ink•p calculation, we investigate the effect of the different underlying
wavefunction representations used ink•p and in the more exact pseudopotential direct diagonalization.
We find that~i! the 636 k•p envelope function has a distinct~odd or even! parity, while atomistic wave
function is parity-mixed. The 636 k•p approach produces an incorrect order of the highest valence states for
both InP and CdSe dots: thep-like level is above thes-like level. ~ii ! It fails to reveal that the second
conduction state in small InP dots is folded from theL point in the Brillouin zone. Instead, all states ink•p are
described asG-like. ~iii ! Thek•p overestimates the confinement energies of both valence states and conduction
states. A wavefunction projection analysis shows that the principal reasons for thesek•p errors in dots are~a!
use of restricted basis set, and~b! incorrectbulkdispersion relation. Error~a! can be reduced only by increasing
the number of basis functions. Error~b! can be reduced by altering thek•p implementation so as to bend
upwards the second lowest bulk band, and to couple the conduction band into thes-like dot valence state. Our
direct diagonalization approach provides an accurate and practical replacement to the standard model in that it
is rather general, and can be performed simply on a standard workstation.@S0163-1829~98!03112-9#
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I. INTRODUCTION

Nanometer-size semiconductor quantum dots can now
made either by colloidal techniques1–8 or by controlled
coarsening of thin films grown via the Stranski-Krastan
mode.9–12 Colloidally-grown dots of CdSe,1–4 InP,5–7 or
InAs ~Ref. 8! are nearly spherical, unstrained objects w
diameters ranging from 20 to 70 Å, whose surfaces are p
sivated by organic ligands. The size distribution is so u
form that up to 10 excited electron-hole states can be
served in photoluminescence excitation spectroscop2,8

Quantum dots fabricated by controlled coarsening~‘‘self-
assembled’’!, on the other hand, appear in flattened pyram
dal ~or sometimes pancake! shapes with confining dimen
sions ~height! of 50–150 Å. These are strained objec
passivated by a~lattice-mismatched! semiconductor barrie
~e.g., InAs/GaAs!. Typically, 1–3 excited electron-hol
states have been observed.11

The emergence of rich spectroscopic signatures in b
classes of semiconductor quantum dots has prompted a n
ber of recent attempts at interpreting their electro
structure.1–4,7–10,12–16The ‘‘standard model’’ used almos
universally to this end is thek•p effective-mass
approach.17–19 In this method, a number (Nb) of bulk Bloch
bands at the Brillouin-zone center~G states! are used to ex-
pand the wave functions of the dot, and matrix elements
determined empirically via fitting the observed bulk disp
sion curves. The electronic structure of the unstrain
spherical colloidal dots has been successfully interpreted
the Nb56 bandsk•p approach whose free parameters a
fitted to the measured spectrum of the quantumdots itself.2,4

The electronic structure of the strained pyramidal dots
been interpreted via a single band effective-mass model12 a
570163-1829/98/57~16!/9971~17!/$15.00
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single heavy-hole model,10 a 4-bandk•p model,13 and an
8-bandk•p model,14 with parameters fitted to the measure
bulk properties.

The absence of translational periodicity in all three
mensions, the existence of carrier quantum confinemen
small volumes, and the appearance of inhomogeneous in
facial strain20 and surface states,21 all contribute to create
extensive coupling between bulk Bloch states in forming
wave functions of quantum dots. Currentk•p
methods2,7,10,12–16approximate this massive coupling via
restricted basis set of just a few~2–8!, G-like bulk Bloch
bands. Since the excitation energies are sometimes fitted
rectly to experiment on quantum dots,2,4 agreement with ex-
periment, by itself, does not always provide a test to
adequacy of the representation. Thus, independent tests
from fitting the target results, are needed in order to und
stand the spectroscopy of nanostructures.

In the cases of~i! three-dimensional~3D!-periodic bulk
solids,22–24 and ~ii ! 2D-periodic quantum wells23,25,26or su-
perlattices, such direct tests of thek•p method do exist. In
these cases, the energy bands obtained via a direct diag
ization ~i.e., convergedNb! of the electronic Hamiltonian
~e.g., pseudopotential23,24or tight-binding25,26! are contrasted
with standardk•p predictions whose input~‘‘Luttinger’’ ! pa-
rameters are derived, for consistency, from the same un
lying Hamiltonian. Such tests have shown how well t
k•p method works near theG-point ~from which its param-
eters are drawn!, and how its performance deteriorates wh
called upon to describe states whose wave functions h
significant off-G components. The ability of a set ofNb
Bloch functions atG-point $um,G(r )% to represent a single
Bloch orbital un,kÞ0(r ) away from G can be measured b
9971 © 1998 The American Physical Society
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Pn
(Nb)(k)5(m51

Nb u^um,Guun,k&u2. The closerPn
(Nb)(k) is to 1,

the more complete is the representation ofun,kÞ0(r ) via the
set $um,G(r )%. Figure 1 shows~neglecting spin-orbit cou-
pling! for zincblende bulk InP how its light-hole~lh! and
heavy-hole~hh! bands atkÞ0 along~100! direction can be
expanded byNb56 or by Nb58 G bands. We see that i
Nb56 G bands~two lh and four hh! are used, only 70% o
thek52p/a(0.2,0,0) lh character can be captured. The er
increases rapidly as one moves further away fromk50. For
the hh state,Phh

(Nb)(k) is almost the same forNb56 andNb

58 since the hh state does not couple with the conduc
band. From Fig. 1, we see that even for the 3D bulk, the e
12Pn

(Nb)(k) of representing the wave function away fromG
by a small number ofG-like bulk bases grows rapidly as th
wave vectork moves away from Brillouin-zone center. A
recent study27 has shown that, given that the parameters
the k•p method are usually fitted to the 3D-periodic bu
solid, its errors increase in the sequence of 3D bulk→2D
wells→superlattices→1D quantum wires→0D quantum
dots. However, only the first two of this sequence~3D and
2D! have been studied. The adequacy of the currently u
k•p models to describe the spectroscopy of 0D quantum
dotshas thus far not been examined.

In spite of the expected breakdown of the small ba
k•p method for small dot sizes, a large number ofk•p
calculations1–4,7–10,12–16exist on dots down to the size of 2
Å diameter. Sometimes such calculations offer a disti
physical explanation to some important experimental p
nomena. For example,k•p theory7,15 predicted that the top
valence state of InP dots hasp-envelope symmetry, and i
thus dipole forbidden to thes-envelope lowest conductio
state. This prediction has been used to explain the obse
long radiative lifetime,7 and is also appealing to explain th
observed photoluminescence red shift.6 However, a direct
diagonalization calculation~see below! shows that the top
valence state hass-symmetry, so a fundamentally differen

FIG. 1. The overlapPn
(Nb)(k)5(m51

Nb u^um,Guun,k&u2 between the
kÞ0 Bloch functionun,k(r ) and theG-like states$um,G(r )%. The
closer the overlap is to 1, the better the set ofNb G-like states can
describe akÞ0 state. All basis functions are calculated by pseu
potential direct diagonalization~solid lines: Nb56; dotted
lines: Nb58!.
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physical explanation has to be sought for the above exp
mental observations.28

In considering the adequacy of thek•p method, three is-
sues will be studied: ~i! What are the dependences of e
ergy level spacing and wave functions of dots on quant
sizes?~ii ! What are the order and symmetry of dot valen
states? Does the top valence state have as-like or p-like
envelope symmetry?~iii ! Why does the ‘‘standardk•p
model’’ appear to work better for CdSe dots2 than for InP
~Ref. 7! and InAs?8

In this paper we perform parallelk•p and direct-
diagonalization~pseudopotential! studies on spherical, un
strained quantum dots of an ionic material—CdSe, an
covalent material—InP. The inputs to both approaches
equivalent—we start from a given atomic pseudopoten
and derive from it the Luttinger parameters needed as in
to thek•p calculation on the electronic structure of dot. Th
comparison between the results thus reflects the different
derlying wave function representations used by thek•p and
the direct-diagonalization approach. We will see that
direct-diagonalization pseudopotential approach not only
fers a way to analyze thek•p, but is also a viable, more
accurate, and flexible replacement to thek•p approach.

II. DIRECT-DIAGONALIZATION APPROACH
TO BULK SOLIDS AND DOTS

The single-particle electronic structure of bulk-period
solids or nanostructures is generally described by solving
Schrodinger equation:

F P2

2m0
1V~r !Gc~r !5ec~r ! . ~1!

The potentialV(r ) could be computed self-consistently fro
the occupied states~e.g., the density-functional formalism29!,
or it could be approximated as a superposition of scree
atomic potentials30

V~r !5(
a

(
R

va~r2R2da! ~2!

for atom speciesa at basis siteda in cell R. Equation~1! is
usually solved by expandingc~r ! in some fixed basis set. Fo
periodically repeated units, wherec~r ! can be written in a
Bloch form

cnk~r !5eik•runk~r !, ~3!

a natural choice is to expandc in plane waves of reciproca
lattice vectorG:

cnk~r !5eik•r (
G

Gmax

Cnk~G!eiG•r, ~4!

whereGmax is the cutoff of basis.

-
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It is now straightforward to compute the screened pseu
potential va(r ) from an atomistic mean-field electron
theory~e.g., density functional!31,32and to solve Eqs.~1! and
~2! by a standard diagonalization method.33 However, in this
approach, the computational effort scales as thecubepower
of the number of atoms per unit cell~due to the need to
orthogonalize eachc i to the lower states!, so the method is
limited to small systems containing,100 atoms per cell.
Another approach is thus needed for quantum dots w
;30– 50 Å diameter ('1000– 5000 atoms). We propose
build on the fact that in such nanostructures one is of
interested only in the states near the valence-band maxim
~VBM ! and the conduction-band minimum~CBM!. Hence, it
makes no computational sense to have to orthogonalize t
states to many lower-energy states that are physically u
teresting. It is more reasonable34 to ‘‘fold’’ the spectrum of
Eq. ~1! around a reference energye ref

F P2

2m0
1V~r !2e refG2

c~r !5~e2e ref!
2c~r !, ~5!

so that the lowest eigenvalue is now the one nearest toe ref .
By placing e ref in the region of physical interest~the band
gap!, one can thus find the highest occupied dot or
~HODO! and the lowest unoccupied dot orbit~LUDO! with-
out having to search and orthogonalize many lower eig
states that are now shifted outside the ‘‘window of interes
This linearly-scaling ‘‘folded spectrum method’’ has be
applied34–36 to 103– 105 atom nanostructures using plan
wave bases@Eq. ~4!# and screened pseudopotential@Eq. ~2!#.
We will refer to the approach of Eqs.~1!–~5! as ‘‘direct
diagonalization.’’

A more conventional and more frequently used appro
is thek•p method, described next.

III. THE k –p FOR BULK SOLIDS AND DOTS

The purposes of this section are to~i! describe the ap-
proximations underlying the standardk•p model as com-
pared with the direct-diagonalization approach. This w
provide guidance as to what may cause the errors ink•p
performances.~ii ! provide useful working equations for th
k•p method.

A. 838 k–p for bulk periodic solids:
Plane-wave representation

Since thek50 ~zone-center! Bloch functions$un,k50% of
Eq. ~3! form a complete function set, one can expand
wave function as

c~r !5 (
m51

Nb F(
k

bm~k!eik•rGum,k50~r !

5 (
m51

Nb

Fm~r !um,k50~r !, ~6!
o-
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whereFm(r ) is the ‘‘envelope function.’’ Inserting Eq.~6!
into Eq. ~1! gives

(
m51

Nb F S en,01
\2k2

2m0
2en,kD dm,n1

\

m0
k•Pn,mGbm~k!50,

~7!

wherePn,m5^un,0(r )u2 i\¹uum,0(r )& is the momentum ma-
trix element,en,0 is the band energy atk50. We see from
Eq. ~7! that ~a! the deviation ofen,k from the parabolic dis-
persion law originates in the (k•Pn,m) term; ~b! the informa-
tion encoded in the microscopic potentialV(r ) in Eq. ~1! has
now been transformed in Eq.~7! to $en,0% and$Pn,m%; and~c!
given $en,0% and $Pn,m% for a converged basis, Eq. ~7! pro-
duces the bulk dispersionen,k

k•p equivalent toen,k obtained via
direct diagonalization of Eq.~1!.

However, it is customary ink•p applications to severely
truncate the number of bandsNb used. One often uses
single bulk conduction state atG (us) and three VBM states
~ux , uy , and uz!. Including spin, this gives an ‘‘838
model.’’ If only the valence states are retained, we hav
‘‘6 36 model,’’ which includes, like the 838 model, the
split-off band in the basis~although the numerical value o
spin-orbit splittingD0 is optional: D050 or D0Þ0!. The
neglect of the split-off valence band leads to a ‘‘434
model.’’ As the bases are truncated, one expects to find
the bulk k•p approach of Eq.~7! some errors22–26 in the
predicted dispersion relationen,k

k•p . The convergence ofen,k
k•p

with Nb was examined previously24 in a ‘‘first-principles
k•p approach’’. In this approach, Eqs.~1!–~4! were first
solved for bulk GaAs via a direct-diagonalization approa
thus producing the ‘‘exact’’ dispersionen,k as well as the
input $en,0 ,Pn,m% needed ink•p calculations. Using this in-
put, thek•p equation~7! was then solved for different basi
sizesNb . The resultingen,k

k•p was then examined as a functio
of the number of bandsNb used, and compared with th
‘‘exact’’ dispersionen,k . It was found that for theX1c bulk
state, for example, reducing thek•p error to 1 meV requires
Nb;150 G-like Bloch bands, but ifNb510 G-like bands
were used, the error was as large as 300 meV. IfNb was
further reduced to 8, the error inX1c went up to 20 eV, and
the curvatures~hence, effective masses! of the valence bands
have a negative sign. Application of direct-diagonalizati
and ‘‘first-principles k•p’’ to GaAs/AlAs superlattices23

showed that the errors vsNb parallel those in bulk GaAs.
The problem of the inadequacy of a small basis setk•p to

reproduce bulk dispersion awayG can be solved in part by
treating$Pn,m% as adjustable parameters and introducing i
the Hamiltonian new terms that are allowed by symme
and can be empirically adjusted. The new terms and th
adjustable parameters are justifiedpro forma by viewing
them as a consequence of ‘‘folding-in’’ of states outside
explicit bases~Löwdin folding37!. Using the explicit bases o
$us
↑ ,ux

↑ ,uy
↑ ,uz

↑ ,us
↓ ,ux

↓ ,uy
↓ ,uz

↓% in Eq. ~7! and perturbation
theory,38 one has the 838 k•p Hamiltonian matrix as

H838~k!5S Hnso~k!1Qso

2Rso*
Rso

Hnso* ~k!1Qso*
D , ~8!

where
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Hnso~k!5F ec,01A8k2

2 iPkx1B8kykz

2 iPky1B8kxkz

2 iPkz1B8kxky

iPkx1B8kykz

Akx
21B~ky

21kz
2!

Ckxky

Ckxkz

iPky1B8kxkz

Ckxky

Aky
21B~kx

21kz
2!

Ckykz

iPkz1B8kxky

Ckxkz

Ckykz

Akz
21B~kx

21ky
2!

G , ~9!

Qso5
D0

3 S 0
0
0
0

0
0
i
0

0
2 i
0
0

0
0
0
0
D , Rso5

D0

3 S 0
0
0
0

0
0
0

21

0
0
0
i

0
1

2 i
0
D , ~10!
to
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where k25kx
21ky

21kz
2, D0 is the energy splitting due to

spin-orbit interaction, andA8, B8, A, B, and C are the
symmetry-allowed adjustable parameters38 of the second-
order perturbation matrix elements due to the opera
(k•Pn,m) in Eq. ~7!. P52 i\/mo^usuPxuux& describes the
coupling between conduction and valence bands.

The Löwdin folding modifies the elements of the Ham
tonian matrix from the ‘‘first principlesk•p’’ scheme to new
elements$A,B,C,A8,B8,P% in Eq. ~9! so that the eigenval
ues of theNb3Nb submatrix spanned by theNb energy
states equal the eigenvalues of the original, full matrix. T
general procedure is to adjust thek•p parameters of Eq.~8!
so that the curvatures of the solutionenk

k•p fit the experimen-
tally measuredbulk effective masses. In the diamond lattic
B8 vanishes by symmetry, but this condition is also oft
applied39 to zincblende and wurzite structures without inve
sion symmetry. Also,A8 is often used to fit the electro
effective mass. The parameters$A,B,C% of Eq. ~9! are often
discussed in terms of the Luttinger parameters,

g152 2
3 ~A12B!, g252 1

3 ~A2B!, g352 1
3 C.

~11!

For the bulk material, the relationships between the
rameters$g1 ,g2 ,g3% and the effective masses are describ
as in the Appendix of Ref. 23. It is important to notice th
the fitting of effective masses applies to the 3D-periodic b
solids. Therefore, the use of the ensuing parameters to
scribe other systems~e.g., 0D quantum dots! is not protected
by the underlying formalism.

Instead of the basis set$us
↑ ,ux

↑ ,uy
↑ ,uz

↑ ,us
↓ ,ux

↓ ,uy
↓ ,uz

↓%, for
the consideration of symmetry~also for the later use in quan
tum dots!, one can also use another set of Bloch basisuJ,Jz&,
specified by the angular momentumJ5LB1S and itsz com-
ponentJz . Here,LB is the angular momentum ofBloch or-
bit, andS is the spin. The basesuJ,Jz& are defined as

u 1
2 , 1

2 &e5usu↑&,

u 1
2 ,2 1

2 &e5usu↓&,

u 3
2 , 3

2 &h5u1u↑&,

u 3
2 , 1

2 &h5
1

)
~2u1u↓&1&uzu↑&),
r

e

-
d
t
k
e-

u 3
2 ,2 1

2 &h5
1

)
~u2u↑&1&uzu↓&),

u 3
2 ,2 3

2 &h5u2u↓&,

u 1
2 , 1

2 &h5
1

)
~&u1u↓&1uzu↑&),

u 1
2 ,2 1

2 &h5
1

)
~2&u2u↑&1uzu↓&), ~12!

where u151/&(ux1 iuy) and u251/&(ux2 iuy). The
corresponding Hamiltonian matrix in the basis set of Eq.~12!
corresponds to a unitary transform of the matrix in Eq.~8!,
and is given in Appendix A.

B. 838 k–p for bulk and dots: spherical-wave representation

The application of k•p method to quantum dots
involves40 replacing thekx , ky , andkz in Hamiltonian ma-
trix elements in Eq.~A2! ~see Appendix A! by the operators
2 i ]/]x, 2 i ]/]y, and2 i ]/]z, and expanding the envelop
function Fm(r ) in Eq. ~6! by plane waves. This was use
extensively for quantum wells.39 However, for spherical
quantum dots, this approach is computationally ineffective
more convenient approach19 is to expand the plane-wave-lik
envelope functioneik•r in Eq. ~6! by spherical waves
uk,L,Lz&[A2/phL(kr)YL,Lz

(u,f) @where hL(kr) is the

spherical Hankel function, andYL,Lz
is the spherical har-

monic function# via the relationship

eik•r5
1

A~2p!3 (
L,Lz

YL,Lz
* ~ k̂!uk,L,Lz&, ~13!

where k̂ is the angular direction vector ofk. By using Eqs.
~12! and ~13!, the total bulk wave function in Eq.~6! then
becomes

c~r !5 (
L,Lz

(
J,Jz

(
k

b̃L,Lz ,J,Jz
~k!uk,L,LzuJ,Jz&, ~14!

where b̃L,Lz ,J,Jz
(k) are the wave function expansion coef

cients.uJ,Jz& anduk,L,Lz& are, respectively, the Bloch com
ponent@related with differentbulk bands via Eq.~12!# and
the spherical envelope component@related with usual plane
wave-like bulk envelope functioneik•r via Eq. ~13!#.
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An almost universally adopted approximation2,7,15,16,19in
the application ofk•p to quantum dots is to takeA5B1C in
Eq. ~8! @i.e., g25g3 in Eq. ~11!#. Under thisisotropic band
approximation, the bulk band dispersion depends only on
amplitude ofk, and the total momentum operatorF5L1J is
a conserved quantity.41 Thus, the Hamiltonian matrix ele
ments between different$F,Fz% vanish. By the theory of
angular momentum coupling42 @i.e., linearly combining the
basesuk,L,Lz&uJ,Jz& in Eq. ~14!#, the new bases of the irre
ducible representation of ensemble quantities$F,Fz ,J,L%
can be written as

uF,Fz ,J,L&5(
Lz

(
Jz

lL,Lz ,J,Jz

F,Fz uk,L,Lz&uJ,Jz&, ~15!

where lL,Lz ,J,Jz

F,Fz is the Clebsch-Gorden coefficient.42 Com-

bining Eqs.~A1!, ~13!, and ~15!, the block-diagonal Hamil-
tonian matrix in the basesuF,Fz ,J,L& can be obtained. The
explicit expressions for the Hamiltonian blocks correspo
ing to F5 1

2 andF5 3
2 are given in Eqs.~B1!–~B3! in Appen-

dix B. These equations will be used in the electronic str
ture of both bulk and dots.

Equations ~B1!–~B3! in Appendix B are basically an
838 k•p model except that they are cast in a spheri
approximation. While this 838 model can be applied di
rectly, almost allk•p studies on quantum dots use a simp
fied way: decouple first the conduction states from the
lence states, thus, leading to a 636 model for the valence
states and a 232 model for the conduction states. We w
follow this practice too.

C. 636 k–p: valence states

By diagonalizing the decoupled Hamiltonian submatr
for valence states@Eqs. ~B1!–~B3! with P50# for a given
wave vectork, we obtain, in each submatrix correspondi
to the fixed good quantum numbers$F,Fz%, the isotropic
bulk dispersionenk

iso, and wave function

uxnk
F,Fz~r !&5(

J,L
aJ,L

~n! uF,Fz ,J,L&

5(
J,L

aJ,L
~n! hL~kr ! uF,Fz ,J,L&u,f , ~16!

where we use the definition of spherical waveuk,L,Lz& to
write out the radial part. The wave functions of Eq.~16! are
‘‘bulk orientated’’ in the sense that they come from bu
Hamiltonian except that they are calculated in terms
spherical waves. These wave functions do not satisfy
boundary condition of dots, where the wave functions
required to vanish at dot’s boundary of infinite barrier.
order to satisfy the dot boundary condition and the intrin
bulk dispersion relationship, the dot wave functions need
be a linear combination of all the solutions of Eq.~16! with
the same energyenk

iso, i.e.,
e

-

-

l

-

f
e
e

c
o

cdot~r !5(
n

Cnuxnk~r !&5(
n

(
J,L

CnaJ,L
~n! uF,Fz ,J,L&

5(
n

(
J,L

CnaJ,L
~n!hL~knr !uF,Fz ,J,L&u,f , ~17!

where we use Eq.~16! in the derivation. The condition tha
the wave function vanishes at the boundary of the dotr 5R
yields the determinant equation

detuaJ,L
~n!hL~knR!u50, ~18!

wherekn is an implicit function of energy by inverting the
dispersion relationenk

iso.
In our k•p implementation for quantum dots,~i! we invert

the isotropic dispersionenk
iso @obtained via Eqs.~B1!–~B3!

with P50# for each irreducible representationuF,Fz& and a
given energye, thus finding the wave vectorskn @i.e., the
‘‘inverse dispersion’’# and the bulk-orientated wave-functio
coefficientsaJ,L

(n) @see Eq.~16!#; ~ii ! The boundary condition
@Eq. ~18!# is then used to find out whether the assumed
ergye is the dot energy level;~iii ! Unlike the work of Sercel
and Vahala19 where only a 434 model is used for dot va
lence states~i.e., the split-off valence band is neglected!, all
the presentk•p calculations are done by the 636 model;
~iv! The whole procedure to find the energy levels of dots
realized numerically avoiding many analytic formulae th
are quite complicated.

D. 232 k–p: conduction states

For the conduction states, a 232 model is obtained afte
decoupling. The effect of interaction between valence ba
and conduction bands is taken into account by a perturba
theory as described in Ref. 43. The resulting single Sch
dinger equation for the electron is

v~e!S 2
\2

2m0
D¹2c5~e2eg!c, ~19!

where

v~e!5112 f 1
2m0P2

3\2 S 2

e
1

1

e1D D . ~20!

The parameterf 5(A821)/2 is used to fit the electron effec
tive mass. Our calculated conduction band energies for b
use Eq.~19!. In quantum dots, Eq. ~19! can be solved eithe
with infinite barrier or finite barrier. Assuming a finite barrie
DEc for electron outside dots, and imposing the continuit
of dot wave function and its derivative, the energy levels
dot conduction states can be calculated by

v~e!kd

j L8~kdR!

j L~kdR!
5 ikb

hL8~ ikbR!

hL~ ikbR!
, ~21!

where j L is the spherical Bessel function, and



e

.
th
o
p

la

a-

d

te

te

n
ri

d
r
an
d

ti-

t

d

em

-
ce

or
la
ul
ic
e
ri

-

le
he

e

-

of

ari-

u-

ex-
are
the

9976 57HUAXIANG FU, LIN-WANG WANG, AND ALEX ZUNGER
kd5A2m0

\2

e2eg

v~e!
,

kb5A2m0

\2 ~2e1eg1DEc! ~22!

are the wave vectors in the dot and in the barrier, resp
tively.

E. Summary of k–p approximations

The k•p approximations for quantum dots are:
~a! The truncation of the number ofG-like Bloch bases,

and the use of second-order perturbation to correct this
practice, these approximations are mitigated by treating
k•p parameters as adjustable parameters fitted to the
served bulk effective masses. The extent to which these
rameters work for systems other than fitted~e.g., nanometer
dots! remains unknown.

~b! The valence states and conduction states are calcu
in a decoupled way. The 838 model then breaks into
636 valence-only plus 232 conduction-only matrice.

~c! The isotropic approximation is used for the dot v
lence states~i.e., g25g3!, and then the dispersionenk

k•p de-
pends only on the amplitude ofk.

~d! The method does not consider the existence of real
surface states or interface states at the dot’s boundary.

IV. RESULTS AND DISCUSSIONS

InP and CdSe colloidal quantum dots were studied ex
sively both experimentally1–7 and theoretically.2,15,16 In par-
ticular, the observed photoluminescence spectra were in
preted byk•p models.1–4,7,15,16For CdSe dots, thek•p was
also used to assign the observed high excited transitio2

however, thek•p parameters were adjusted to fit the expe
mental data of thedot.2,4 For InP dots, the 636 k•p pre-
dicted that the lowest valence-to-conduction transition is
pole forbidden.7,15 This was used to explain the carrie
dynamics.7 We are interested in these two materials for
additional reason, namely, that InP and CdSe have quite
ferent magnitudes of spin-orbit splitting:D050.11 eV for
InP andD050.42 eV for CdSe. Therefore, we can inves
gate how this difference will affect the applicability ofk•p
model to quantum dots.

For the purpose of a consistent comparison between
direct diagonalization@Eqs.~1! and~5!# andk•p model@Eqs.
~16!–~22!#, the k•p Luttinger parameters are all calculate
from the curvature of thebulk-materialdispersion obtained
by direct diagonalization using the same pseudopotential
ployed in dot calculations. These screened atom
pseudopotentials31,32 are derived from local-density
approximation~LDA ! calculation, and are able to reprodu
the LDA wave functions and theexperimentally observed
~not LDA! bulk transition energies, effective masses, def
mation potentials. The kinetic energy cutoff in dot calcu
tion is taken the same as in deriving the potential from b
solids, i.e., 6.8 Ry for InP and 6.88 Ry for CdSe. The latt
constants for InP and CdSe are 5.83 Å and 6.08 Å, resp
tively. After the effective masses of zincblende bulk mate
als are calculated by the pseudopotential approach~see re-
c-
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sults in Table I!, the Luttinger parameters$g1 ,g2 ,g3% are
obtained from Eqs.~B4! and~B5! in Appendix B. The aver-
ageḡ25(2g213g3)/5 is used to replace the value ofg2 in
the isotropick•p Hamiltonian.44 Table I lists the pseudopo
tential effective masses and the ensuingk•p parameters used
here for zinc-blende~ZB! InP and ZB CdSe. We see in Tab
I that for InP the effective masses calculated from t

TABLE I. The 636 k•p parameters of ZB InP and ZB CdS
used in this work: the band gapeg , Ep52m0P2/\2, and the pa-
rameter f for conduction state@Eq. ~20!#; the spin-orbit splitting
D0 , the Luttinger parametersg1 , g2 , g3 , and the averaged param
eter ḡ2 for valence states. The calculated~pseudopotential! bulk
effective masses, from which the Luttinger parametersg1 , g2 , and
g3 are derived, are also listed in the table. For ZB InP, two sets
parameters corresponding toD050 andD0Þ0 are given, and the
available experimental effective masses are also listed for comp
son~in parentheses, columnD0Þ0!. eg , Ep , andD0 are in units of
eV.

Parameters InP CdSe

D050 D0Þ0

eg 1.45 1.42 1.84
Ep 20.0 20.0 17.4
f 20.42 20.42 20.75
D0 0.00 0.11 0.42
g1 4.86 4.94 2.52
g2 1.37 1.50 0.65
g3 1.85 1.99 0.95
ḡ2 1.66 1.79 0.83
me 0.072 0.072~0.079a! 0.119
mhh(001) 0.474 0.513~0.52b, 0.61c! 0.820
mhh(111) 1.030 1.055~0.95d! 1.613
mlh(001) 0.097 0.126~0.10c, 0.12e! 0.262
mlh(111) 0.083 0.112 0.226

aReference 45.
bReference 46.
cReference 47.
dReference 48.
eReference 49.

TABLE II. Hole effective masses of wurzite bulk CdSe, calc
lated by our pseudopotential-derivedg152.52, ḡ250.83, and the
quasicubic model. The results are compared with two sets of
perimental values. The experimental values in the third column
obtained by subtracting from the measured excitonic masses
electron mass. We also give the values obtained usingg152.04,
ḡ250.58 fitted by Norris and Bawendi~Ref. 2! to the measure-
ments on CdSe dots.

Masses Ref. 2 Present work Expt.

Hermann and Yua Bir and Pikusb

mi
A 1.14 1.16 1.19 .1

m'
A 0.38 0.30 0.29 0.4560.09

mi
B 0.31 0.24

m'
B 0.68 0.60 0.960.2

aReference 51.
bReference 52.
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pseudopotential theory agree well with experiments.45–49

Since CdSe exists experimentally in the wurzite~WZ! form,
we can assess the quality of our parameters by conve
our ZB results to WZ results. We use our pseudopotent
derivedg1 and ḡ2 from the zinc-blende structure~Table I!
and compute the effective masses of wurzite CdSe using
quasicubic model50 ~i.e., 1/mi

A5g122ḡ2 , 1/m'
A5g11ḡ2!.

The calculated masses of wurzite CdSe are compare
Table II with experimental values51,52 and with the values
usingg152.04 andḡ250.58 fitted by Norris and Bawendi2

to the measurements on CdSe dots. We see that our C
Luttinger parameters give effective masses close to exp
mental values.

Since the spin-orbit splittingD0 is quite small for InP, for
the simplicity of computation,D0 will be taken as zero both
in the direct diagonalization and in thek•p calculations. We
compared the theoretical results of InP quantum dots w
D050 and those withD050.11 eV ~our pseudopotentia
value!, and found that the energy levels and the wave fu
tions of the dots change but slightly.

A. InP bulk band structures

Figure 2 compares the InP bulk band structure obtai

FIG. 2. Band dispersions of bulk InP along theGX direction as
calculated by pseudopotential direct diagonalization~DD, solid
lines! and by the 636 ~for valence! and 232 ~for conduction!
k•p model~dotted lines!. For the conduction band, the single-ba
parabolick•p dispersion is shown in thick dashed line. For t
light-hole band, in addition to the 636 k•p ~with g154.86,
ḡ251.66, D050! dispersion ~dotted line!, the 838 k•p ~with
g1851.42,ḡ28520.062,Ep514.98,a51.0! dispersion is also shown
in thin dashed line. The notationbbn ~n52 to 5! indicates the 2nd
to 5th bulk bands in the order of increasing energy. All curves
calculated with the spin-orbit parameterD050.
ng
l-

he

in

Se
ri-

h

-

d

using thek•p model@Eq. ~19! and Eqs.~B1!–~B3!# with the
exact, pseudopotential direct diagonalization result@Eq. ~1!#.
Here, we label the bulk bands~bb! with a band indexn in the
increasing order of energy~without counting spin degen
eracy!. The lowest conduction band (bb5) was calculated by
using the 232 k•p approach with both parabolic dispersio
(\2k2/2m* ) and the nonparabolic Schrodinger equation@Eq.
~19!#. We see that

~i! Including the nonparabolic effect in the conductio
band (bb5) improves considerably thek•p dispersion nearG.
However, a large deviation still remains near theX point.

~ii ! The k•p dispersion of the heavy-hole-like valenc
bands (bb3,4) agrees well with the direct-diagonalization r
sult near the zone center, but this agreement becomes u
isfactory nearX.

~iii ! For the light-hole band (bb2), the whole band calcu-
lated by the 636 k•p model differs significantly from the
direct-diagonalization result.

B. InP quantum dots: Energy levels and wave functions

We consider five spherical dots In19P16, In44P43, In92P83,
In240P225, and In456P435 with diametersD of 11.8, 16.0, 20.2,
28.0, and 34.8 Å, respectively. The dot surfaces were fu
passivated.21 Figure 3 compares the orbital energies of t
lowest conduction state and the two highest valence state
InP dots, calculated by thek•p method@using Eqs.~16!–
~18! for valence states and Eqs.~19!–~22! for conduction
states# and by the direct-diagonalization method. In order
parallel thek•p studies in the literatures, we use in th
k•p calculations the 636 model with infinite barrier for the

e

FIG. 3. The orbital energies of the lowest conduction state
of the two highest valence states of InP dots. Diamond and c
symbols correspond tos- and p-like levels calculated by direc
diagonalization~DD!, and solid lines are guides for eyes. Dotte
lines give results ofk•p model. For the dot conduction state in th
k•p model, we show results calculated both with an infinite barr
~dotted line! and with a finite barrier~dashed line!.
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dot valence states, while a 232 model with both infinite and
finite barriers is used for the dot conduction states. The fi
barrier height is taken to be the work function of InP mater
(DEc55.9 eV).

1. Conduction states of InP dots

The k•p prediction for the lowest conduction state usi
infinite barrier significantly overestimates theelectroncon-
finement energy compared with the exact direct diagonal
tion. Using a finite barrier reduces the confinement energy
closer agreement with the results of direct diagonalizati
Fitting the energies of the lowest conduction states of diff
ent size dots gives~ec

dot in units of eV relative to the bulk
VBM energy,D in units of Å!

ec
dot5H 1.45115.10/D0.93

1.45184.52/D1.26

1.45126.25/D1.09

~direct diagonalization!;
~k•p with infinite barrier!;
~k•p with finite barrier!.

~23!

Figure 4~a! shows the radial wave function square
* uc(r )u2dudf of the lowest dot conduction state as obtain
from k•p model either with infinite~dotted line! or with
finite ~dashed line! barriers. It can be seen that thek•p wave
function corresponding to infinite barrier is strongly ‘‘con

FIG. 4. Radial wavefunctions squared of the 34.8 Å diame
InP dot as obtained in direct diagonalization~DD, solid lines!: ~a!
the lowest unoccupied dot orbit~LUDO!; ~b! two highest dot occu-
pied orbits~HODO’s! with s andp symmetries. For the LUDO, the
k•p radial wave functions squared of finite and infinite barriers
also shown in dashed and dotted lines, respectively.
te
l

a-
in
.
-

fined,’’ i.e., it decreases abruptly from the dot’s center to
dot’s boundary. However, the wave function computed w
a finite barrier exhibits a kink at the dot’s boundary. Th
reflects the requirement of current conservation and m
discontinuity. Furthermore, the wave function is rather fl
inside the dot~implying a much weaker confinement!. In
contrast, the radial wave function squared obtained by di
diagonalization is intermediate in terms of confinement, a
smoothly decays into the vacuum without any unphysi
kink. The large amplitude~which is the quantity plotted in
Fig. 4 multiplied by radius squared! of finite-barrier k•p
wave function near the dot’s boundary may cause incor
electron-hole wave-function overlap, hence, incorrect C
lomb and exchange interactions.

2. Valence states of InP dots

The direct-diagonalization approach predicts for the
lence states of InP dots that the HODO has a mostlys-like
envelope function symmetry, and the next state below ha
mostlyp-like envelope function symmetry~Fig. 3!. Note that
the notation for the envelope here reflects only the majo
angular character. The HODO has alsop,d character, and
thus is parity-mixed. Both states are threefold degene
whenD050, and twofold degenerate whenD0Þ0. The sym-
metries can be gleaned from Fig. 4~b! that illustrates the
radial wave function squared as obtained by the pseudo
tential calculation. The radial wave function of the HOD
has nonzero value at the origin~the dot’s center!, and the
envelope can be described by spherical Bessel func
j L50(ar ), thus beings-like. In contrast, the next valenc
state below the HODO has a zero amplitude at the orig
and its envelope can be described byj L51(ar ), thus being
p-like. We find that, when we change the surface passiva
potential ~to simulate different ligands in experiments!, the
order of theses andp valence levels does not change. Th
reflects the fact that the wave-function amplitudes at the
surface are very small@see Fig. 4~b!#.

One may wonder whether the electron-hole Coulomb
ergy, which is different fors-like and forp-like hole states,
can reverse thes/p order. We calculate the Coulomb energ
and find that, for theD534.8 Å dot, the Coulomb energy o
s-like hole with s-like electron is about 10 meVlarger than
that of p-like hole. Therefore, the inclusion of Coulomb in
teraction will not alter thes-above-p conclusion obtained in
our direct diagonalization.

In contrast with the result of the direct diagonalizatio
thek•p model gives the opposite order of valence level, i.
the HODO isp-like and the next state below iss-like ~Fig.
3!. One may ask at what dot size thes/p order ink•p will
become correct. Our calculation shows that t
k•p-predictedp-above-s level order is not changed even fo
dot size as large as 250 Å diameter, where the energy dif
ence ofs- and p-like states is negligible~0.3 meV!. This
indicates thatk•p gives the incorrects/p level order all the
dot sizes. Thisp-above-s order was also found in previou
k•p calculations.7,15

Based on the fact that thep-like valence state is dipole
forbidden to thes-like conduction state, thek•p-predicted
level sequence seems to be a natural explanation for the
perimentally observed photoluminescence red shift6 relative
to the absorption in selective excitation. This reverse le
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ordering obtained byk•p has been used to explain the carr
dynamical process involving a transition-forbidden lowe
exciton state.7 Unfortunately, our more accurate pseudop
tential calculation shows that these explanations are not
plicable, and other possibilities have to be sought.21 Using
k•p-predicted energy-level scheme, the resonant red s
will be the single-particle energy difference ofs- andp-like
valence levels plus the exchange splitting. This will give t
red shift of ;100 meV, which is significantly larger tha
experimental measurements6 ~around 20 meV! for the
D534.8 Å dot.

As shown in Fig. 3, the energies obtained by thek•p
calculation are significantly deeper than the direct diagon
ization results, implying larger confinement. The differen
is about 600 meV for theD520 Å dot. Analytic fitting of
the orbital energies of the dot valence states produces~rela-
tive to the bulk VBM energy!

ev
dot@s#5 H 2119.08/D1.84

2595.52/D2
~direct diagonalization!

~k•p!;

ev
dot@p#5 H 2130.93/D1.81

2472.6/D2
~direct diagonalization!;

~k•p!.
~24!

FIG. 5. Projection amplitudeuAi(nk)u2 @see Eq.~25!# showing
how much the bulk statesunk& participate in forming the following
statesu i & of InP dot with 34.8 Å diameter: ~a! the lowest unoccu-
pied dot orbit ~LUDO!; ~b! two highest occupied dot orbit
~HODO’s! with s-like symmetry~filled bars! andp-like symmetry
~unfilled bars!, where the unfilled bars are slightly shifted horizo
tally and the projections from different bulk bands to the HODO
are shifted vertically for clarity of display. The bulk bandsbbn are
denoted by an indexn in the increasing order of energy.
t
-
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C. How do the errors in the bulk band structure propagate
to the dot’s electronic structure?

We would like to inquire how the electronic structure
the bulk ~Sec. IV A! affects the energy levels ofdots ~Sec.
IV B !. In order to answer this question, we project eachdot
wave functionc i

dot @Eq. ~5!# onto a set of wave functions o
the bulk materialcnk

bulk @Eq. ~3!#, i.e.,

c i
dot~r !5(

n,k
Ai~nk!cnk

bulk , ~25!

where c i
dot(r ) and cnk

bulk are both calculated by the direc
diagonalization method, andAi(nk) are the spectral projec
tion coefficients. The contribution to the dot state from
given bulk band is obtained as a sum over all thek points for
this specific band, i.e.,

Ãi~n!5(
k

uAi~nk!u2. ~26!

Table III gives the band contributionÃi(n) to the dot
near-edge states from the eight lowest bulk bands~not count-
ing spin!. Figure 5 depictsuAi(nk)u2 @Eq. ~25!# as a function
of the wave-vector lengthk for the dot In456P435 with diam-
eter 34.8 Å. The projection@Eq. ~25!# is implemented using a
dot supercell that is commensurate with a cubic bulk cell@so
only some discretek points contribute to Eq.~25!#. If a non-
commensurate dot supercell is used, the effect is jus
broaden each peak in Fig. 5. The bulk wave functioncnk

bulk in
Eq. ~25! is normalized in the dot supercell. This gives no
malized projection contributionsAi(nk).

1. Conduction states of InP dots

Considering the LUDO, we see that the contributi
~throughout the Brillouin zone! from the lowest bulk conduc-
tion band bb5 ~85% to 92%, see Table III! dominates, indi-
cating that a single bulk band~i.e., a 232 model! is quite
adequate to describe the dot lowest conduction state.

Figure 5~a! shows however that the LUDO contains si
nificant projection amplitudeuAi(nk)u2 from off-G k points.
With decreasing dot size, thosek points contributing heavily
will move further away fromG point, so thek•p approach
becomes worse. We thus conclude that the significant er
that k•p makes in describing the dispersion of thebulk con-
duction band~Fig. 2! will be transferred to the description o
the conduction states of quantum dots.

Our direct diagonalization also predicts that for small I
dots, the next conduction state above the LUDO is no
G1c-derived direct state as depicted byk•p, but a
L1c-derived indirect state. To see that, we calculate the c
tributionQi(k)5(n51

` uAi(nk)u2 from thek points in the BZ.
Figure 6 shows the projection amplitudesQi(k) from thek
points within the plane passing theG, X, L, K, andU points
of the bulk Brillouin zone for the LUDO and the next sta
above the LUDO of In92P83 dot. The size of circle in this
figure is proportional to the contribution from thisk point.
We see that the LUDO originates mainly from bulk stat
near the BZ center, thus beingG1c-derived, but the next do
state above the LUDO~‘‘LUDO 11’’ ! originates mainly
from bulk states near theL point, thus beingL1c derived.
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TABLE III. The contributionsÃi(n) @Eq. ~26!# of the InP bulk band with indexn in forming the wave
functions of InP quantum dots. The bulk bands are labeled from 1 to 8 in the order of increasing ener~see
Fig. 2!. LUDO and HODO mean the lowest unoccupied dot orbit and the highest occupied dot
respectively.

Dot
size Bulk band

Projection on
LUDO ~%!

Projection on
s-like HODO ~%!

Projection on
p-like HODO ~%!

In92P83 1 0.33 0.23 0.28
(D520.2 Å) 2 3.47 20.45 0.89

314 1.41 70.15 94.61
5 84.37 3.75 1.13

61718 7.72 2.96 1.58
all other 2.70 2.46 1.51

In240P225 1 0.14 0.19 0.15
(D528.0 Å) 2 2.50 21.86 0.98

314 0.78 70.22 94.25
5 90.22 2.94 0.84

61718 4.72 2.64 2.14
all other 1.64 2.15 1.64

In456P435 1 0.13 0.15 0.12
(D534.8 Å) 2 2.67 20.75 0.55

314 0.91 73.37 96.61
5 91.55 2.38 0.67

61718 3.36 1.82 1.07
all other 1.38 1.53 0.98
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This L-derived indirect dot conduction state cannot be
scribed by the usualk•p model.

2. Valence states of InP dots

Considering next the dot valence states, Table III and F
5~b! show that

~i! the s-like dot valence state has a significant (;20%)
contribution from bulk band bb2 ~i.e., light-hole band!
whereas thep-like dot valence state has nearly no contrib
tion from this bulk band. Sincek•p overestimates the down
dispersion of bulk lh band~Fig. 2!, it will also overestimate
the confinement of the dots-like valence state.

~ii ! The contribution from the lowest bulk conductio
band (bb5) to thes-like dot state is larger than to thep-like
dot state~see Table III!. This suggests that the coupling b
tween valence bands and conduction bands play a more
portant role for thes-like dot valence state than for thep-like
dot valence state. We will show quantitatively~see Sec.
IV D ! that this kind of coupling is quite crucial in determin
ing thes/p level order.

~iii ! The s-like dot state has a significant amplitude atG
point, while thep-like dot state has no amplitude atG ~see
Fig. 5!. This suggests a way to distinguish thes-like dot state
from thep-like dot state.

~iv! The k points contributing heavily to thep-like dot
state are generally located further away from the zone ce
than thosek points contributing heavily to thes-like dot state
~see Fig. 5!. Sincek•p model can not describe well the fa
off-G bulk dispersion, it will also introduce errors for the d
p-like states.

We next examine the above conclusions quantitatively
-

.

-

m-

ter

D. Estimation of dot energy levels: The projection approach

Once the wave-function projection amplitudesAi(nk)
@Eq. ~25!# are available, we can estimate thedot energy lev-
els by using thebulk band dispersion, i.e.,

ẽ i
dot5 (

n51

Mb

(
k

enk
bulk uAi~nk!u2, ~27!

where enk
bulk is the bulk dispersion obtained either fro

pseudopotential calculation or from thek•p approach. In Eq.
~27!, we can intentionally change the number of bulk ban
Mb @meanwhile, we need to normalize the amplitud
Ai(nk)# to investigate its effect on the dot energy level. U
like the ‘‘truncated crystal method’’53 where only single
band and single wavevectork are involved, our model of Eq
~27! involves multiband and multi-k.

Table IV gives the energy levels of the LUDO state f
three InP dots. Column 3 shows that whenMb58 ~not
counting spin! pseudopotential bulk bands are used, the e
mated energy levels using Eq.~27! agree very well with the
direct-diagonalization result~column 2!. Given that in the
model of Eq.~27! surface effects are ignored, the agreem
between the estimated and the directly calculated energy
els indicates that surface effects are small for the do
LUDO state. This agreement remains even when we use
the lowest bulk conduction band in Eq.~27! ~column 4 in
Table IV! because of the dominant contribution from th
bulk band. However, if we use in Eq.~27! the bulk disper-
sion given by thek•p model, the estimated energy levels
dot ~column 5! become significantly worse than the dire
pseudopotential result. We concluded that the LUDO can
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approximated well by a single band if, and only if this is t
exact bulk band. Otherwise,~viz. thek•p! many more bands
are needed.

Table V shows analogous results to Table IV but for t
dot’s valence states~both s-like and p-like!. Column 3
shows that when we useMb58 pseudopotential bulk bands
the estimated energy levels are quite close to the direct
culation~column 2!, and the HODO state iss-like. However,
when we use only the three highest bulk valence band
Eq. ~27!, the order ofs and p levels changes, and the es
mated energies~column 4! are now significantly different
from the direct result~column 2!, especially for thes-like dot
valence states. This is due to the fact that thes-like dot state
is more sensitive to the valence-conduction coupling. T
shows that in order to have a correct prediction about thes/p
level order,inclusion of the three highest bulk valence ban

FIG. 6. The projection contributionQi(k)5(n51
` uAi(nk)u2

from thosek points within the plane passing theG, X, L, K, andU
points of the zincblende Brillouin zone in forming the two follow
ing conduction states of In92P83 dot with 20.2 Å diameter: ~a! the
LUDO; ~b! the next unoccupied dot orbit above the LUDO~i.e.,
LUDO11!. The larger the circle, the heavier the projection con
bution. The lines in this figure indicate the boundary of Brillou
zone.X andL points are located in the middle of respective line
Note that the LUDO isG-like, while the next state above isL-like.
l-

in

is

s

is insufficient even if the bulk dispersions of these th
bands are exact. Like our direct pseudopotential result,
recent tight-binding calculation54 on Si dots including the
valence-conduction coupling also gives as-like HODO state
except for very small dots~less than 87 atoms! where the
surface effect can not be neglected. Not surprisingly,
Table V, when we replace the pseudopotential bulk bands
an equivalent number ofk•p bands~column 5!, the esti-
mated energy levels seriously differ from column 4~also
from column 2! due to the difference in bulk band dispe
sion.

E. Improving k –p performances for InP dots

We have seen thatk•p errors for dots evolve from~i!
restricted size of basis set, and~ii ! incorrect bulk dispersion.
They could, however, also evolve from~iii ! the use of iso-
tropic bands.

We have studied how important the anisotropic effect d
to g2Þg3 is on the 636 k•p calculation of dots. This is
calculated for InP usingg154.86,g251.37, andg351.85,

-

.

TABLE IV. Energy levels of the lowest conduction state
spherical InP quantum dots as calculated by the direct pseudop
tial method@Eq. ~5!#, and as estimated using projection coefficien
with different Mb and bulk dispersions@Eq. ~27!#. The energy lev-
els are given relative to the bulk VBM energy, in units of eV.

Diameter
D ~Å!

Direct
pseudo

Estimated using projection coefficients

8 pseudoa 1 pseudob 1 k•pc

20.2 2.39 2.48 2.54 4.00
28.0 2.21 2.22 2.22 2.85
34.8 1.99 2.01 2.04 2.49

aUsing Mb58 and pseudopotential bulk dispersion.
bUsing Mb51 and the pseudopotential dispersion of the low
bulk conduction band.

cUsingMb51 and thek•p dispersion of the lowest bulk conductio
band.

TABLE V. Energy levels of valence states of InP dots as o
tained by direct pseudopotential method, and as estimated u
projection coefficients with differentMb and bulk dispersions@Eq.
~27!#. For each dot, the first line is for thes-like state while the
second line is for thep-like state. The energy levels are relative
the bulk VBM energy, in units of eV.

Diameter
D ~Å!

Direct
pseudo

Estimated using projection coefficient

8 pseudoa 3 pseudob 3 k•pc

20.2 20.47 20.46 20.763 21.77
20.63 20.64 20.757 21.39

28.0 20.23 20.26 20.488 21.07
20.31 20.34 20.487 20.90

34.8 20.17 20.19 20.344 20.69
20.22 20.24 20.306 20.47

aUsing pseudopotential dispersion of the lowest 8 bulk bands.
bUsing pseudopotential dispersion of the highest 3 bulk vale
bands.

cUsing k•p dispersion of the highest 3 bulk valence bands.
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derived from our pseudopotential bulk band structure. T
636 k•p Hamiltonian is diagonalized using the basis
uF,Fz ,J,L&u,f j L(kLmr ), wherekLm5XLm /R andXLm is the
mth node of j L(x) @i.e., j L(XLm)50#. The matrix elements
are calculated using the reduced-matrix-elem
technique.44,55The converged results using sufficient numb
of bases are shown in Table VI in comparison with the i

FIG. 7. The orbital energies of the two highest valence orbits
InP dots as calculated by the 838 k•p model (g1851.42, ḡ28
520.062, Ep514.98, a51.00!, the standard 636 model (g1

54.86,ḡ251.66,D050), the 636 model but with pseudopotentia
bulk band dispersion, and via direct diagonalization~DD!: ~a! the
s-like dot valence state;~b! the p-like dot valence state. Diamon
symbols represent direct diagonalization results, and lines conn
ing these symbols are guides for eyes.

TABLE VI. Energies of the valence states of In456P435 dot (D
534.8 Å) calculated by differentk•p models and bulk dispersions
The orbital energies are given in units of eV relative to the b
VBM.

Approach s-like state p-like state

Direct diagonalization 20.172 20.216
636 k•p ~isotropic!a 20.487 20.388
636 k•p ~anisotropic!b 20.470 20.381
838 k•p ~isotropic!c 20.322 20.388
636 k•pd 20.413 20.349

aUsing g154.86, ḡ251.66.
bUsing g154.86,g251.37,g351.85.
cUsingg1851.42, ḡ28520.062,Ep514.98,a51.0.
dUsing exact pseudopotential bulk dispersions.
e

t
r
-

tropically approximated results obtained withg25g35ḡ2 .
We see that the errors due to isotropic approximation
very small for spherical dots.

To examine error~i!, an isotropically-averaged 838 k•p
Hamiltonian was solved for InP dots by variational diagon
ization, using a method similar to that one for anisotropic
36 k•p approach.44,55We use the 838 Luttinger parameters
g1851.42, ḡ28520.062,Ep514.98, anda51.0 derived from
the 636 k•p parameters~see Appendix B!. We find that for
the bulk band structure, the 838 lh dispersion is much im-
proved as shown in Fig. 2 while the 838 hh dispersion is
not changed in comparison with the 636 k•p result, since
the hh does not couple with the conduction band. The 838
k•p valence state energies of dots are illustrated in Fig. 7
Table VI. We see that the 838 model significantly improves
the energy of thes-like dot valence state compared to dire
diagonalization result, however, it does not change the
ergy of thep-like dot valence state. This is due to the fa
that thes-like state is made of both lh and hh bands, but t
p-like state is made of only the hh band. For dot rad
below 38 Å, thes/p order of the 838 k•p model is the same
as the direct diagonalization, although the individual ene
value is still quite different from the more exact one. For d
radius above 38 Å, thep-like state moves above thes-like
state.

We next study how much improvement can be gained
improving ~ii !. We do this by 636 k•p, using in Eq.~18!
the ~isotropically-averaged! exactpseudopotential dispersio
enk

iso instead of the bulk 636 k•p dispersion. The results ar
also shown in Fig. 7 and Table VI. The errors in the ene
of the p-like state have been reduced by;50%. The same
procedure can also be applied to thes-like state. The result-
ing energy is also much improved from the original 636
k•p result. Thus, the 636 k•p with exact bulk dispersion
can give much better results than the 636 k•p with im-
proper bulk dispersion. However, the error compared to
direct diagonalization pseudopotential result is still sign
cant, due to the inadequacy of describing the wave func
by a small,G-only bulk basis~Fig. 1!. While the dispersion
relationenk

k•p can be brought into agreement with pseudop
tential result by simply usingk-dependent coefficients of th
k•p model Hamiltonian in Eqs.~8! and ~9!, the inability to
describe the off-G Bloch wave function is more fundamenta
stemming from a too small basis set. This can only
solved24 by including more bases than 838 k•p model.

F. Bulk CdSe and CdSe quantum dots

CdSe is stable in the wurzite structure. However, m
k•p studies on CdSe quantum dots2,15 assume a zincblend
lattice. In order to parallel these studies~and also to compare
CdSe with InP!, we also assume a zincblende lattice. T
pseudopotential-calculated effective masses and the ens
Luttinger parameters for zinc-blende CdSe are listed in Ta
I. Since Secs. IV A–D already give a detailed discussion
the comparison betweenk•p and pseudopotential results o
InP, we emphasize here only the difference with respec
CdSe.

Figure 8 shows the bulk band structure of zinc-blen
CdSe, as calculated by thek•p ~with parameters in Table I!
and by the direct-diagonalization pseudopotential meth

f
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FIG. 8. Band dispersions of bulk CdSe along theGX direction
as calculated by pseudopotential direct diagonalization~DD, solid
lines! and by the 636 ~for valence usingg152.52, ḡ250.83,
D050.42 eV! and 232 ~for conduction! k•p model~dotted lines!.
For the conduction band, the single-band parabolick•p dispersion
is also shown in dashed line. All curves are calculated with sp
orbit coupling.
By comparing Fig. 8~CdSe! with Fig. 2 ~InP!, it can be seen
that, the energy difference between thek•p and the pseudo-
potential bulk valence bands is generally smaller in Cd
than in InP. This is due to the more ionic character of Cd
which flattens the band dispersion and thus diminishes
-

FIG. 9. The orbital energies of the lowest conduction state
of the two highest valence states of CdSe dots. Diamond and c
symbols correspond tos- and p-like levels, respectively, as calcu
lated by direct diagonalization~DD!. The thick solid lines are
guides for the eye. For the dot conduction state in thek•p model,
we show results calculated both with an infinite barrier~dotted line!
and with a finite barrier~dashed line!. For the dot valence states, th
k•p curves of boths-like ~thin solid line! and p-like ~dotted line!
states are down-shifted by 0.5 eV for clarity of display.
e-band

TABLE VII. Band contributionsÃi(n) @Eq. ~26!# of CdSe bulk band with indexn in forming the wave

functions of dots. The contributions from spin-split bands are summed, and the sum is assigned to on
contribution in order to facilitate comparison with InP.

Dot
size Bulk band

Projection on
LUDO ~%!

Projection on
s-like HODO ~%!

Projection on
p-like HODO ~%!

Cd68Se79 1 1.93 0.45 0.29
(D519.9 Å) 2 4.63 10.96 2.52

314 1.85 85.40 94.46
5 88.70 0.90 0.59

61718 1.96 1.04 0.97
all other 0.93 1.25 1.17

Cd312Se321 1 0.92 0.32 0.27
(D532.4 Å) 2 2.45 6.08 1.11

314 1.60 91.01 96.30
5 93.77 0.58 0.39

61718 0.63 0.82 0.77
all other 0.63 1.19 1.16

Cd484Se495 1 0.75 0.30 0.25
(D537.5 Å) 2 2.19 4.67 0.90

314 1.65 92.57 96.53
5 94.35 0.50 0.39

61718 0.52 0.78 0.76
all other 0.54 1.18 1.17
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energy difference betweenk•p bands relative to the exac
ones. Nevertheless, thek•p bulk bands depart significantly
from the pseudopotential bands away from the Brilloui
zone origin.

Figure 9 compares thek•p and the direct-diagonalization
results on the orbital energies of CdSe dots of different siz
For the LUDO, we see that~i! the infinite barrierk•p model
predicts much higher confinement energies than the ex
diagonalization method, while the finite barrierk•p calcula-
tion improves the result.~ii ! Using pseudopotential-derived
k•p parameters~Table I!, we find that, similar to InP, the
HODO in k•p calculation is p-like while the HODO in
pseudopotential calculation iss-like. This holds using our
bulk-derivedk•p parametersg152.52 andḡ250.83 ~Table
I!. Using instead thek•p parameters2 fit by Norris and Ba-
wendi to the experimental data on dots~g152.04, ḡ2
50.58! gives thes-like level above thep-like level just like
our direct diagonalization. While the two sets of paramet
give similar effective masses~see Table II!, the ensuing elec-
tronic structures of dots can be, however, quite differe
This illustrates how sensitive thek•p calculations are to the
Luttinger parameters for CdSe dots as pointed out by Ri

FIG. 10. Projection amplitudeuAi(nk)u2 @see Eq.~25!# showing
how much the bulk statesunk& participate in forming the following
statesu i & of CdSe dot with 37.5 Å diameter:~a! the lowest unoc-
cupied dot orbit ~LUDO!; ~b! two highest occupied dot orbits
~HODO’s! with s-like symmetry~filled bars! andp-like symmetry
~unfilled bars!, where the unfilled bars are slightly shifted horizon
tally and the projections from different bulk bands to the HODO
are shifted vertically for clarity of display. Here, the bulk bandsbbn

are denoted by an indexn in the increasing order of energy.
-

s.

ct

s

t.

-

ard et al.15 ~iii ! The overall agreement between thek•p
and the direct diagonalization results for valence state
better in CdSe dots~Fig. 9! than in InP dots~Fig. 3!.

The bulk band contributionÃi(n) @Eq. ~26!# to the near-
edge states of CdSe dots are illustrated in Table VII. In t
table, the contributions from two bulk bands split by spi
orbit coupling are summed, and the summed contribution
assigned to one band in order to facilitate a direct comp
son with Table III for InP dots. The projection distribution
in Table VII for CdSe are quite similar to those in Table I
for InP, i.e., the lowest dot conduction state has a domin
contribution from the lowest bulk conduction band, while t
dot valence states come mainly from the three highest b
valence bands. The significant difference is that, the con
bution of the bulk band bb2 to thes-like dot valence state in
CdSe is significantly smaller than in InP~Table III!. This is
due to the large spin-orbit splittingD0 in CdSe, moving bb2
to deeper energies. Since bb2 has a large error in bulkk•p
~Fig. 8!, the smaller participation of bb2 in forming the dot’s
s-like state alleviates thek•p error in this dot state.

The projection amplitude into specific bulk bands and d
ferentk points are shown in Fig. 10. Again, we see that t
bulk band bb2 in CdSe~Fig. 10! does not contribute as sig
nificantly as in InP~Fig. 5! in forming the dots-like valence
state.

The above comparison between CdSe and InP quan
dots shows that thek•p performance on CdSe dots is bett
than on InP dots for two reasons:~i! Considering the bulk
band structures, the more ionic nature of CdSe flattens
band dispersion relation, so the overall difference betw
the predictions of thek•p bulk bands and the pseudopote
tial bulk bands is smaller;~ii ! Considering the bulk wave
function contribution to the dot states, the large spin-or
splitting in CdSe moves the poorly-described bulk band b2
to deeper energies, and reduces its contribution~and error! to
the dot’ss-like state.

V. SUMMARY AND CONCLUSIONS

Thek•p method and the direct-diagonalization pseudop
tential method are used to calculate in parallel the electro
structures of InP and CdSe quantum dots. By using
pseudopotential-derivedk•p Luttinger parameters, we ar
able to find out the sources ofk•p errors in quantum-dot
electronic structure calculation~thus the way to improve the
k•p performance!. Our main conclusions are the following

~i! The k•p approach predicts that the highest occup
dot orbit has ap-like symmetry, while the direct diagonal
ization approach predicts that it has a dominants-like sym-
metry with parity mixing. This holds for very large dots.

~ii ! The k•p predicts that the second conduction state
small InP dots isG-like, while direct diagonalization show
that it is L-like.

~iii ! The k•p approach generally overestimates the co
finement energies of both valence and conduction state
quantum dots.

~iv! We demonstrated, via the wave function projectio
that thek•p errors in dots originate from two main source
~a! the use of restricted basis set, and~b! the k•p errors in
describing the bulk band structures.

~v! Error ~a! occurs because the off-G Bloch states can no
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be accurately described by a small number ofG-like Bloch
basis set. This kind of error can only be reduced by incre
ing the size of the basis.

~vi! Error ~b! results specifically from ~1! the fact that
the s-like dot valence state has a significant contributi
from bulk band bb2, which thek•p model predicts at too
deep energies;~2! the fact that thep-like dot valence state
has large contribution from off-G part of bulk band structure
whose dispersion is poorly described byk•p; ~3! inclusion
of the valence-conduction coupling affects differently the e
ergies of thes-like andp-like dot states, thus changing the
energy separation.

~vii ! k•p errors in CdSe dots appear to be smaller than
InP dots due to the more ionic nature and the large spin-o
splitting of CdSe material.

~viii ! The wave function and energy analysis suggests
in order to improve thek•p performance in quantum dots
one needs to~1! correct the second lowest bulk band, a
s-

-

n
it

at

make it less deeper;~2! couple the valence bands to the co
duction bands. However, direct-diagonalization provides
accurate and practical replacement to thek•p.
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APPENDIX A: k –p HAMILTONIAN MATRIX
FOR BULK IN zJ,Jz‹ BASES

Using the basesuJ,Jz& in Eq. ~12!, the k•p Hamiltonian
@Eq. ~7!# can be obtained, after a unitary transform of t
matrix in Eq.~8!, as follows:
~A1!
e
-
for
Here, the related parameters$Y,U,V,T,Q,R,S,Z% are func-
tions of the ensemble$g1 , g2 , g3 , A8, P andD0% in Eqs.~9!
and ~10!, and are explicitly written as

Y5ec,01A8~kx
21ky

21kz
2!5eg1A8~kx

21ky
21kz

2!,

U5A 1
3 iPkz ,

V5A 1
6 iP~kx2 iky!,

T51
D0

3
1 1

2 g1~kx
21ky

21kz
2!5 1

2 g1~kx
21ky

21kz
2!,

Q5 1
2 g2~kx

21ky
222kz

2!,

R52
)

2
@g2~kx

22ky
2!22ig3kxky#,
S5)g3kz~kx2 iky!,

Z52 2
3 D02 1

2 g1~kx
21ky

21kz
2!52D02 1

2 g1~kx
21ky

21kz
2!,

~A2!

where eg is band gap. After the spin-orbit coupling, th
valence-band maximum becomes1 1

3 D0 , and is taken as en
ergy zero point in the most right-hand-side equations
parametersY, T, andZ. Equations~A1! and~A2! constitute
the 838 bulk k•p method, cast inuJ,Jz& representation.

APPENDIX B: SUBMATRICE OF ISOTROPIC k –p
HAMILTONIAN

In the irreducible representationuF,Fz ,J,L& @Eq. ~15!#,
the isotropic Hamiltonian~with g25g35ḡ2! is block-
diagonal for different$F,Fz%. By using Eqs.~13! and ~15!
and Eq.~A1!, the submatrixHF,Fz

corresponding toF5 1
2
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can be obtained, by some derivation, as

H 1
2 ,6 1

2
5S H1

H2
D ,

~B1!

wherek25kx
21ky

21kz
2 is the length of wave vectork. In H1 andH2 , the basesuF,Fz ,J,L& @abbreviated asuJ,L& due to fixed

$F,Fz%# are given in the first row. Note that, in the isotropic approximation, the Hamiltonian matrix elements depends o
the amplitude ofk, not its direction. The Hamiltonian submatrix forF5 3

2 is obtained as

H 3
2 ,6 3

2 or 6
1
2
5S H3

H4
D ,

~B2!

~B3!
m

cal-
In the 636 k•p model, we decouple the valence bands fro
the conduction bands, i.e., takeP50 in Eqs.~B1!–~B3! for
valence states.

The relationship between the 636 Luttinger parameters
and the effective masses follows Eqs.~A1.c!–~A1.f! in Ref.
23, i.e.,

mhh
21~001!5g122g2 , mlh

21~001!5g112g2 ,
~B4!
mhh
21~111!5g122g3 , mlh

21~111!5g112g3 ,

for nonvanishing spin-orbit couplingD0 , and

mhh
21~001!5g122g2 , mlh

21~001!5g114g2 ,
~B5!

mhh
21~111!5g122g3 , mlh

21~111!5g114g3 ,

for vanishing spin-orbit couplingD0 . It is found that the
Luttinger parameters obtained from the pseudopotential
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culations with (D0Þ0) and without spin-orbit coupling
(D050) are very close~with difference less than 5%! for
InP. The four equations with three unknowns giveg1 value
with an uncertainty of less than 1%. The relationships
tween the 838 and the 636 k•p parameters, providing con
sistent hole effective masses, are:
,

A

tt.

A.

i-

P.

ys

rg

ff,
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a,
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g18~838!5g1~636!2
2

3

P2

eg
,

ḡ28~838!5ḡ2~636!2
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