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Applicability of the k - p method to the electronic structure of quantum dots
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Thek- p method has become the “standard model” for describing the electronic structure of nanometer-size
guantum dots. In this paper we perform parakep (6X6 and 8<8) and direct-diagonalization pseudopo-
tential studies on spherical quantum dots of an ionic material—CdSe, and a covalent material—InP. By
using an equivalent input in both approaches, i.e., starting from a given atomic pseudopotential and deriving
from it the Luttinger parameters ik-p calculation, we investigate the effect of the different underlying
wavefunction representations used knp and in the more exact pseudopotential direct diagonalization.
We find that(i) the 6x6 k-p envelope function has a distingddd or even parity, while atomistic wave
function is parity-mixed. The 86 k-p approach produces an incorrect order of the highest valence states for
both InP and CdSe dots: thelike level is above thes-like level. (ii) It fails to reveal that the second
conduction state in small InP dots is folded from theoint in the Brillouin zone. Instead, all stateskinp are
described a$-like. (iii) Thek- p overestimates the confinement energies of both valence states and conduction
states. A wavefunction projection analysis shows that the principal reasons foktheserors in dots aréa)
use of restricted basis set, affml incorrectbulk dispersion relation. Errda) can be reduced only by increasing
the number of basis functions. Err@ls) can be reduced by altering the p implementation so as to bend
upwards the second lowest bulk band, and to couple the conduction band isttikbe&lot valence state. Our
direct diagonalization approach provides an accurate and practical replacement to the standard model in that it
is rather general, and can be performed simply on a standard works{&@63-18208)03112-9

. INTRODUCTION single heavy-hole modéf, a 4-bandk-p model*® and an
8-bandk - p model}* with parameters fitted to the measured
Nanometer-size semiconductor quantum dots can now bgulk properties.
made either by colloidal technique$ or by controlled The absence of translational periodicity in all three di-
coarsening of thin films grown via the Stranski-Krastanovmensions, the existence of carrier quantum confinement in
mode?~*? Colloidally-grown dots of CdS&* INP>™" or  gmall volumes, and the appearance of inhomogeneous inter-
InAs (Ref. 8 are nearly spherical, unstrained objects withtacia) straif® and surface statéd,all contribute to create

diameters ranging from 20 to 70 A, whose surfaces are pagytensive coupling between bulk Bloch states in forming the

;slvatet?] k?[y or?anllccz) Ilgarldsé. 'I'Ihet5|zehd:str|liuttlon IS sg “n'k;wave functions of quantum dots. Currenk-p
orm that up fo LU excited €lectron-nole stales can be 0Dz, a3 7.1012-165 05 0ximate this massive coupling via a
served in photoluminescence excitation spectrosépy.

) restricted basis set of just a fel@—8), I'-like bulk Bloch
Quantum dots fabricated by controlled coarsenifigel- bands. Since the excitation energies are sometimes fitted di-
assembled), on the other hand, appear in flattened pyrami- : 9

dal (or sometimes pancakeshapes with confining dimen- recFIy to exper_iment on quantum d&téagregment with ex-
sions (heighy of 50-150 A. These are strained objects periment, by itself, does nqt always prowde a test to the
passivated by alattice-mismatchedsemiconductor barrier 2dequacy of the representation. Thus, independent tests, free
(e.g., InAs/GaAs Typically, 1-3 excited electron-hole from fitting the target results, are needed in order to under-
states have been observed. stand the spectroscopy of nanostructures.

The emergence of rich spectroscopic signatures in both In the cases ofi) three-dimensional3D)-periodic bulk
classes of semiconductor quantum dots has prompted a nurgolids?*~>*and (ii) 2D-periodic quantum weff§*>*°or su-
ber of recent attempts at interpreting their electronicperlattices, such direct tests of tkep method do exist. In
structuret=47-1012-16The “standard model” used almost these cases, the energy bands obtained via a direct diagonal-
universally to this end is thek.p effective-mass ization (i.e., converged\,) of the electronic Hamiltonian
approach’~2°In this method, a numbem,) of bulk Bloch  (e.g., pseudopotentfdl**or tight-binding>29 are contrasted
bands at the Brillouin-zone centér state$ are used to ex- Wwith standardk - p predictions whose input'Luttinger” ) pa-
pand the wave functions of the dot, and matrix elements areameters are derived, for consistency, from the same under-
determined empirically via fitting the observed bulk disper-lying Hamiltonian. Such tests have shown how well the
sion curves. The electronic structure of the unstrainedk-p method works near thE-point (from which its param-
spherical colloidal dots has been successfully interpreted viaters are drawnand how its performance deteriorates when
the N,=6 bandsk-p approach whose free parameters arecalled upon to describe states whose wave functions have
fitted to the measured spectrum of the quantotsitself>*  significant offl’ components. The ability of a set df,
The electronic structure of the strained pyramidal dots ha8loch functions atl’-point {u,, (r)} to represent a single
been interpreted via a single band effective-mass mdel, Bloch orbital U k+o(r) away fromI’ can be measured by
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10 . ; \ ‘ physical explanation has to be sought for the above experi-
AAAAAAA mental observation®.
- n=Ih N, =8 y In considering the adequacy of thep method, three is-
| sues will be studied: (i) What are the dependences of en-
NG ergy level spacing and wave functions of dots on quantum
L n=hh, N, = 6.8~z - sizes?(ii) What are the order and symmetry of dot valence
states? Does the top valence state hawelike or p-like
envelope symmetry%iii) Why does the “standardk:p
" model” appear to work better for CdSe dbdthan for InP
(Ref. 7 and InAs?
In this paper we perform parallek-p and direct-
, ‘ . . diagonalization(pseudopotentialstudies on spherical, un-
0 02 04 0.6 08 strained quantum dots of an ionic material—CdSe, and a
r X covalent material—InP. The inputs to both approaches are
Length of wave vector (k/X) equivalent—we start from a given atomic pseudopotential
and derive from it the Luttinger parameters needed as input
to thek- p calculation on the electronic structure of dot. The
FIG. 1. The overla®™ (k) =" _|(up, r|u, |2 between the  comparison between the results thus reflects the different un-
k#0 Bloch functionu,, (r) and thel-like states{u,, r(r)}. The  derlying wave function representations used bykhp and
closer the overlap is to 1, the better the seNgfI'-like states can the direct-diagonalization approach. We will see that the
describe &+ 0 state. All basis functions are calculated by pseudo-direct-diagonalization pseudopotential approach not only of-
potential direct diagonalization(solid lines: N,=6; dotted fers a way to analyze thk-p, but is also a viable, more
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lines: N,=8). accurate, and flexible replacement to the approach.
PN (k)y=3No [(up, rlup |2 The closerP™(k) is to 1, IIl. DIRECT-DIAGONALIZATION APPROACH
the more complete is the representatioruf..o(r) via the TO BULK SOLIDS AND DOTS

set{umr(r)}. Figure 1 shows(neglecting spin-orbit cou- The single-particle electronic structure of bulk-periodic

pling) for zincblende bulk InP how its light-holéh) and  sqigs or nanostructures is generally described by solving the
heavy-hole(hh) bands ak#0 along(100 direction can be  gchrodinger equation:

expanded byN,=6 or by N,=8T bands. We see that if

N,=61T" bands(two lh and four hh are used, only 70% of

thek=2m/a(0.2,0,0) Ih character can be captured. The error p?
[ p(r)=ep(r). @

increases rapidly as one moves further away fior0. For 50— TV(r)

2m
the hh stateP{"" (k) is almost the same fd¥,=6 andN,, . ° ,
=8 since the hh state does not couple with the conduction "€ PotentiaV(r) could be computed self-consistently from

band. From Fig. 1, we see that even for the 3D bulk, the errol€ 0ccupied statée.g., the density-functional formalisth,
1_P§1Nb)(k) of representing the wave function away frd or it could be approximated as a superposition of screened

by a small number of -like bulk bases grows rapidly as the atomic potential<

wave vectork moves away from Brillouin-zone center. A

recent stud/ has shown that, given that the parameters of V(r)=2 2 v (r—R—d,) 2
the k-p method are usually fitted to the 3D-periodic bulk a R

solid, its errors increase in the sequence of 3D bt@b

wells—superlattices-1D  quantum wires-:0D quantum {4 atom speciest at basis sited,, in cell R. Equation(1) is

dots. However, only the first two of this sequer® and ;5 a]ly solved by expanding(r) in some fixed basis set. For
2D) have been stud@d. The adequacy of the currently Useﬂeriodically repeated units, whewdr) can be written in a
k-p models to describe the spectroscopy @ @uantum  pgoch form
dotshas thus far not been examined.

In spite of the expected breakdown of the small basis
k-p method for small dot sizes, a large number lofp —glk'r
calculations™*7~1012-1%xist on dots down to the size of 20 Y1) =€ Unilr), ®
A diameter. Sometimes such calculations offer a distinct
physical explanation to some important experimental phea natural choice is to expandin plane waves of reciprocal
nomena. For examplé-p theory'™® predicted that the top lattice vectorG:
valence state of InP dots hasenvelope symmetry, and is
thus dipole forbidden to the-envelope lowest conduction
state. This prediction has been used to explain the observed iker iGor
long radiative lifetime/, and is also appealing to explain the P(r)=¢ % Ck(G)e™, 4
observed photoluminescence red shiflowever, a direct
diagonalization calculatiorisee below shows that the top
valence state has-symmetry, so a fundamentally different whereG,,, is the cutoff of basis.

Gmax
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It is now straightforward to compute the screened pseudowhere F(r) is the “envelope function.” Inserting Eq.6)
potential v,(r) from an atomistic mean-field electronic into Eq. (1) gives
theory(e.g., density functionzi*?and to solve Eqg1) and

(2) by a standard diagonalization methtiddowever, in this Np 722 7

approach, the computational effort scales asdige power E €not T en’k> OmnTt P k- Pn,m}bm(k)zo,
of the number of atoms per unit celtlue to the need to m=1 0 0 7
orthogonalize eacly; to the lower states so the method is @)

limited to small systems containing.100 atoms per cell.
Another approach is thus needed for quantum dots wit
~30-50 A diameter £1000—5000 atoms). We propose to
build on the fact that in such nanostructures one is ofte
interested only in the states near the valence-band maximu
(VBM) and the conduction-band minimu@BM). Hence, it
makes no computational sense to have to orthogonalize the
states to many lower-energy states that are physically uni
teresting. It is more reasonableao “fold” the spectrum of
Eqg. (1) around a reference energy

whereP,, = (uno(r)| =i V|uno(r)) is the momentum ma-

Rrix element, e, ¢ is the band energy &=0. We see from

Eq. (7) that (a) the deviation ofe, , from the parabolic dis-
ersion law originates in thek( P, ,,) term; (b) the informa-

n encoded in the microscopic potenti&r) in Eq. (1) has
now been transformed in E) to { e, o} and{P,, ,,}; and(c)

R/en{en,o} and{P, ,} for a converged basjsEq. (7) pro-
duces the bulk dispersicxai,ﬁl',ﬁJ equivalent toe,  obtained via
direct diagonalization of Eq1).

However, it is customary itk - p applications to severely
truncate the number of band¢, used. One often uses a
single bulk conduction state &t(ug) and three VBM states

o 2 (uy, uy, and u,). Including spin, this gives an “8&8
W)= (€= e Y1), © médel.y’ If only 'Ehe valencegstallates are rgtained, we have a
“6 X6 model,” which includes, like the 88 model, the
split-off band in the basigalthough the numerical value of
so that the lowest eigenvalue is now the one nearesffo  spin-orbit splittingA, is optional: Ay=0 or Ay#0). The
By placing €, in the region of physical interegthe band neglect of the split-off valence band leads to a x4
gap, one can thus find the highest occupied dot orbitmodel.” As the bases are truncated, one expects to find in
(HODO) and the lowest unoccupied dot orbitUDO) with-  the bulk k-p approach of Eq(7) some error¥=2¢in the
out having to search and orthogonalize many lower eigenpredicted dispersion relatiocﬁ,'lﬁ’. The convergence Oefﬁ;f
states that are now shifted outside the “window of interest.”with N, was examined previousty in a “first-principles
This linearly-scaling “folded spectrum method” has beenk.p approach”. In this approach, Eq¢l)—(4) were first
applied***to 10°~10° atom nanostructures using plane- solved for bulk GaAs via a direct-diagonalization approach,
wave base$Eq. (4)] and screened pseudopotenfiatl. (2)].  thus producing the “exact” dispersiog,  as well as the
We will refer to the approach of Eq$l)—(5) as “direct  input{e,o,P, n} needed irk-p calculations. Using this in-

2

P2
{z_modl'v(r)_eref

diagonalization.” put, thek - p equation(7) was then solved for different basis
A more conventional and more frequently used approacjzesN, . The resultinge P was then examined as a function
is thek- p method, described next. of the number of band, used, and compared with the
“exact” dispersione, . It was found that for the,. bulk
IIl. THE k -p FOR BULK SOLIDS AND DOTS state, for example, reducing thep error to 1 meV requires

N,~150 I'-like Bloch bands, but ifN,=10 I'-like bands
The purposes of this section are (i describe the ap- were used, the error was as large as 300 me\N,/fwas
proximations underlying the standakdp model as com- fyrther reduced to 8, the error X, went up to 20 eV, and
pared with the direct-diagonalization approach. This willthe curvatureghence, effective massesf the valence bands
provide guidance as to what may cause the errork-in  have a negative sign. Application of direct-diagonalization
performances(ii) provide useful working equations for the gnd “first-principles k-p” to GaAs/AlAs superlattices’

k-p method. showed that the errors W8, parallel those in bulk GaAs.
The problem of the inadequacy of a small basisksgtto
A. 8x8 k-p for bulk periodic solids: reproduce bulk dispersion awdycan be solved in part by
Plane-wave representation treating{P, ,} as adjustable parameters and introducing into

. _ the Hamiltonian new terms that are allowed by symmetry
Since thek=0 (zone-centerE_’Jloch functions{u, k—o} of and can be empirically adjusted. The new terms and their
Eq. (3) form a complete function set, one can expand theadjustable parameters are justifipdo forma by viewing
wave function as them as a consequence of “folding-in” of states outside the
explicit basegLowdin folding®’). Using the explicit bases of

{ul,ul,uj,ul,uf,u;,uy,ul} in Eq. (7) and perturbation

Ny 38 . . .
. theory;® one has the 8 8 k- p Hamiltonian matrix as
=2, @ bin(k)€™ | U k—o(T)
HnSl{k)—i_QSO RSO
H k)= , 8
Np axs(k) _Rgo H:so(k)"'Q:o ®

=m2:1 Fon(F) U k=o(T), (6)

where
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€cot A'K? iPke+B'kk,  iPky+B'kek,  iPk+B'kek,
| —iPkH+Bkk,  AKE+B(kI+kS) Ckyky Ckk,
Hosd )= _ipk + Bk, Ckik, AR+ B(K2+K2) ckk, |’ ©
—iPk,+B'k.ky Ckek, Ckyk, AKZ+B(KZ+K?)
00 0 O 0 0 0 O
Ap[ O 0 —i O Agf O 0 0 1
Q=3 |0 i o o] R~z |0 0 0 -i]" (10
00 0 O 0 -1 i 0

where k2=kZ+ki+KZ, Ag is the energy splitting due to 1
spin-orbit interaction, and\’, B’, A, B, and C are the 3 —5h=— (u_|1)+v2u,ll)),
symmetry-allowed adjustable paramet@rsf the second- V3
order perturbation matrix elements due to the operator
(K-Py.m) in Eq. (7). P=—ifi/my(ug|PyJu,) describes the 5= Hn=u_ll),
coupling between conduction and valence bands.

The Lowdin folding modifies the elements of the Hamil- - 1
tonian matrix from the “first principle& - p”’ scheme to new |E’E>h:‘/_3 (VZui[1)+ugT)),
elements{A,B,C,A’,B’,P} in Eq. (9) so that the eigenval-
ues of theNyX Ny submatrix spanned by thH, energy 1
states equal the eigenvalues of the original, full matrix. The I—Iy=— (—v2u_|1)+uy|)), (12)
general procedure is to adjust tkep parameters of E(8) V3
so that the curvatures of the solutiefy” fit the experimen-
tally measuredulk effective masses. In the diamond lattice
B’ vanishes by symmetry, but this condition is also often
applied® to zinchlende and wurzite structures without inver-
sion symmetry. AlsoA’ is often used to fit the electron
effective mass. The parametdss,B,C} of Eq. (9) are often
discussed in terms of the Luttinger parameters,

where u, =1V2(u,+iuy) and u_=1M2(u,—iuy). The
corresponding Hamiltonian matrix in the basis set of @§)
corresponds to a unitary transform of the matrix in ER),
and is given in Appendix A.

B. 8x 8 k-p for bulk and dots: spherical-wave representation

The application of k-p method to quantum dots
, involves replacing thek,, k,, andk, in Hamiltonian ma-
(11)  trix elements in Eq(A2) (see Appendix Aby the operators
—idlox, —idldy, and—idldz, and expanding the envelope
For the bulk material, the relationships between the pafunction F(r) in Eq. (6) by plane waves. This was used
rameters|y;,7v,,vs} and the effective masses are describedextensively for gquantum welf§. However, for spherical
as in the Appendix of Ref. 23. It is important to notice that quantum dots, this approach is computationally ineffective, a
the fitting of effective masses applies to the 3D-periodic bulkmore convenient approaJ(?ris to expand the plane-wave-like
solids. Therefore, the use of the ensuing parameters to denvelope functione'*" in Eq. (6) by spherical waves
scribe other system®.g., 0D quantum doxss not protected  |k,L,L,)= \/ﬂhL(kr)YL'Lz(a, ¢) [where h (kr) is the
by the underlying formalism. | spherical Hankel function, andf, , is the spherical har-
Instead of the basis s@il,uy,uy Uy ,Ug, U, Uy Uz, for i functior] via the relationship
the consideration of symmetfglso for the later use in quan-

y1=—5(A+2B), 7,=—3(A-B), y3=—3C

tum dotg, one can also use another set of Bloch bhki3,), ' 1 .
specified by the angular momentul Lz + S and itsz com- ker= > Yf’l_z(k)|k,|_,|_z>, (13
ponentJ,. Here,Lg is the angular momentum @loch or- J(2m)3 (T,
bit, andS is the spin. The basad,J,) are defined as wherek is the angular direction vector & By using Egs.
(12) and (13), the total bulk wave function in Eq6) then
2. 2)e=Udl1), becomes
|%1_%>e:us|i>’ l/j(r):LL &~ ; bL,LZ,J,JZ(k)|kyLyLz|‘]sz>’ (14
12,80=u,]1), WhereBL,LZ,J,JZ(k) are the wave function expansion coeffi-

cients.|J,J,) and|k,L,L,) are, respectively, the Bloch com-
ponent[related with differentoulk bands via Eq(12)] and
|§'%>h:i (—us| 1y +v2u 1)), the spherical envelope componé¢related with usual plane-
V3 wave-like bulk envelope functioa’'" via Eq. (13)].
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An almost universally adopted approximattdrt>16-1%n
the application ok-p to quantum dots is to takk=B+C in P =2 Colxa(n)=2 2 Chall|F.F,.d.L)
Eq. (8) [i.e., yo=7v3 in Eqg. (11)]. Under thisisotropic band " noot
approximation, the bulk band dispersion depends only on the
amplitude ofk, and the total momentum opera@rL +J is =2 2 Caallh (kaIF.F, L) 04, (A7)
a conserved quantifff. Thus, the Hamiltonian matrix ele- "ot

ments between differentF,F,} vanish. By the theory of . o .
angular momentum coL{;t)liﬁﬁz[}i.e., linearly combining the where we use Eq.16) in the derivation. The condition that

basegk,L,L,)|3,3,) in Eq. (14)], the new bases of the irre- the wave function vanishes at the boundary of therdeR

ducible representation of ensemble quantitjésF,,J,L} yields the determinant equation
can be written as
detal’h (k,R)[=0, (18)

LiLz. 3.9, dispersion relatiore’Se .

In ourk- p implementation for quantum dot§) we invert
FE . o the isotropic dispersiore>, [obtained via Eqs(B1)—(B3)
where ' *;, is the Clebsch-Gorden coefficieftCom-  with P=0] for each irreducible representatip®,F,) and a
bining Egs.(A1), (13), and(15), the block-diagonal Hamil- ~given energye, thus finding the wave vectots, [i.e., the
tonian matrix in the basg&,F,,J,L) can be obtained. The “inverse dispersion] and the bulk-orientated wave-function
explicit expressions for the Hamiltonian blocks correspondcoefficientsaﬁ'fﬁ [see Eq.16)]; (ii)) The boundary condition
ing to F=3 andF = $ are given in Eqs(B1)—(B3) in Appen-  [Eq. (18)] is then used to find out whether the assumed en-
dix B. These equations will be used in the electronic strucergy e is the dot energy leveljii) Unlike the work of Sercel
ture of both bulk and dots. and Vahal® where only a 44 model is used for dot va-
Equations (B1)—(B3) in Appendix B are basically an lence statesi.e., the split-off valence band is neglectedll
8% 8 k-p model except that they are cast in a sphericathe presenk-p calculations are done by thex& model;
approximation. While this & 8 model can be applied di- (iv) The whole procedure to find the energy levels of dots are
rectly, almost allk- p studies on quantum dots use a simpli- realized numerically avoiding many analytic formulae that
fied way: decouple first the conduction states from the vaare quite complicated.
lence states, thus, leading to &6 model for the valence
states and a 22 model for the conduction states. We will
follow this practice too.

IF,FZ,J,L):E > \FoFe k,L,L) ), (15 wherek,, is an implicit function of energy by inverting the
L, J,

D. 2x2 k-p: conduction states

For the conduction states, a2 model is obtained after
decoupling. The effect of interaction between valence bands
C.6x6 k-p: valence states and conduction bands is taken into account by a perturbation

By diagonalizing the decoupled Hamiltonian submatricetheory as de.scrlbed in Ref. 43. .The resulting single Schro-
dinger equation for the electron is

for valence statefEqgs. (B1)—(B3) with P=0] for a given
wave vectork, we obtain, in each submatrix corresponding

to the fixed good quantum numbe{E,F,}, the isotropic 2 )
bulk dispersioneyyy, and wave function w(e)| — 2m, Voy=(e—€g) ¥, (19)
where
e {(N)=25 alf} [F.F,,3,L)
Wb 2meP2? (2
w(€)=1+2f+ | —+ —. (20)

=3 &) hu(kn) [F.F L0 (16

The parametef=(A’'—1)/2 is used to fit the electron effec-
tive mass. Our calculated conduction band energies for bulk
where we use the definition of spherical wakeL,L,) to  use Eq.(19). In quantum dotsEq. (19) can be solved either
write out the radial part. The wave functions of E§i6) are  with infinite barrier or finite barrier. Assuming a finite barrier
“bulk orientated” in the sense that they come from bulk AE, for electron outside dots, and imposing the continuities
Hamiltonian except that they are calculated in terms ofof dot wave function and its derivative, the energy levels for
spherical waves. These wave functions do not satisfy thelot conduction states can be calculated by
boundary condition of dots, where the wave functions are
required to vanish at dot's boundary of infinite barrier. In i’ (k,R) h (ikoR)
order to satisfy the dot boundary condition and the intrinsic o(€)ky I L ey
bulk dispersion relationship, the dot wave functions need to jL(kgR) h(ikpR)
be a linear combination of all the solutions of E¢6) with
the same energyyy, i.e., wherej, is the spherical Bessel function, and

(21)
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2mg e—e TABLE I. The 6X6 k-p parameters of ZB InP and ZB CdSe
Kg=\/ 5= g used in this work: the band gagy, E,=2meP%#?, and the pa-
At w(e) rameterf for conduction statéEq. (20)]; the spin-orbit splitting
Ay, the Luttinger parameterg,, y,, vz, and the averaged param-
\/Zmo eter y, for valence states. The calculatépseudopotentialbulk
kp= Fxa (—etegtAE) (22 effective masses, from which the Luttinger parametgrsy,, and

v5 are derived, are also listed in the table. For ZB InP, two sets of
are the wave vectors in the dot and in the barrier, respegarameters corresponding 2=0 andA,#0 are given, and the

tively. available experimental effective masses are also listed for compari-
son(in parentheses, columi,#0). €5, E,, andAq are in units of
E. Summary of k- p approximations ev.
The k- p approximations for quantum dots are: Parameters InP CcdSe
(a) The truncation of the number di-like Bloch bases,
and the use of second-order perturbation to correct this. In Ao=0 Ao#0
practice, these approximations are mitigated by treating th 1.45 1.42 1.84

k-p parameters as adjustable parameters fitted to the ob’

. . 20.0 20.0 17.4

served bulk effective masses. The extent to which these pq—” _0.42 _0.42 _0.75
rameters work for systems other than fiti@dg., nanometer A : ' '

. 0 0.00 0.11 0.42

dotg remains unknown. 4.86 4.94 252

(b) The valence states and conduction states are calculatdd 1'37 1'50 0'65

in a decoupled way. The 88 model then breaks into 72 1'85 1'99 0'95
6X 6 valence-only plus 2 conduction-only matrice. Ys ' : :

(c) The isotropic approximation is used for the dot va- 72 1.66 1.79 0.83

lence statesi.e., y,=vy3), and then the dispersiogf;? de- ™M 0.072 0.072(0.079) . 0.119

pends only on the amplitude & MyK(001) 0.474 0.5130.52, 0.6 0.820

(d) The method does not consider the existence of real ddinn(111) 1.030 1.055(0.95) 1.613

surface states or interface states at the dot’s boundary. ~ Min(001) 0.097 0.1260.1G, 0.12) 0.262

min(111) 0.083 0.112 0.226

IV. RESULTS AND DISCUSSIONS a8Reference 45.

by
InP and CdSe colloidal quantum dots were studied exten XS erence 46.

sively both experimentally” and theoreticallf:*>6In par- ~ Reference 47.
ticular, the observed photoluminescence spectra were inte Reference 48.
preted byk-p modelsl=471516For CdSe dots, the-p was ~ Reierence 49.
also used to assign the observed high excited transitions

) : ~sults in Table ), the Luttinger parameterSy;,7y.,ys} are
however, thek- p parameters were adjusted to fit the experi- : . : .
mental data of thelot?* For InP dots, the &6 k-p pre- obtained from Eqs(B4) and(B5) in Appendix B. The aver

dicted that the lowest valence-to-conduction transition is di_age72=(2y2+373)/5 is used 1o replace the value gj in

pole forbidden*® This was used to explain the carrier the isotropick - p Hamiltonian"" Table | lists the pseudopo
S 7 . . : tential effective masses and the ensuing parameters used
dynamics’. We are interested in these two materials for an

additional reason, namely, that InP and CdSe have quite dipere for zinc-blendéZB) InP and ZB CdSe. We see in Table
; ; . L I that for InP the effective masses calculated from the
ferent magnitudes of spin-orbit splitting:Ay=0.11 eV for

InP andA,=0.42 eV for CdSe. Therefore, we can investi- 1| £ ||, Hole effective masses of wurzite bulk CdSe, calcu-

gate how this difference will affect the applicability Bfp  |ated by our pseudopotential-derived=2.52, 7,=0.83, and the

model to quantum dots. quasicubic model. The results are compared with two sets of ex-
For the purpose of a consistent comparison between thgerimental values. The experimental values in the third column are

direct diagonalizatiofEgs.(1) and(5)] andk-p model[Egs.  obtained by subtracting from the measured excitonic masses the

(16)—(22)], the k- p Luttinger parameters are all calculated electron mass. We also give the values obtained using2.04,

from the curvature of théulk-materialdispersion obtained y,=0.58 fitted by Norris and BawendRef. 2 to the measure-

by direct diagonalization using the same pseudopotential emrments on CdSe dots.

ployed in dot calculations. These screened atomic

pseudopotentiats®? are derived from local-density- Masses Ref. 2 Present work Expt.

approximation(LDA) calculation, and are able to reproduce

the LDA wave functions and thexperimentally observed

Hermann and Y& Bir and Piku&

(not LDA) bulk transition energies, effective masses, defor-m? 1.14 1.16 1.19 >1
mation potentials. The kinetic energy cutoff in dot calcula-mﬁ 0.38 0.30 0.29 0.450.09
tion is taken the same as in deriving the potential from bulkm”B 0.31 0.24

solids, i.e., 6.8 Ry for InP and 6.88 Ry for CdSe. The lattice,B 068 0.60 0902

constants for InP and CdSe are 5.83 A and 6.08 A, respec-
tively. After the effective masses of zincblende bulk materi-®Reference 51.
als are calculated by the pseudopotential apprdaek re- P°Reference 52.
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Orbital enegies of dots (eV)

Bulk band energies (eV)
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FIG. 3. The orbital energies of the lowest conduction state and
of the two highest valence states of InP dots. Diamond and cross
symbols correspond ts- and p-like levels calculated by direct

. . diagonalization(DD), and solid lines are guides for eyes. Dotted
Wave vector k along (100) direction Iinegs give resul(ts 02(- p model. For the dotgconduction )étate in the

FIG. 2. Band dispersions of bulk InP along tA¥ direction as k-p model, we shqw res.u!ts calcglated both 'With an infinite barrier
calculated by pseudopotential direct diagonalizati@D, solid ~ (dotted ling and with a finite barrietdashed ling
lineg and by the &6 (for valence and 2x2 (for conduction
k-p model(dotted lines. For the conduction band, the single-band using thek - p model[Eqg. (19) and Eqs(B1)—(B3)] with the
parabolick-p dispersion is shown in thick dashed line. For the exact, pseudopotential direct diagonalization refddf. (1)].
light-hole band, in addition to the %6 k-p (with y,=4.86, Here, we label the bulk bandbb) with a band index in the
¥.=1.66, A;=0) dispersion(dotted ling, the 8<8 k-p (with  increasing order of energgwithout counting spin degen-
y1=1.42,7;,=-0.062,E,=14.98,a=1.0) dispersion is also shown eracy. The lowest conduction band (§bwas calculated by
in thin dashed line. The notatidrb, (n=2 to 5 indicates the 2nd using the 22 k- p approach with both parabolic dispersion

to 5th bulk bands in the order of increasing energy. All curves are(ﬁ2k2/2m*) and the nonparabolic Schrodinger equafigq.
calculated with the spin-orbit parametep=0. (19)]. We see that

0 0.2 0.4 0.6 0.8 1.0

pseudopotential theory agree well with experiméfté? (i) Inclu_ding the nonp_arabolic effect_in the_ conduction

Since CdSe exists experimentally in the wurzitéz) form, ~ band (bl) improves considerably the- p dispersion neaf'.

we can assess the quality of our parameters by convertingowever, a large deviation still remains near ¥goint.

our ZB results to WZ results. We use our pseudopotential- (i) The k-p dispersion of the heavy-hole-like valence

derived y; andy, from the zinc-blende structur@able | bands (bh,) agrees well with the direct-diagonalization re-

and compute the effective masses of wurzite CdSe using theult near the zone center, but this agreement becomes unsat-

quasicubic modéf (i.e., 1=y, —27y,, Um}=y,+7,). isfactory neaiX.

The calculated masses of wurzite CdSe are compared in (iii) For the light-hole band (b, the whole band calcu-

Table Il with experimental valugs®® and with the values lated by the 6<6k-p model differs significantly from the

using y;=2.04 andy,=0.58 fitted by Norris and Bawerfdi direct-diagonalization result.

to the measurements on CdSe dots. We see that our CdSe

Ir;]u(atg?éijle\/raﬁ)jézrneters give effective masses close to experi- B. InP quantum dots: Energy levels and wave functions
Since the spin-orbit splittind o is quite small for InP, for We consider five spherical dots;§Ps NP4z INgoPgs,

the simplicity of computationA, will be taken as zero both  In,,Ps05 and InsdPsss with diametersD of 11.8, 16.0, 20.2,

in the direct diagonalization and in the p calculations. We  28.0, and 34.8 A, respectively. The dot surfaces were fully

compared the theoretical results of InP quantum dots witlpassivated! Figure 3 compares the orbital energies of the

Ap=0 and those withA;=0.11eV (our pseudopotential |owest conduction state and the two highest valence states of

valug), and found that the energy levels and the wave funcinp dots, calculated by thk-p method[using Egs.(16)—

tions of the dots change but slightly. (18 for valence states and Eq&l9)—(22) for conduction

state$ and by the direct-diagonalization method. In order to

parallel thek-p studies in the literatures, we use in the

Figure 2 compares the InP bulk band structure obtained- p calculations the & 6 model with infinite barrier for the

A. InP bulk band structures
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- fined,” i.e., it decreases abruptly from the dot’s center to the
‘ InP dot, D =34.8A J dot's boundary. However, the wave function computed with

, . . . . . . . a finite barrier exhibits a kink at the dot's boundary. This
£0x105E . 4 reflects the requirement of current conservation and mass
discontinuity. Furthermore, the wave function is rather flat
(a) LUDO inside the dot(implying a much weaker confinemgntn
contrast, the radial wave function squared obtained by direct
diagonalization is intermediate in terms of confinement, and
- smoothly decays into the vacuum without any unphysical
kink. The large amplitudéwhich is the quantity plotted in

kp (AE,=5.9 V) Fig. 4 multiplied by radius squargdf finite-barrierk-p
wave function near the dot's boundary may cause incorrect
electron-hole wave-function overlap, hence, incorrect Cou-
: lomb and exchange interactions.

6.0x10°° T T T T T T T T

20105

2. Valence states of InP dots

The direct-diagonalization approach predicts for the va-
lence states of InP dots that the HODO has a mastiie
envelope function symmetry, and the next state below has a
mostly p-like envelope function symmetifig. 3). Note that
the notation for the envelope here reflects only the majority
R angular character. The HODO has als@ character, and
thus is parity-mixed. Both states are threefold degenerate
. whenA =0, and twofold degenerate whép+#0. The sym-
metries can be gleaned from Fig(b# that illustrates the
radial wave function squared as obtained by the pseudopo-
tential calculation. The radial wave function of the HODO
has nonzero value at the origithe dot’s center and the
envelope can be described by spherical Bessel function

FIG. 4. Radial wavefunctions squared of the 34.8 A diameteer:O(ar)’ thus beings-like. In contrast, the next valence
InP dot as obtained in direct diagonalizati@D, solid lineg: (a) state below the HODO has a zero amplitude at the origin,
the lowest unoccupied dot orkitUDO); (b) two highest dot occu- and its envelope can be described jhy,(ar), thus being
pied orbits(HODO's) with s andp symmetries. For the LUDO, the ', e \we find that, when we change the surface passivation
k-p radial wave functions squared .of finite and i_nfinite barriers arepotential (to Simula,te different ligands in experimentshe
also shown in dashed and dotted lines, respectively. order of theses and p valence levels does not change. This

. . L reflects the fact that the wave-function amplitudes at the dot
dot valence states, while a<2 model with both infinite and surface are very smalsee Fig. 40)].

‘g”'“? b?]m.erhst IS ;Jsfd ftor éhetgot conkdfucn?_n Ste:ctfsl':-rhetf'r."tf One may wonder whether the electron-hole Coulomb en-
arrier neight 1s taken to be the work function ot in= materia ergy, which is different fos-like and for p-like hole states,

(AE;=5.9eV). can reverse the/p order. We calculate the Coulomb energy,

and find that, for thé =34.8 A dot, the Coulomb energy of

s-like hole with s-like electron is about 10 melarger than
The k- p prediction for the lowest conduction state using that of p-like hole. Therefore, the inclusion of Coulomb in-

infinite barrier significantly overestimates tleéectroncon-  teraction will not alter thes-abovep conclusion obtained in

finement energy compared with the exact direct diagonalizasur direct diagonalization.

tion. Using a finite barrier reduces the confinement energy, in In contrast with the result of the direct diagonalization,

closer agreement with the results of direct diagonalizationthek - p model gives the opposite order of valence level, i.e.,

Fitting the energies of the lowest conduction states of differthe HODO isp-like and the next state below sslike (Fig.

ent size dots give$el® in units of eV relative to the bulk 3). One may ask at what dot size th& order ink-p will

4.0x10°5F

Radial wave function squared

2.0x10°°

45

Radial distance (a.u.)

1. Conduction states of InP dots

VBM energy, D in units of A) become correct. Our calculation shows that the
k- p-predictedp-aboves level order is not changed even for
1.45+15.10D%%  (direct diagonalization dot size as large as 250 A diameter, where the energy differ-
Egot: 1.45+84.52D%?% (k.p with infinite barriep; ence ofs- and p—Iil§e stateg is negligibl€0.3 me\j. This
1.45+26.25D*%  (k-p with finite barrie). indicates thak- p gives the incorrecs/p level order all the

(23  dot sizes. Thigp-aboves order was also found in previous
k-p calculations’®
Figure 4a) shows the radial wave function squared Based on the fact that the-like valence state is dipole
J]#(r)|2d6d ¢ of the lowest dot conduction state as obtainedforbidden to thes-like conduction state, th&- p-predicted
from k-p model either with infinite(dotted ling or with level sequence seems to be a natural explanation for the ex-
finite (dashed lingbarriers. It can be seen that tkep wave  perimentally observed photoluminescence red $hiflative
function corresponding to infinite barrier is strongly “con- to the absorption in selective excitation. This reverse level
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C. How do the errors in the bulk band structure propagate

1 this specific band, i.e.,
s—like p-like _
\Iﬂ / Al =2 [Ai(nk)|. (26)

Table 1l gives the band contributioA;(n) to the dot
near-edge states from the eight lowest bulk bands count-
bb, ing spin. Figure 5 depict$A;(nk)|2 [Eq. (25)] as a function

| | of the wave-vector lengtk for the dot InsgPs35 with diam-

Spectral analysis of dot wave functions to the dot’s electronic structure?
InP dot, D =34.8 A We would like to inquire how the electronic structure of

the bulk (Sec. IV A) affects the energy levels afots (Sec.

5 04 ; - - ' IV B). In order to answer this question, we project edoh

§ bb, wave functionz,b?"tglz_”f]. (5)] onto a set of wave functions of

& 02 F i the bulk material oy - [Eq. (3)], i.e.,

: |

5 00 L. : W)= AnK) R, (25

g 06 . , i , n,k

% where y°(r) and 4" are both calculated by the direct-

g bb, diagonalization method, an8l;(nk) are the spectral projec-

bl tion coefficients. The contribution to the dot state from a

% | ]ﬂ ﬂ given bulk band is obtained as a sum over allkthgoints for

z 04 !

o)

o

Gy

=}

f=)

8

D

L

g

~

0.0 | eter 34.8 A. The projectiofEq. (25)] is implemented using a
. ' ' — = dot supercell that is commensurate with a cubic bulk [l
=0.05 0.05 0.15 0.25 0.35 only some discret& points contribute to Eg25)]. If a non-
Length of wave vector (k/X) commensurate dot supercell is used, the effect is just to
FIG. 5. Projection amplitudgA;(nk)|? [see Eq.(25)] showing  broaden each peak in Fig. 5. The bulk wave funcigigf in

how much the bulk statdsk) participate in forming the following  Eq. (25) is normalized in the dot supercell. This gives nor-
states|i) of InP dot with 34.8 A diameter: (a) the lowest unoccu-  malized projection contributiona; (nk).

pied dot orbit (LUDO); (b) two highest occupied dot orbits
(HODO's) with s-like symmetry(filled barg and p-like symmetry
(unfilled bar$, where the unfilled bars are slightly shifted horizon-
tally and the projections from different bulk bands to the HODO’s ~ Considering the LUDO, we see that the contribution
are shifted vertically for clarity of display. The bulk bankis, are  (throughout the Brillouin zonerom the lowest bulk conduc-
denoted by an inder in the increasing order of energy. tion band bl (85% to 92%, see Table )lldominates, indi-
cating that a single bulk ban@.e., a 2<2 mode) is quite
ordering obtained bi- p has been used to explain the carrier gdequate to describe the dot lowest conduction state.
dynamical process involving a transition-forbidden lowest  Figure 5a) shows however that the LUDO contains sig-
exciton stat€. Unfortunately, our more accurate pseudopo-pificant projection amplitudéA,; (nk)|2 from off-I" k points.

tential calculation shows that these explanations are not aRwjth decreasing dot size, thokepoints contributing heavily
plicable, and other possibilities have to be sougHtising ill move further away froml’ point, so thek - p approach

\ifv}lllj-t?retﬂiCteiﬂ ?nergryt/i-llevelns;:her;i?f, rthr? resfonr?c;wt Iri?(d shilecomes worse. We thus conclude that the significant errors
€ the single-particie energy difierence $1andp-iike - -y . 5 makes in describing the dispersion of thetk con-

valence levels plus the exchange splitting. This will give the "~ . . . e
red shift of ~100 meV, which is significantly larger than duction bandFig. 2) will be transferred to the description of

experimental measuremehtgaround 20 meY for the the conduction states of quantum dots.
D£34 8 A dot Our direct diagonalization also predicts that for small InP

As shown in Fig. 3, the energies obtained by the dots, the next conduction state above the LUDO is not a

calculation are significantly deeper than the direct diagonalrlc'denved direct state as depicted by-p, but a

ization results, implying larger confinement. The differencel‘1‘3_deriwad indirect state. To see that, we calculate the con-
i . . . ) — ) ) 2 . .
is about 600 meV for th® =20 A dot. Analytic fitting of tribution Q; (k) ==, 4| A;(nk)|* from thek points in the BZ.

- ; Figure 6 shows the projection amplitud®s(k) from thek
h I f th I (reds- 4 I ) .
:ivee ?cr)btlaae gzﬁ(rg\]}eBT\AOe:]e?g(;lot valence states prod points within the plane passing tfie X, L, K, andU points

of the bulk Brillouin zone for the LUDO and the next state

1. Conduction states of InP dots

o —119.08D1% (direct diagonalization above the LUDO of Ig,Pg; dot. The size of circle in this
€ TS]:[ —595.52D2 (k-p); figure is proportional to the contribution from this point.
We see that the LUDO originates mainly from bulk states
do —130.93D18! (direct diagonalizatioy near the BZ center, thus beiriyy-derived, but the next dot
€ t[p]:[ —472.6D? (k-p). state above the LUDQ“LUDO +1") originates mainly

(24)  from bulk states near the point, thus being.;. derived.
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TABLE Ill. The contributionsﬂi(n) [Eg. (26)] of the InP bulk band with index in forming the wave
functions of InP quantum dots. The bulk bands are labeled from 1 to 8 in the order of increasing(seergy
Fig. 2. LUDO and HODO mean the lowest unoccupied dot orbit and the highest occupied dot orbit,

respectively.
Dot Projection on Projection on Projection on
size Bulk band LUDO (%) s-like HODO (%) p-like HODO (%)
INg,Pg3 1 0.33 0.23 0.28
(D=20.2A) 2 3.47 20.45 0.89
3+4 141 70.15 94.61
5 84.37 3.75 1.13
6+7+8 7.72 2.96 1.58
all other 2.70 2.46 151
IN240P525 1 0.14 0.19 0.15
(D=28.0A) 2 2.50 21.86 0.98
3+4 0.78 70.22 94.25
5 90.22 2.94 0.84
6+7+8 4.72 2.64 2.14
all other 1.64 2.15 1.64
IN456Pa3s 1 0.13 0.15 0.12
(D=34.8A) 2 2.67 20.75 0.55
3+4 0.91 73.37 96.61
5 91.55 2.38 0.67
6+7+8 3.36 1.82 1.07
all other 1.38 1.53 0.98

This L-derived indirect dot conduction state cannot be de- D. Estimation of dot energy levels: The projection approach

scribed by the usud-p model. Once the wave-function projection amplitudés(nk)

[Eq. (25)] are available, we can estimate tthet energy lev-
2. Valence states of InP dots els by using thébulk band dispersion, i.e.,

Considering next the dot valence states, Table Ill and Fig. "

5(b) show that b
~dot__ bulk

(i) the s-like dot valence state has a significant 20%) €= n§=:l Ek: e [AI(NK) 2, (27)
contribution from bulk band bb (i.e., light-hole bany
whereas the-like dot valence state has nearly no contribu- bulk - ) ] ] ]
tion from this bulk band. Sinck- p overestimates the down- Where €™ is the bulk dispersion obtained either from
dispersion of bulk |h bandFig. 2), it will also overestimate PS€udopotential calculation or from tkep approach. In Eg.
the confinement of the datlike valence state. (27), we can |ntentlonally change the ngmber of bulk _bands

(i) The contribution from the lowest bulk conduction My [mean'wh|le,. we .need to normalize the amplitudes
band (bh) to thes-like dot state is larger than to thelike A;(nk)] to investigate its effect on the dot energy level. Un-

. . like the “truncated crystal method®® where only single
dot state(see Table li]. This suggests that the coupling be- band and single wave\yectbrare involved, our mogel ongq
tween valence bands and conduction bands play a more i"E27) involves multiband and multic ' '

portant role for thes-like dot valence state than for tipelike Table IV gives the energy levels of the LUDO state for
dot valence state. We will show quantitativelgee Sec. ihree InP dots. Column 3 shows that wheh,=8 (not

!V D) that this kind of coupling is quite crucial in determin- counting spif pseudopotential bulk bands are used, the esti-
ing thes/p level order. mated energy levels using E@7) agree very well with the

(i) The s-like dot state has a significant amplitudelat  dijrect-diagonalization resulicolumn 2. Given that in the
point, while thep-like dot state has no amplitude Bt(see  model of Eq.(27) surface effects are ignored, the agreement
Fig. 5. This suggests a way to distinguish tike dot state  between the estimated and the directly calculated energy lev-
from the p-like dot state. els indicates that surface effects are small for the dot's

(iv) The k points contributing heavily to thg-like dot = LUDO state. This agreement remains even when we use only
state are generally located further away from the zone centéhe lowest bulk conduction band in ER7) (column 4 in
than thosek points contributing heavily to the-like dot state  Table IV) because of the dominant contribution from this
(see Fig. 5. Sincek-p model can not describe well the far- bulk band. However, if we use in EQ27) the bulk disper-
off-T" bulk dispersion, it will also introduce errors for the dot sion given by thek- p model, the estimated energy levels of
p-like states. dot (column 5 become significantly worse than the direct

We next examine the above conclusions quantitatively. pseudopotential result. We concluded that the LUDO can be
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TABLE IV. Energy levels of the lowest conduction state of
(a) LUDO spherical InP quantum dots as calculated by the direct pseudopoten-
tial method[Eg. (5)], and as estimated using projection coefficients
X U with different M, and bulk dispersiongEq. (27)]. The energy lev-

els are given relative to the bulk VBM energy, in units of eV.

Diameter  Direct Estimated using projection coefficients

L D (A) pseudo
8 pseudd 1 pseudB 1k-p°
20.2 2.39 2.48 2.54 4.00
K 28.0 2.21 2.22 2.22 2.85
34.8 1.99 2.01 2.04 2.49

4Using M,=8 and pseudopotential bulk dispersion.

bUsing Mp=1 and the pseudopotential dispersion of the lowest
bulk conduction band.

‘UsingM,=1 and thek- p dispersion of the lowest bulk conduction

band.
(b) LUDO+1 is insufficient even if the bulk dispersions of these three
bands are exactLike our direct pseudopotential result, a
X U recent tight-binding calculatiéf on Si dots including the

valence-conduction coupling also gives-tke HODO state
except for very small dotg§less than 87 atomswhere the
surface effect can not be neglected. Not surprisingly, in
Table V, when we replace the pseudopotential bulk bands by
an equivalent number df-p bands(column 9, the esti-
mated energy levels seriously differ from column(aso
from column 2 due to the difference in bulk band disper-
sion.

E. Improving k -p performances for InP dots

We have seen thdt-p errors for dots evolve fronti)
restricted size of basis set, afit) incorrect bulk dispersion.
They could, however, also evolve frofii) the use of iso-
tropic bands.

We have studied how important the anisotropic effect due
to y,# y3 is on the 6x6 k-p calculation of dots. This is
calculated for InP using,=4.86, y,=1.37, andy;=1.85,

FIG. 6. The projection contributiorQ;(k)==r_,|A;(nk)|?
from thosek points within the plane passing the X, L, K, andU
points of the zincblende Brillouin zone in forming the two follow-
ing conduction states of §5Pg; dot with 20.2 A diameter: (a) the
LUDO; (b) the next unoccupied dot orbit above the LUGOCe.,
LUDO++1). The larger the circle, the heavier the projection contri-

bution. The lines in this figure indicate the boundary of Brillouin _ 'ABLE V. Energy levels of valence states of InP dots as ob-
zone.X andL points are located in the middle of respective lines. {&ined by direct pseudopotential method, and as estimated using

Note that the LUDO id-like, while the next state above islike. ~ Projection coefficients with differeritl, and bulk dispersiongEg.
(27)]. For each dot, the first line is for thelike state while the

second line is for the@-like state. The energy levels are relative to
approximated well by a single band if, and only if this is the the bulk VBM energy, in units of eV.
exact bulk band. Otherwiséviz. thek- p) many more bands

are needed. Diameter  Direct Estimated using projection coefficient
Table V shows analogous results to Table IV but for theD (A) pseudo 8 B K. o¢
dot’'s valence stategboth s-like and p-like). Column 3 8 pseud 8 pseud 3k-p
shows that when we udd ,=8 pseudopotential bulk bands, 20.2 -0.47 —0.46 —0.763 -1.77
the estimated energy levels are quite close to the direct cal- ~ 063 —0.64 ~0.757 ~1.39
culation(column 2, and the HODO state islike. However, 280 ~0.23 ~0.26 —0.488 ~1.07
when we use only the three highest bulk valence bands in ~031 —034 —0.487 ~0.90
Eq. (27), the order ofs andp levels changes, and the esti- 34 g —017 ~0.19 —0.344 —0.69
mated energiegcolumn 4 are now significantly different —0.22 —0.24 —0.306 047

from the direct resulfcolumn 2, especially for thes-like dot
valence states. This is due to the fact thattHike dot state  2Using pseudopotential dispersion of the lowest 8 bulk bands.

is more sensitive to the valence-conduction coupling. Thi$Using pseudopotential dispersion of the highest 3 bulk valence
shows that in order to have a correct prediction aboustpe  bands.

level order,inclusion of the three highest bulk valence bands®Using k- p dispersion of the highest 3 bulk valence bands.
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tropically approximated results obtained wiih=y;=",.
We see that the errors due to isotropic approximation are
very small for spherical dots.

To examine errofi), an isotropically-averaged>8 k-p
Hamiltonian was solved for InP dots by variational diagonal-
ization, using a method similar to that one for anisotropic 6
X 6 k- p approaci***We use the &8 Luttinger parameters
y1=1.42,v;=-0.062,E,=14.98, andx=1.0 derived from
the 6x6 k-p parametergsee Appendix B We find that for
. the bulk band structure, thex8 Ih dispersion is much im-
proved as shown in Fig. 2 while thex8 hh dispersion is
not changed in comparison with thex® k- p result, since
the hh does not couple with the conduction band. The38
k- p valence state energies of dots are illustrated in Fig. 7 and
Table VI. We see that theX88 model significantly improves
the energy of the-like dot valence state compared to direct
diagonalization result, however, it does not change the en-
ergy of thep-like dot valence state. This is due to the fact

~— 6x6

6x6 with exact
bulk bands
i

04 |

Orbital energies of dots (eV)
o

08 that thes-like state is made of both Ih and hh bands, but the
6x6 with exact p-like state is made of only the hh band. For dot radius
bulk bands below 38 A, thes/p order of the 8 8 k- p model is the same

12 . as the direct diagonalization, although the individual energy

value is still quite different from the more exact one. For dot
E . ! : . radius above 38 A, the-like state moves above thelike
10 15 20 25 30 35 40 state.
Dot diameter (A) We next study how much improvement can be gained by

fimproving (ii). We do this by 6<6 k-p, using in Eq.(18)

FIG. 7. The orbital energies of the two highest valence orbits o . . . - .
: g N v ! the (isotropically-averagedexactpseudopotential dispersion

InP dots as calculated by thex8 k-p model (y;=1.42, 7§ 50 + ; !
=-0.062, E,=14.98, a=1.00, the standard 86 model (y; €nx instead of the bulk &6 k- p dispersion. The results are

=4.86,7,=1.66,A,=0), the 6<6 model but with pseudopotential also shown in Fig. 7 and Table VI. The errors in the energy
bulk band dispersion, and via direct diagonalizatib): (a) the  Of the p-like state have been reduced 5¥50%. The same
s-like dot valence state(b) the p-like dot valence state. Diamond Procedure can also be applied to #ike state. The result-
symbols represent direct diagonalization results, and lines connedidg energy is also much improved from the originak 6

ing these symbols are guides for eyes. k-p result. Thus, the 86 k-p with exact bulk dispersion
can give much better results than th& 6 k-p with im-
Jproper bulk dispersion. However, the error compared to the
direct diagonalization pseudopotential result is still signifi-
cant, due to the inadequacy of describing the wave function

7 v , by a small,I™-only bulk basis(Fig. 1). While the dispersion
mth node ofj, (x) ["e".JL(XLm)_O]' The matrix el.ements elation X,” can be brought into agreement with pseudopo-
are Cal%'?ted using the reduced—mgtnx-elemen{ential result by simply using-dependent coefficients of the
technique’*“*The converged results using sufficient number, " " a1 iamilionian in Eqs(8) and (9), the inability to
of bases are shown in Table VI in comparison with the iS0yescrine the off Bloch wave function is more fundamental,
stemming from a too small basis set. This can only be
solved” by including more bases than<@ k-p model.

derived from our pseudopotential bulk band structure. Th
6X6 k-p Hamiltonian is diagonalized using the basis of
|F.F,,,L) g giL(KLml), Wherek, n=X_m/R andX,, is the

TABLE VI. Energies of the valence states of,d4gP435 dot (D
=34.8 A) calculated by differerit- p models and bulk dispersions.

The orbital energies are given in units of eV relative to the bulk F. Bulk CdSe and CdSe quantum dots

VBM. CdSe is stable in the wurzite structure. However, most
Approach < lke state o-like state k-p studies on CdSe quantum dots assume a zincblende
lattice. In order to parallel these studigsd also to compare
Direct diagonalization —-0.172 —0.216 CdSe with InP, we also assume a zincblende lattice. The
6x6 k-p (isotropig? —0.487 —0.388 pseudopotential-calculated effective masses and the ensuing
6x6 k-p (anisotropig® —0.470 —0.381 Lutt_inger parameters for zinc—bleﬂde CdSe. are Ii§ted in_ Table
8x8 k-p (isotropig® —0.322 ~0.388 |. Since Secs. IV A-D already give a detailed discussion on
6x6 k-p¢ —0.413 —0.349 the comparison betwedn p and pseudopotential results on

4Using y,=4.86, y,=1.66.

bUsing y,=4.86, y,=1.37, y,=1.85.
“Usingy;=1.42, y,=—0.062,E,=14.98,a=1.0.
dUsing exact pseudopotential bulk dispersions.

InP, we emphasize here only the difference with respect to
CdSe.

Figure 8 shows the bulk band structure of zinc-blende
CdSe, as calculated by tthep (with parameters in Tablg |
and by the direct-diagonalization pseudopotential method.
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T T T

6 F " | Buk case |
/ (with s.0.)

Orbital energies of dots (eV)

Bulk band energies (eV)

Dot diameter (A)

FIG. 9. The orbital energies of the lowest conduction state and
of the two highest valence states of CdSe dots. Diamond and cross
symbols correspond ts- and p-like levels, respectively, as calcu-

-8 ' ' ko ' lated by direct diagonalizatiofDD). The thick solid lines are
0 0.2 0.4 0.6 0.8 1 guides for the eye. For the dot conduction state inkhg model,
r X we show results calculated both with an infinite bar(aotted ling

and with a finite barriedashed ling For the dot valence states, the
k-p curves of boths-like (thin solid line and p-like (dotted ling
states are down-shifted by 0.5 eV for clarity of display.

Wave vector k along (100) direction

FIG. 8. Band dispersions of bulk CdSe along {f¥ direction
as calculated by pseudopotential direct diagonalizatidh, solid . . . . i
lines and by the &6 (for valence usingy;=2.52, 7,=0.83, By comparing Flg._ gCdSe with Fig. 2 (InP), it can be seen
Ay=0.42 eV} and 2x 2 (for conduction k- p model (dotted lines.  that, the energy difference bet\{Vee” thep and the DS?UdO'
For the conduction band, the single-band parablolis dispersion  potential bulk valence bands is generally smaller in CdSe
is also shown in dashed line. All curves are calculated with spinthan in InP. This is due to the more ionic character of CdSe,

orbit coupling. which flattens the band dispersion and thus diminishes the

TABLE VII. Band contributionszi(n) [Eg. (26)] of CdSe bulk band with inder in forming the wave
functions of dots. The contributions from spin-split bands are summed, and the sum is assigned to one-band
contribution in order to facilitate comparison with InP.

Dot Projection on Projection on Projection on

size Bulk band LUDO (%) s-like HODO (%) p-like HODO (%)
CdseSerg 1 1.93 0.45 0.29
(D=19.9A) 2 4.63 10.96 2.52
3+4 1.85 85.40 94.46
5 88.70 0.90 0.59
6+7+8 1.96 1.04 0.97
all other 0.93 1.25 1.17
Cds1,Sesq 1 0.92 0.32 0.27
(D=32.4A) 2 2.45 6.08 1.11
3+4 1.60 91.01 96.30
5 93.77 0.58 0.39
6+7+8 0.63 0.82 0.77
all other 0.63 1.19 1.16
CdygsSegs 1 0.75 0.30 0.25
(D=375A) 2 2.19 4.67 0.90
3+4 1.65 92.57 96.53
5 94.35 0.50 0.39
6+7+8 0.52 0.78 0.76

all other 0.54 1.18 1.17
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- - ard etal’® (i) The overall agreement between thep

Spectral é%aslysclis Of[;i(it SV;a;/f;?f‘unctlons and the direct diagonalization results for valence states is
edot, D=57. better in CdSe dotéFig. 9) than in InP dotgFig. 3).

The bulk band contributiod\;(n) [Eqg. (26)] to the near-

0.4 F 2 LUDO 4 edge states of CdSe dots are illustrated in Table VII. In this
bb, table, the contributions from two bulk bands split by spin-

0.0
1.2

1.0 - IRE
S hke\

0.8 I

0.4 l

Projection of dot wavefunctions on bulk bands

02 - 4 orbit coupling are summed, and the summed contribution is

I assigned to one band in order to facilitate a direct compari-

. son with Table Il for InP dots. The projection distributions
in Table VII for CdSe are quite similar to those in Table Ill

" ' - ‘ for InP, i.e., the lowest dot conduction state has a dominant

p-like | bb contribution from the lowest bulk conduction band, while the

/ L4 | dot valence states come mainly from the three highest bulk
valence bands. The significant difference is that, the contri-

“ l'! q bution of the bulk band bjto thes-like dot valence state in

Al CdSe is significantly smaller than in InfFable Ill). This is

i due to the large spin-orbit splitting, in CdSe, moving bp

0.6 - bb3 | to.deeper energies. Sinp(_azuh?as a Iarge error in bulk-p

: (Fig. 8), the smaller participation of Bbn forming the dot’s

I s-like state alleviates thk-p error in this dot state.

f i The projection amplitude into specific bulk bands and dif-
ferentk points are shown in Fig. 10. Again, we see that the

bb bulk band bb in CdSe(Fig. 10 does not contribute as sig-

02 r 9% | nificantly as in InP(Fig. 5) in forming the dots-like valence
state.

‘ N \ ) ) The above comparison between CdSe and InP quantum

0'90_05 0.05 0.15 0.25 0.35 dots shows that thk-p performanc_e on CQSe_dots is better
than on InP dots for two reasons(i) Considering the bulk

Length of wave vector (k/X) band structures, the more ionic nature of CdSe flattens the

FIG. 10. Projection amplitudka;(nk)|2 [see Eq(25)] showing band dispgrsion relation, so the overall difference between

how much the bulk statdsk) participate in forming the following t.he predictions O.f thé-p b‘?."‘ bands an.d the pseudopoten-

stategi) of CdSe dot with 37.5 A diameter:(a) the lowest unoc- tial b_U|k band.s 1S smaller(ii) Considering the bulk wave

cupied dot orbit(LUDO): (b) two highest occupied dot orbits fun.ctllon _contr|but|on to the dot states, the large spin-orbit

(HODO's) with s-like symmetry(filled barg and p-like symmetry splitting in Cng moves the poor_ly-descrllbec.i bulk bang bb

(unfilled bars, where the unfilled bars are slightly shifted horizon- 0 deeper energies, and reduces its contributonl erroy to

tally and the projections from different bulk bands to the HODO's the dot’ss-like state.

are shifted vertically for clarity of display. Here, the bulk bartdi,

are denoted by an indexin the increasing order of energy. V. SUMMARY AND CONCLUSIONS

energy difference betweek:- p bands relative to the exact Thek-p method and the direct-diagonalization pseudopo-
ones. Nevertheless, the p bulk bands depart significantly tential method are used to calculate in parallel the electronic
from the pseudopotential bands away from the Brillouin-structures of InP and CdSe quantum dots. By using the
zone origin. pseudopotential-derive# - p Luttinger parameters, we are
Figure 9 compares thee- p and the direct-diagonalization able to find out the sources & p errors in quantum-dot
results on the orbital energies of CdSe dots of different sizeslectronic structure calculatioithus the way to improve the
For the LUDO, we see thdt) the infinite barriekk-p model k- p performancg Our main conclusions are the following:
predicts much higher confinement energies than the exact (i) The k-p approach predicts that the highest occupied
diagonalization method, while the finite barrierp calcula-  dot orbit has ap-like symmetry, while the direct diagonal-
tion improves the resultii) Using pseudopotential-derived ization approach predicts that it has a dominstike sym-
k-p parametergTable ), we find that, similar to InP, the metry with parity mixing. This holds for very large dots.
HODO in k-p calculation isp-like while the HODO in (i) Thek-p predicts that the second conduction state in
pseudopotential calculation slike. This holds using our small InP dots id-like, while direct diagonalization shows
bulk-derivedk - p parametersy,; =2.52 andy,=0.83(Table that it is L-like.
). Using instead thé-p parametersfit by Norris and Ba- (i) The k-p approach generally overestimates the con-
wendi to the experimental data on dot§y,=2.04, y, finement energies of both valence and conduction states of
=0.58 gives thes-like level above thep-like level just like  quantum dots.
our direct diagonalization. While the two sets of parameters (iv) We demonstrated, via the wave function projection,
give similar effective massésee Table [l, the ensuing elec- that thek-p errors in dots originate from two main sources
tronic structures of dots can be, however, quite different(a) the use of restricted basis set, afij the k- p errors in
This illustrates how sensitive tHe p calculations are to the describing the bulk band structures.
Luttinger parameters for CdSe dots as pointed out by Rich- (v) Error(a) occurs because the dffBloch states can not
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be accurately described by a small numbef'dfke Bloch  make it less deepe(2) couple the valence bands to the con-
basis set. This kind of error can only be reduced by increasduction bands. However, direct-diagonalization provides an
ing the size of the basis. accurate and practical replacement to khe.

(vi) Error (b) results specifically from (1) the fact that
the s-like dot valence state has a significant contribution
from bulk band bk, which thek-p model predicts at too
deep energies;2) the fact that thep-like dot valence state We thank S. H. Wei, Y. Zhang, and J. Kim for helpful
has large contribution from offf- part of bulk band structure discussions, and thank A. Franceschetti for his comments on
whose dispersion is poorly described byp; (3) inclusion  the manuscript. This work was supported by the U.S. Depart-
of the valence-conduction coupling affects differently the en-ment of Energy, OER-BES, under Grant No. DE-AC36-
ergies of thes-like and p-like dot states, thus changing their 83CH10093.
energy separation.

(vii) k- p errors in CdSe dots appear to be smaller than in
InP dots due to the more ionic nature and the large spin-orbit
splitting of CdSe material.

(viii) The wave function and energy analysis suggests that Using the base§,J,) in Eq. (12), the k-p Hamiltonian
in order to improve thek-p performance in quantum dots, [Eq. (7)] can be obtained, after a unitary transform of the
one needs tdl) correct the second lowest bulk band, andmatrix in Eq.(8), as follows:
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APPENDIX A: Kk -p HAMILTONIAN MATRIX
FOR BULK IN |J,J,) BASES

|%’%>e |%’—%>e l%’%>h l%’%>h |%’—%)h %’—% h H’%)h |‘59_17 h
Y 0 -\Bv*  \2Uu 1% 0 U —\2v
Y 0 y* 2U V3V =2 U
1
-T-Q9 -S§ R 0 —755 —V2R
-T+Q 0 -R 20 is A1)
—T+Q =S —yist 20

z 0
0 Z
|
Here, the related parametdrs,U,V,T,Q,R,S,Z} are func- S=v3y3k,(ke—iky),

tions of the ensemblgy,, v, v3, A’, P andAg}in Egs.(9)

and(10), and are explicitly written as 7 _ %Ao—%yl(k§+k§+k§)= _AO_%')/l(kiJ’_ k§+k§),

Y=eot A/ (K +Ko+K5) = e+ A’ (Ki+KZ+K2), (A2)
where €, is band gap. After the spin-orbit coupling, the
U= \/giPkZ, valence-band maximum becomes Ay, and is taken as en-
ergy zero point in the most right-hand-side equations for
V= \/IiP(k —ik,) parametery, T, andZ. EquationgAl) and(A2) constitute
° e the 8x8 bulk k-p method, cast inJ,J,) representation.
Ag
T=+ 3 +anlGHkgrkg) =3 nk+Hkg+k), APPENDIX B: SUBMATRICE OF ISOTROPIC k -p
HAMILTONIAN
— 2 2 2
Q_%VZ(kx”ka_Zkz)' In the irreducible representatidir,F,,J,L) [Eq. (15)],

the isotropic Hamiltonian(with y,=vy3=1v,) is block-
diagonal for differenf{F,F,}. By using Eqs.(13) and (15)

V3
__ 2_ 12\ _ o
R=~ 7 Drallmky) = 2iyskdky ], and Eq.(A1), the submatrixHe ¢ corresponding td= =3
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can be obtained, by some derivation, as

O Rt I N X ST
e+ —\Eipk  —hiPk

= N . B1
Hiy= _(‘)’1+2‘)’2)'2‘ _\/5‘)’2](2 K (B1)

k2
“Ao")’l‘z'

wherek?=kZ+kZ+k? is the length of wave vectde. In H; andH,, the base$F,F,,J,L) [abbreviated akJ,L) due to fixed
{F,F,}] are given in the first row. Note that, in the isotropic approximation, the Hamiltonian matrix elements depends only on
the amplitude ok, not its direction. The Hamiltonian submatrix f6r=2 is obtained as

Hs
H%,i% ori%: Hy, )

151 130 132) |7.,2)
e +1k2 Lk —iipk  —iPk
K ) )
BRAY ¥2k Y2k
H3= , (B2
k? 5
—7i 2 2
k2
—Ap— Y1y
B .
2.2) 3.1) |3.3) |3.1)
€+ 7k’ T5iPk —Viipk  —lipk
2
(—n+ims Ik NN
H 2 (B3)
4— .
2 3 _
‘(71"‘%‘)’2)7 —7572"
k2
L —A— 7 7
|
In the 6X6 k-p model, we decouple the valence bands from M (11D =y,—2y3, mp (11D =y, +2ys3,

the conduction bands, i.e., take=0 in Egs.(B1)—(B3) for

valence states. for nonvanishing spin-orbit coupling,, and

The relationship between thex® Luttinger parameters 1 o —1 .
and the effective masses follows E¢a1.c)—(AL.f) in Ref. My (00D)=y1 =272, My (00D =y, +47ys, (B5)
23, i.e., . _

My (11D =y1— 275, My (11 =17;+4ys,

for vanishing spin-orbit coupling\y. It is found that the

Mya (00D =y, 27,, M (00D) =y, +27,, Luttinger parameters obtained from the pseudopotential cal-

(B4)
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culations with Ay#0) and without spin-orbit coupling
(Ag=0) are very closgwith difference less than 5)dor
InP. The four equations with three unknowns giygvalue

APPLICABILITY OF THE k-

p METHOD TO THE . .. 9987

, 2 P?
¥1(8X8) = y1(6X 6)_§ -
g

with an uncertainty of less than 1%. The relationships be- 1 p2

tween the &8 and the &6 k-p parameters, providing con-
sistent hole effective masses, are:

Yo(8X8)=7y,(6X 6)—5 e_g :
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