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The electronic structure of interfaces between lattice-mismatched semiconductors is sensitive to the
strain. We compare two approaches for calculating such inhomogeneous strain—continuum
elasticity [(CE), treated as a finite difference problgmand atomistic elasticity. While fosmall

strain the two methods must agree, for the large strains that exist between lattice-mismatched IlI-V
semiconductorge.g., 7% for InNAs/GaAs outside the linearity regime of)Gliere are discrepancies.

We compare the strain profile obtained by both approaéimetuding the approximation of the
correctC, symmetry by theC, symmetry in the CE methgdvhen applied taC,-symmetric InAs
pyramidal dots capped by GaAs. €998 American Institute of Physi¢§0021-8978)01805-2

I. INTRODUCTION wherea, is the equilibrium lattice constant of the unstrained
material andc is the perpendicular lattice constant of the

One of the leading methods for growing semiconductorgyained film. The equilibrium value of this axis is deter-

quantum dots is via the controlled coarsening of a film of &, eq fromdEcg/de, =0, yielding

material that is strained with respect to the substrate on

which it is grown!? This (“self-assembled’} coarsening/ Ceq(@s,G)

roughening is a result of lattice-mismatch-induced strains. a—_1:[2_3Q(G)]EII(as)* ®)
The dots are often capped by the substrate material, thus €q

extending the strain around the dot to all angular directionswhere the “epitaxial strain reduction factor” for orientation
Not surprisingly, the interpretation of the electronic structureG of the ¢ axis is
of such dots is profoundly affected by their strain profile.
Thus, in order to calculate or interpret the measured elec- G)=1— B 4
. , a(G) 4
tronic structure, one has first to calculate or measure the Cuty(G)A
osition dependent strain tensey; . . . .
post P ! s %nd A=Cy—1/2(C11—C4p) is the elastic anisotropyB

are.The three basic approaches to calculating such strains 213(C 1+ 2C 1) is the bulk modulus, ang(G) is a purely

(i) Harmonic continuum elasticityHere, one uses clas- geometric factor given in Ref. 4. For principal directions,

sical elasticity within the harmonic approximation. For a ¥(001)= 0’7((.)11)21 andly(111)= as3. E.quatllons(Z)—(4)_
cubic system, the strain energy per atdgpg, is are used routinely to predict tetragonal distortions of strained

films*. The harmonic continuum elasticity method has been
Y Vv recently applied to pyramidal quantum dots by Grundmann
Ece== Cpy( €+ €2+ €2)+ = Cuul €2,+ €2+ €2 et al? and by Pryoret al®
CE_2 11 €xx eyy ezz) 2 44(€yz €2x €xy) .. .. L . .
(i) Atomistic elasticity: Here one avoids a continuum
(1) description and describes the strainergyin terms of few-

+VCi €yy€r7T €576 Exx€vy), ;
yyres© maEmots mOCYY body potentials between actual atoms

where V is the equilibrium volumeC;; are cubic elastic N

constants, and, is the strain tensor. We illustrate the pre- Eae=> Va(Ri— Rj)+2|:4 V(O + -+, 6)
dictions of harmonic continuum elasticiyCE) for a two- N N

dimensional2D) film, since this is going to be used as a testwhereV, is a two-body term, an®; is a three-body func-

case. In the absence of shear straingfcd,4), for a film  tion of the bond angle@;; . The functional form of these
coherently grown on a substrate with parallel lattice constanferms is taken to be strain-independent. The strain is deter-

as, the strain components are mined by minimizingExg with respect to atomic positions
{R}. Like the continuum elasticity approach, only the cubic
a5~ aeq C—aeq elastic constants are used as inpiitHowever, unlike the
€T Exx™ Eyy:a—v €L = €27~ o (20 CE approach, here@ optical phonon modes can be
eq €q described;” (b) harmonicity is not assumed, ard) the
atomic level symmetry is retained. The last point is illus-
dElectronic mail: alex_zunger@nrel.gov trated in Fig. 1 showing a regular pyramid representing the

0021-8979/98/83(5)/2548/7/$15.00 2548 © 1998 American Institute of Physics
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mo_stly _inside the dots, Wh_ile the difference in the barrier
z region is smaller. These differences are traced back to the
fact that the strain lies outside the domain of validity for the
linear elasticity. We illustrate this point by contrasting the
predictedceq(as,G)/aqq ratio of coherent 2D films, as ob-
tained by harmonic continuum elasticitiq. (3)] and atom-
istic elasticity (AE). Differences are noticeable already for
1% biaxial strain, whereas the controlled-coarserirsglf-
a§sembled)’ g_rowth method for quantum dots needs to deal
with larger mismatche$7% for InAs/GaAs and InP/GaP
Finally, the consequences on the electronic structure of the
different strain profiles obtained for dots using CE and AE

Y,
are illustrated.
b

[-110] [110]

IIl. METHODS OF CALCULATIONS

A. Continuum elasticity for dots

FIG. 1. Schematic diagram of a square pyramidal InAs dot on (001) GaAs In the CE approximation the strain is determined by
substrate. The wetting layéwL) consists of 1 monolayeiML) of In at-  minimizing the elastic energy given in E@l). To account
oms. Three principal direction§100],[010] and[001] are denoted a%,Y, o the |attice mismatch we assume the coordinates are fixed
andZ. The orientation of the pyramidal baseXs<Y and the ratio of the . . .

. . ) - to the barrier material, and treat the island as expanded bar-
base lengthlf) and the heightlf) is 2 with {110 (grey) and{110} facets. . . . . - T
Although not shown in the figure, the pyramidal InAs dot is capped by fier material(with different elastic constantsThis is accom-

GaAs. plished by the modification
Ece—Ece— a(r) (et EyyT €2, (6)

quantum dots from experiments of Grundmaetral? In a [O barrier ,
continuum representation, the strain is equal on {th&0 a(r) (Cxxxxt 2Cyxyy) (aj—ap)/ag island @
and{ 110} facets, while in an atomistic description these two
facets can have different strain if the pyramid is made of
zincblend material. Atomistic elasticity has been widely use
to determine strain in alloy®? superlattice¥’ and dotst!*?
whereV, and V3 of the Eq.(5) are taken from Keating's
valence force fieldVFF)®~8 model.

(ii) Atomistic quantum-mechanical approacHere one €= dij(a,—ag)/ag. (8

not hav me any model for interatomic interac-, . .. .. . : .
QOes Ot. ave to assume any odel for interato nie te 8Chis fictitious strain corresponds to unstrained island mate-
tions as in the atomic elasticity. Instead, one explicitly com- .

rial and must be subtracted. The corrected strain is still com-
putes the total electron and nuclear enekgy[{R;}] for . L : O .
. . . . puted with derivatives in the barrier's coordinates and must
each atomic configuratiofR;} directly from a quantum-

mechanical Schidinger equation. Atomic symmetry is re- be converted to the island coordinates through multiplication

tained and harmonicity is not assumed. This approach hat%y dxp/dx;. Thus, the physical strain is given by

been used fosmall (<100 atom wires and clustef$**but . as
it is impractical for~100 A dots (10> atoms. el yS:a_[eij — dij(ay—ap)/ag], 9

The three approaches to the calculation of strain— !
harmonic continuum elasticityanharmonig atomistic elas- where
dUi N dU] /2
superlattices! However, no comparison exists for 0D quan- dx;  dx
tum dots. Here we perform parallel calculations for the strain

ticity, and the atomistic quantum mechanical approached— (
— Is the strain computed directly from the displacement
€(R) of a pyramidal InAs dotg$Fig. 1) surrounded by GaAs P y P i

whereag anda, are the unstrained lattice constants for the
arrier and island material, respectively, &g, andC,yy,

are the elastic constants for the island material. A piece of

island material with no external forces acting on it will have

its energy minimum shifted to

have been recently compared for InAs/GaAs strained _ _
which minimizesEcg.

ij—
using the two approaches that are practical for large dots: 5 nymerical solution requires some kind of discretiza-
continuum elasticity and atomistic elasticity. We find that: tion. We define the displacementson a cubic grid, thereby

The strain profiles obtained via continuum elasticity are 'nmaintaining the cubic symmetry of the crystal. The strain is

_quall_'ganve agreement W|th_ t_hose found by_ atomistic ?'aSt'C'expressed in terms of forwards or backwards differences by
ity; (ii) The atomistic elasticity produces different strains on

the two facets {110} or {110}) of the zincblend pyramidal i =(A7uj+ AT W)/2, (10

dots(see Fig. 1 corresponding to the physica} symmetry, ¢ ¢

while the continuum elasticity approximates thiscassym- AFF(r)= (r+ny)—f(r) (1)
I ’

metric strain; (iii) The quantitative discrepancy resides |ﬁi|
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TABLE I. Ideal bond lengthsd°), elastic constants, and force constantsand 8) of bulk GaAs and InAs.
Elastic constants of valence force field method are evaluated b{8Eqgsing « and 8 given below.

dic} Cu Ci Cua a B

Material R (10" dyne/cnT ) 10° dyne)
GaAs (valence force fielg 2.448 12.03 5.70 5.20 41.49 8.94
GaAs (experimental 2.448 12.11 5.48 6.04
InAs (valence force fielg 2.622 8.53 4.90 3.14 35.18 5.49
InAs (experimental 2.622 8.329 4.526 3.959

f(ry—f(r—n,) are neglected, which causes a slight deviation from the mea-
— I . . .
AT f(r)=————, (12 sured bulk propertie$In this case, the elastic constants of a

[ pure bulk zincblend material are given as

wheren; is the lattice vector in thé direction. Symmetric

: 3
differences Cy+ 2012=4—\/r—(3a+,8)

f(r+n)—f(r—n)

APf(r)= - , 1
if(r) 2n] 13 73
are undesirable since they give unphysical low energy con- Cu~ CIZITB (19
figurations which oscillate with period|& |. For example, a
displacementu,(r) =sin(mx/|n,|) has e,=0 when con- _\/_§4a_ﬂ
structed using symmetric differences. The oscillatory solu- 4 4r a+ B’

tions cannot be simply discarded since they mix with the
physical ones. Nonsymmetric derivatives are also problemwherer is interatomic bond length. Because Ef5) con-
atic since a particular choice will single out a direction in tains only two free parameters, it is impossible to fit three
space. The solution is to averagegg over all permutation of  arbitrary elastic constants. Nonetheless, for zincblend mate-
+ on each of the three difference operators. That is, we takgials « and 8 may be chosen so th€s fit within a few
(E*""+E""T+E" "+ ...)/8. Physically this corre- percent of the measured values. Table | gives the elastic
sponds to taking the energy density at each site to be theonstants of bulk GaAs and InAs calculated from Etp)
average of the energy densities from each adjoining octantusing es and8s of Ref. 7. The elastic constants obtained
The elastic energy is a quadratic function of the dis-differ a bit from the experimental valugsince Coulomb
placements, which is easily minimized using the conjugateorrections to Eq(15) are neglectel] but we will use them
gradient algorithm. For the barrier material the strains areconsistently in both our continuum elasticity and atomistic
computed directly using differencésow there is no impedi- elasticity studies. For purposes of comparison, Table | also
ment to using symmetric differendesn the island material contains the experimental elastic parameters. Note that the

we then apply the correction in E). VFF method with the standard parameterization of @d)
reproduces well the values and trends in the formation en-
B. Atomistic valence force field for dots thalpies of strained GaP/InP structures, as obtained from

. _ first-principles'®
”.‘ the VIFF mgdel, t_h_e strain energy is expressed as a The relaxed atomic configuration is obtained by conju-
functional of atomic positiongR;}, as gate gradient minimizatidfi of Exg with respect to the
- atomic positions. At each minimization step, the atoms are
EAE:%‘J V2(Ri_RJ)+%} V3(6ijk) displaced along the conjugate directidn} by a finite incre-

ment\, asR;—R;+\h;. A line minimization of E g along
nn

3oy ) 0212 the conjugate gradient direction to findthat minimizesE 5
= —2 Z 8(d0) S[(Ri—R)“=(djj)7] is done by taking advantage of the fact tEaf is a fourth-
( order polynomial that depends on only the relative positions,
1 mo3 i« Ri—R;, of each atom:
32 X oL (RImRIX(RRy
" ke Bdid; Eacl{R+ AN} ]=Eael{Ri~RF+AEDV[{R —R}},
—cosfo dij dj]’. (149 X{hi—h} 1+ NEPHR = Rb{hi—hj}]
I_—iere,dioj Qenotgs the ideal bond length bgtween atorasd +N3EQP[R—R},{h—h}]
j, andéy is the ideal bond angle. For the zincblend structure,
cos f,=—1/3. The local-environment-dependent coefficients, +NEYHR —R}L{h—h}]. (16)

aj; and BI jk, are fitted to the elastic constants of bulk
materials. The long-range Coulomb interactions of Ref. 7 The energy term&™®, E?), E®), andE™ are also simple
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Cap Dot Cap
003 | (a)e, ‘ 1
R,, R, 0.00 A N
-0.03 | ' ) 1
-0.06 — AE
T -- CE
R, (b)e ]
£ 000 y
FIG. 2. Schematics to illustrate how the local strain is calculated. For a 5 L ]
cation(Ga or In, three vectors{R}) forming a distorted tetrahedron after ~010 - ]
atomic relaxation are related to the equivalent vect¢R’Y) of an ideal ‘ ‘
tetrahedron via the strain tensor. :
(c) Tr(e)
0.00

-0.06 U 1
polynomials of{R} and{h}. The incremenf\ minimizing -
the elastic energy is then obtained by solving exactly 012 0 0 20 40

position along [110]
JE R+\h
M =EW+2NE@ +3N2E® +40\3E*=0. FIG. 3. Strain profiles along tHel 10] direction atz=h/3 from the base of
IN the pyramid. The solid lines are the strain profiles obtained by atomistic

(17) elasticity and dotted lines those by continuum elasticity. The positive and
negative signs oK axes denote thgl10] and[110] direction, respectively.
Figure 2 illustrates how the local strain is calculated.
After the atomic posit’iuons are relaxed by minimiziggg, . RESULTS
the local strain tensoe at a cation sitgfor cation-mixed
systems is calculated by considering a tetrahedron forme
by four nearest neighboring anions. The distorted tetrahedron  Figure 3 showse,,, €,, and Tr(€) = e+ €,y + €,, as
edgesRi,, RozandRg,, are related to the ideal tetrahedron obtained by continuum elasticitydashed linesand by ato-

dA. Comparison of strain profiles

edgesRY,, R9; andRY, via mistic elasticity (solid lineg as a function of the position
from the pyramidal center along tHel10] direction at a

Rizx  Rosx  Raax heightz=h/3 from the basdsee Fig. 1 The corresponding
Ri2y Rosy Raay differences in strainsd e= ¢(CE) — €(AE), are given as the

solid lines in Fig. 4. We note that the grid points of the

R122 R232 R34z : ;s .
continuum elasticity calculation are chosen to be commensu-

1+en €y €% rate with the cation positions of the ideal GaAs zincblend
| ey ltey ey structure for
€z €yz 1+e€,,

Cap Dot Cap

0 0 0
R12,x R23)( R34,><
X RgZy Rg&y Rg4,y . (18 0.00

0 0 0
RlZz R23,2 R34,2

-0.02

The ideal tetrahedron edges ard R% ={[110]a/ : :
2,[011]a/2[110]a/2}, wherea denotes the equilibrium lat- 002 () 8~J 1
Vi

. . . £
tice constant of the cation, i.@g,asfor Ga atoms an@,,as I
L~ 2 : =X
for In atoms. The local straing, is then calculated by a ,'V
matrix inversion as ~0.02 —
0.02 ( )T‘ ) -- [110]-[110]
C) Ir(g
€xx  €yx €zx Rizx Rosx  Raax 0.01 - F i
Exy Eyy ézy = R12,y sty R34,y 0.00 —,‘\~ ‘//\_
€xz €yz €27 Ri2; Ros; Ragg —0.01 ‘[ ]‘
0 0 0 1 T 40 20 0 20 40
R12,X R23X R34.X position along [110] from the center
RO RY RO _ - .
X 12y 23y 34y I, FIG. 4. Solid lines denotd €= €;;(CE)— €;;(AE), the difference of each

strain component obtained by the continuum elasticity and the atomistic

elasticity calculations. In lll-V zincblend semiconductors, {#L0] and
(19 [110] directions are inequivalent and, therefore, the symmetry of the pyra-

mid is C,. The C, symmetry is apparently seen by the difference of the
wherel is the unit matrix. strains(dashed linesalong the[ 110] and[110] directions(see Fig. 1L

0 0 0
RlZz R23,2 R34,2
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1.02 ‘ ‘
Subtrate H Dot ‘ Cap Substrate” Dot ‘ Cap (a) (001) substrate
0.03 | (a)e \ - (d) ' 1.00 |
A — 0.00
0.00 — | K '
1t . 98 | —AE| -
0 ---¢C
-0.03 - V — AE| | —— AE-CE 4 -0.02
| --- CE| | 96 | 1
-0.06 ‘ : .
‘ 0.02
€ 000
£ 1 0.01
7
-0.10 + ~ V 0.00
-0.01
0.00 )
o 0.00 0.66 ‘ ‘ ,
0 2 4 6 8
-0.06 - \/ N
1 -0.02 &,(%)
-0.12 : ) o . )
-20 o 20 4620 o 20 40 FIG. 6. Relaxation of,, of GaAs under a biaxial strain obtained by atom-
position along [001] position along [001] istic elasticity is compared to the prediction of the continuum elasticity:
. fil d the diff | Ihdi . h h th G=[001] and €, /€||: —2Cy,/Cyqy; and (b) G=[110] and €, /GH
FIG. 5. Strain profiles and the differences along Zhdirection through the ~ _ —(Cy3+3C1— 2C49)/(Cyy+ Crpt 2C,0). At the infinitely small limit,

pyramidal tip. The differences between the CE and AE are given on thqhe_
right-hand side. The discrepancy is largest around the interfaces, while th@ontinuum elasticity(dashed lines The discrepancy between the CE and
strains in the barrie(GaAs substrate and capping layegree well within AE increases for the larger biaxial strains

0.5%. A significant difference is also found inside the quantum dot where '
the InAs experience large compressive strains at about 7% due to the lattice
mismatch.

€, /¢ of the atomistic elasticitysolid lineg coincides with that of the

description e/ 5([ 110]) = eﬁE([EO]) and this effect is miss-
ing.

consistent comparisons of the two approaches. The largegt The origin of the differences—a simple test case
differences occur around the interfaces between the dot and i .

the cap. A significant discrepancy is also found inside the W& know that the continuum and atomistic models,
quantum dot where the InAs experiences large compressiv?—,lart'ng from the same input elastic constants, must agree in

strains:e,, of the continuum elasticity is found to be more the limit of small strain and a large system. To study the rate

compressive than that of the atomistic elasticity, while the2t Which the two methods diverge with increasing strain, we

e,, of the CE is more tensile. A similar comparison is given Consider the simple case of biaxial strain. As E@—(4)
in Fig. 5, but this time the position vector is along tde show, for a 2-D film that is constrained on a (001) substrate,

=[001] direction, starting from the substrate, going throughContinuum elasticity predicts

the wetting layer into the pyramidal tip and then into the € c—a, 2C,,

capping layer. Again, the discrepancy is largest around the —= —3A) =- . (20
interfaces, while the strains in the barriggaAs substrate €l 85 8eq/ Cu

and capping laygragree within 0.5%. Figure §a) compares this result with that obtained via ato-

Figure 4 illustrates the extent to which the continuum pnigiic elasticity, as a function of the relative film/substrate
elastlcny. description misses the corrept atomic symmetry. "?nismatcheH=(aS— 8cq)/acq. Similarly, for the (110) strain,
a pyramid made of zincblend materials on the (001) sub-
strates, the{110 and {110} facets are symmetrically in- €. Cut3C;5—2Cy
equivalgnt(Fig. 1. _Indeed, the atom_istic .calc_ulation pro- G_H_ Cy1+ Cipt 2Cas :
duces different strains. The dashed lines in Fig. 4 show the _ _ _
differencee{?E([llo]) _ eﬁE([llo]) for these two directions. and the corresponding comparison of the continuum and ato-

We see that the anisotropy is pronounced at the interface&Stic elasticity is shown in Fig.(6). We see that the dis-
crepancy rises linearly, reaching 4% for a lattice mismatch of

For the atomistic elasticity calculation, we construct the py- > e X
7%, characteristic of InAs/GaAs. This difference is compa-

ramidal structure to have an In atom at the pyramidal tip. i
This tip In atom has(i) two As atoms that belong to the rable to that found between CE and AE around the interfaces

InAs dot and lie along thg110] direction; and(ii) the other ~ ©f the quantum dotgFigs. 3—3. Thus, the discrepancy sim-
two As atoms that belong to the GaAs capping layer and iy r_eflects the _d_eparture from the linearity regime of the
along the[ 110] direction. Considering only the local strain continuum elasicity.

of the tip atom, one expects larger compressiygand e, _ o

along the[110] direction than along th¢110] direction, ~C- Consequences of the different strains in

based on the atomic configuration. By the same token, thE°ntinuum elasticity and atomistic elasticity

atoms at thg110 interfaces experience larger compressive  The existence of different strain magnitudes and even
€xx and ey, than those at th¢110} interfaces, for this par- symmetries in a continuum elasticity versus atomistic elas-
ticular choice of the pyramidal geometry. In the continuumticity descriptions can affect the ensuing electronic structure

(21)
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of the quantum dot. Most notably, the real point group sym- 20 ﬂé) pUwr———— . ] ]

metry of the square pyramid S,, but continuum elasticity < 15 ‘E/\I

spuriously produces a high€r, symmetry. 2 0l ]
Regarding the quantitative effects, there are different g 05 - . /E ]

levels of approximation for coupling the strain to the elec- ® 0 f_f_f_::f::“\i‘::—_—ﬁ.ﬁ.

tronic structure. The most general and accurate electronic 05 " ‘

structure approach is atomistie.g., pseudopotentials, tight- Supstate L"f" ‘ ce

binding). There, the full set of atomic positions affects the < 100 E,

electronic structure. In more approximate electronic structure £

approaches, such as continuum effective mass, only some 8 0 ==

aspects of the full, position-dependent-strain tenefr) is é 100 ’U‘

“felt” by the electronic structure. In these approaches, one S ‘\jesh |

)
n
(=
o

considers strain-modified potential wells as barriers. Since 20 0

experiments typically measure electronic energies rather than position along [001]

strains, it is instructive to examine these effects. ! . .
FIG. 7. (a) Confinement potentials by Eqél5) and(16), along theZ di-

Assgmlng .”’_1 decoupled COhdUCtIO.n and valence ba.mdﬁection through the pyramidal tip in Fig. 1, predicted by the strain profiles
the strain-modified confinement potential of the conduction-obtained by the atomistic elasticity. All the energies are measured with

n
(=]
(=]

band state is respect to the valence band maximum of the bulk GaAs at equilibribm.
The difference of the confinement potentials by continuum elasticity and
_g0 atomistic elasticity.
Ec(r)=Ec(r)+ac(r)Trle(r)], (22) Y

EY(r) is the energy of the conduction-band minimum of the

bulk material at anda, is the deformation potential of the where AS° is the spin-orbit splitting andAS=—3b[e,,
conduction band under hydrostatic deformation. The— (¢, + €y)12].

“strain” Hamiltonian of the valence statésis Figure 7 shows the effective confinement potentials of
the conduction and valence-band states along zthexis

-2 00 through the tip of the pyramid. The strain profiles obtained
H,=a,(r)Trle(r)]—b 0 1 0] by the continuum elasticity and atomistic elasticity are used
0 0 1 for the calculation with the same material parameters given
in Table 112 Again, the largest difference in confinement
1 0 O 1 0 O potentials is found at the interfaces at about 100 meV for the
+{0 =2 0]egyt|{0 1 0 e, conduction band and 200 meV for the valence band. The
0 0 1 0 0 -2 average difference of the confinement potentials inside the

dot is about 20 meV for the conduction-band state. Although
0O -1 0 the differences in the strain-modified-confinement potentials

~Bd -1 o0 o are small, the band edge states are expected to show different
Exy characteristics depending upon which strain profile is used

0 0O O for the electronic structure calculation.
0O O 0 0 0 -1
+ 0 0 —1lle,+#( O 0 0 Je,l, IV. CONCLUSIONS
0O -1 O -1 0 O

We compare the strain distribution of the pyramidal
(23 InAs dot grown on a GaAs substrate calculated using con-
tinuum elasticity and atomistic elasticity. We find a signifi-

wherea, is the hydrostatic deformation of the valence states

andb andd are uniaxial deformation potentials for (001) _cant difference in the strain around the dot interfaces and

. : . . . _inside the dot, while the difference in the barri@aAs sub-
strain and (111) strain, respectively. The effective confine trate and capping layeis very small. The difference be-

ment potentials of the valence states are obtained by dia 4 . . .
P y diag ween the two results is attributed to the large strain outside

nalizing the strain Hamiltonian coupled with the spin-orbit . . i
Hamiltonian” Along the [001] direction @ axis) through the I|_near|ty regime of CE, and to the loss of the correct
atomic symmetry by the CE.

the pyramidal tip, the shear straifaff-diagonal terms of the
strain tensorare zero and,,= €,,, and thus the effective

confinement potentials can be simplified as
TABLE Il. Material parameters used for Fig.27.

Enn=El+a,Tr(e)+ YA+ AS(e)]

(24) AS° Vi a, b Vo a.
_ 0 1 ASOL AS GaAs 0.34 0 116 -16 152  -8.33
Ein=E,+a,Tr(e) = g A™+A%(e)] InAs 0.38 0.25 100 -1.8 066  —6.08

+ %\/[Aso-i- AS(€)]?—SAS°AS(e), 2All the numbers are given in eV from Ref. 2.
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