Comment on "Anomalous Temperature Dependence of the X-Ray Diffuse Scattering Intensity of Cu₃Au"

Reichert, Moss, and Liang (RML) have recently reported [1] the observation of an *increase* in the splitting of the short-range-order (SRO) diffuse scattering peaks in disordered Cu₃Au alloys as the temperature was raised above the order-disorder transition. The major point of their work was that this temperature-dependent increase was "anomalous" and "unexpected" and that "currently, there are no three-dimensional first-principles theories which are capable of explaining such a temperature-dependent finestructure of the diffuse scattering." RML further noted that the standard method of Monte Carlo (MC) simulations of local density approximation (LDA)-derived first-principles alloy Hamiltonians, applied by Lu, Laks, Wei, and Zunger (LLWZ) to a different system—disordered Cu₃Pd alloys [2], "indicate that the splitting of the diffuse peak is de*creasing* with increasing temperature for $Cu_{0.7}Pd_{0.3}...$ in contrast with our finding in Cu₃Au." Inspection of the paper of LLWZ [2] shows that the temperature dependence of the SRO splitting was simply not calculated or even mentioned there. Thus, RML's characterization of the results of Ref. [2] is incorrect. And, since Cu₃Pd (for which there are no T-dependent experiments on equilibrated samples) is different from Cu_3Au , we undertook T-dependent SRO calculations here. We find that the T-dependent splitting in Cu₃Au is trivial consequence of the configurational entropy, which is properly included in standard three-dimensional first-principles allow theories [2].

Figure 1 shows the calculated SRO intensity in disordered Cu₃Pd and Cu₃Au, as obtained from MC simulations. The alloy Hamiltonian was derived by mapping the fully relaxed LDA total energies of \approx 35 ordered struc-

FIG. 1. The calculated SRO peaks in Cu₃Au and Cu₃Pd.

FIG. 2. Structural energies $\Delta E(m) = E(m) - E(L_{1_2})$ of *m*-period L_{1_2} superstructures in Cu₃Au and Cu₃Pd.

tures onto a cluster expansion [2] containing ≈ 60 pair and six multibody terms. The calculated low-*T* splitting wave vectors in Cu₃Pd $q_b = 0.13(\frac{2\pi}{a})$ and in Cu₃Au $q_b = 0.05(\frac{2\pi}{a})$ are in reasonable agreement with the measured values of $q_b = 0.18$ and $q_b = 0.05$ of RML [1], respectively. Our calculations show a very small *increase* of the splitting with increasing temperature in Cu₃Pd, and a much larger relative increase in Cu₃Au, in agreement with the experiments of RML [1] for the latter. We conclude that the existence of SRO splitting, its magnitude and qualitative temperature dependence are entirely explainable from standard first-principles alloy theory using MC entropy [2], in contrast to the assertion of RML [1].

Our calculation also provides physical insight into the difference between the behavior of Cu₃Au and Cu₃Pd. The existence of SRO splitting in Cu₃Au (but not in Cu₃Pd) results simply from the configurational entropy: Figure 2 depicts the cluster-expanded T = 0 K structural energies $\Delta E(m) = E(m) - E(\infty)$ of $L1_2$ "long period superstructures" (LPS), formed from $L1_2$ by inserting an antiphase boundary every m cells and have superlattice peaks at $(1 \frac{1}{2m} 0)$. Minima in the energies $\Delta E(m)$ indicate stable LPS's, also reflected by minima in the effective interactions $V(\mathbf{k})$ between the W and X points. In Cu₃Pd, a structure with an intermediate *m* value is predicted (Fig. 2) to be more stable $[\Delta E(m) < 0]$ than $L1_2$ ($m = \infty$) even at T = 0 K, so the splitting in SRO is an energetic effect and is reflected in the shape of $V(\mathbf{k})$. In Cu₃Au, however, we find that $\Delta E(m) > 0$ at T = 0 K for all m, and therefore these LPS's are not ground state structures, so the SRO splitting cannot possibly be a T = 0 energetic, but must rather be a T > 0 entropic effect.

V. Ozoliņš, C. Wolverton, and Alex Zunger National Renewable Energy Laboratory Golden, Colorado 80401

Received 7 February 1997 [S0031-9007(97)03729-0] PACS numbers: 64.60.Cn, 61.66.Dk

- H. Reichert, S. C. Moss, and K. S. Liang, Phys. Rev. Lett. 77, 4382 (1996).
- [2] Z.W. Lu, D.B. Laks, S.-H. Wei, and A. Zunger, Phys. Rev. B 50, 6642 (1994).