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Evaluating and improving the cluster variation method entropy functional
for Ising alloys

Luiz G. Ferreira,? C. Wolverton, and Alex Zunger
National Renewable Energy Laboratory, Golden, CO 80401

(Received 29 September 1997; accepted 4 November)1997

The success of the “cluster variation methodCVM) in reproducing quite accurately the free
energies of Monte Carl@MC) calculations on Ising models is explained in terms of identifying a
cancellation of errors: We show that the CVM produces correlation functions that are too close to
zero, which leads to amverestimationof the exact energyE, and at the same time, to an
underestimationf — TS, so the free energy = E— T Sis more accurate than either of its parts. This
insight explains a problem with “hybrid methods” using MC correlation functions in the CVM
entropy expression: They give exact energiesand do not give significantly improved TS
relative to CVM, so they do not benefit from the above noted cancellation of errors. Addition-
ally, hybrid methods suffer from the difficulty of adequately accounting for both ordered and
disordered phases in a consistent way. A different technique, the “entropic Monte G&4C),

is shown here to provide a means for critically evaluating the CVM entropy. Inspired by EMC
results, we find a universal and simple correlation to the CVM entropy which produces individual
components of the free energy with MC accuracy, but is computationally much less expensive
than either MC thermodynamic integration or EMC. 1898 American Institute of Physics.
[S0021-960628)51406-1

I. INTRODUCTION 0.254, 0.036, 0.076 for the first to fourth neighbors, respec-
tively, while the tetrahedron-CVM first neighbor correlation
The physics of phase transitions and phase stability ofunction is —0.188 and the tetrahedron—octahedron-CVM
alloys is often couched in terms of statistical mechanicsirst and second neighbor correlation functions a@.198
models on the generalizedong-range pair and multibody and +0.198. Thus, CVM correlation functions are substan-
interaction$ Ising lattice and computed most accurately with tially closer to zero(i.e., more “random’) than the exact
Monte Carlo(MC) methods: These are time consuming cal- values. The error in tetrahedron-CVM first neighbor correla-
culations and usually are thus restricted to coarse grids afon function leads to a-10% error in both energy and en-
chemical potential and temperatures. Further, MC simulatropy relative to MC(see below. However, despite such
tions do not give directly the values of important thermody-systematic discrepancidsf ~10% or less in reproducing
namic variables such as entropy and free energy, since thegerrelation functions, the CVM seems to describe well ther-
quantities cannot be written in terms of ensemble averagesaodynamic propertiege.g., free energi@svhich depend on
Instead, these are obtained laboriously by integration of thefthese very correlation functions. The subject of this paper is
modynamic relations from a known starting point. To rem-precisely these types of errors in CVM energy, entropy, and
edy this situation, one often uses the less accurate moleculgriee energy relative to MC. We make four points:
field methods, most notably the cluster variation method (i) We show that a reason for the success of the CVM in
(CVM) of Kikuchi.? Despite its great simplicity, the CVM describing the free energy is an interesting cancellation of
reproduces many of the features of phase diagrams obtainegrors: The closer-to-zero CVM correlation functions imply
by the many-orders-of-magnitude more computer expensivgreater randomness and hence an overestimation of the inter-
MC method: For the fcc nearest-neighbor antiferromagneti¢ial energy compared to MC. However, the more random
Ising Hamiltonian with coupling constadtand zero chemi- CVM correlations also lead to a larger entropy, and hence to
cal fieldh=0, the transition temperatufe® from MC simu-  an underestimation of the TS term. Thus, the error in in-
lations is 1.74 while CVM in the tetrahedroiftetrahedron—  ternal energy is of opposite sign to the error in th@S
octahedropapproximation gives 1.8€L.81). This and other term, so these two errors partially cancel in the free energy.
successes of the CVivare even more surprising in light of This cancellation of errors is due to the fact that the CVM
the finding that the CVM correlation functiorithe thermal  free energy expression may be obtained from a variational
average of products of the Ising spin variabldéffer con-  argument but notE or S individually.
siderably from the exact MC values: For example, in the  (ii) Our analysis gives insight into the successes and fail-
nearest-neighbor fcc antiferromagnetic Ising model, the MGyres of various approaches that attempt to improve CVM by
pair correlation functiomsat T=1.9 andh=0 are —0.208,  “porrowing” certain quantities from MC. Indeed, for some
applications, one may require accuracies and flexibilities be-
9Als0 at: Instituto de Fica, Universidade Estadual de Campinas, 13083-YONd those provided by the CVM, and so there is a desire in
970 Campinas, %aPaulo, Brazil. the field to find accurate “hybrid” methods combining the
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simplicity of the CVM with the accuracy and flexibility of - re|ation functiongTI;} (or equivalently, cluster probabilitigs

Iyc (or cluster probabilitiesobtained from MC simulations  the CVM internal energy

in the CVM expression for free enerdycym(Ilye) in the

hope of obtaining a more accurgte free energy. We demon- Ecym= E D J; (IIy), )
strate that these methddare unlikely to succeed, as these fCF

approximations do not benefit from the cancellations of er-

rors noted above.

(iii) We use the entropic Monte Carl&MC) method of
Lee,/ which provides a method for determining the entropy
as a function of any state variable. We apply EMC to the B ¢ . .
case of the CVM entropy as the state variable, and demon- Sevm= _k% B EJ: Py In(pp), ®)
strate thaSgyc(Scym) provides a means for critically evalu-

ating the errors in CVM entropy. The calculation of ) .
Semd Sevm(TTye) ] further shows that this functional accu- both written as a sum over all the subclusters of the maxi-
mumF. In the CVM entropy expression, one also sums over

rately describesSy,c(IIyc) and thus the Monte Carlo free : X
energy. However, this approach is computationally intensivethe arrangements of spins at the sites of each subcluster. The

Finally, inspired by the EMC philosophy Barker coefficientsB' can be obtained from purely group
(iv)’ We develop afunctioneE[SC (l'i )] that repro- theoretical arguments’ Unless otherwise noted, all CVM
duces the exa@yc(I1,c) very closel\glM anglmi:s computation calculations described in this paper are for the fcc tetrahe-

M M ’ - . .
ally much less expensive than either MC thermodynamic in—dron approximation.

tegration or EMC. This functional permits one to borrow f. tln ordert totr(laxamlne tthe errors mvotlved in th; fCVM’ we
from MC calculations the correlation functiorier cluster ISt compute the accurate energy, entropy, and irée energy

probabilities, evaluate the ensuing CVM entropy Irom Monte _Carl_o smu(ljat;odrls_ of the nearest-neighbor anti-
Scum(ITyc), and thus obtain the nearly exact entropy erromagnetic Ising model dt=0.

S Sevm(ITpme) 1=~ Suc(Ilye) and energyE(I1yc). This ap-  B. Monte Carlo quantities

proach thus combines the accuracy of MC with the compu-
tational simplicity of the CVM.

and the CVM entropy

A Monte Carlo cell of 1728 sites was used with®10
Monte Carlo steps per site at each temperature. Although
finite-size effects were not taken into account, the calculated
heat capacity showed a sharp peak atl.77, within ~1%

to 2% of the most precise values for the transition tempera-
All of the calculations described in this paper will be ture given in the literature~1.74 to 1.75! The energy is

tests of the various methods on the fcc nearest-neighbor agiven directly from MC, while the entropy is obtained by
tiferromagnetic Ising model. thermodynamic integration down from infinite temperature

IIl. METHODS

A. CVM gquantities
E(T)

ur
We first briefly review our notation. Ler mean a con- S(T)=k In 2+ ?—J’ E(T)d(1/T). 4
figuration (“microstate”) of Ising spins(+1) on a lattice. 0

Consider a cluste(“figure” ) f with k; lattice points. The

spin variable, which takes on the val&{o)=—1(+1) if  (The entropy was also obtained by integrating the heat ca-
there is arA (B) atom at sitd of the figure, depends on the pacity down in temperature, however, this method was found
configurationo of spins in the lattice. Consider now all the to be less efficient in that it required a finer grid of tempera-
clustersRf obtained from the clustef by the symmetry tures near the transition for equal accuracy.

operationsR of the space group of the lattice. In the CVM, The correlation function$lyc for a figuref were ob-

we define the correlation functidi(o) for the clusterf in  tained by taking the thermal averagever the 16 Monte

the configurationo as the product of spin variables over the Carlo stepy of the product of Ising spin variables over the
sites of f, averaged over all the figures obtained frénby  sites 1,2,..k; of all symmetry-equivalent figurek[i.e., the

the space group operatioRs thermal average of Eq1)].
— 3r51S, S, Ill. RESULTS
Hi(o)= —<——. () . o . :
PN A. Analysis of CVM errors vis-a-vis MC simulations

_ The energy, entropy, and free energy obtained from
The CVM treats the correlation functiofbl;} as thermody- Monte Carlo simulations are shown in Fig@l The first-
namic variables. For a clustdr of k; sites there are'2  order transition al'=1.77 is evident from the discontinuity
arrangements of spins1 at its sites. Each arrangemériitas  in energy and entropy. We have also computed the energy,
a cluster probabili'[ypjf which is linearly dependent on the entropy, and free energy predicted by C\M the tetrahe-
correlation function values for all subclustersfofThe cor-  dron approximation By comparing these CVM results with
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S 04F || 8F =Feym-Fme ] FIG. 2. Error in free energy as a function of temperature for the nearest-
Z ‘l neighbor anti-ferromagnetic Ising model obtained using theyy(Ilyc)”
8 02 L~ ~ 8E =Ecym - Emc 1 method. All quantities are given in dimensionless urkist/J for tempera-
% [ T~ 1 ture, energies are given normalizedhyand entropies are given normalized
g 90 R —— by kg . In the Feym(Ilyc) method, MC correlation functions and cluster
3 [ 1~ ] probabilities are used in the CVM expressions for energy and entropy, re-
_‘é’, 02 ,' ] spectively. We have used only the CVM entropy expression with the disor-
@ o4l 18(-TS) =-T [Scym - Smcl _ dered phase symmetry. Thus, differences with Monte Carlo for temperatures
’ T~ ,‘ 1 below the CVM transitiofT=1.89 are overestimated and hence are shown
06l S~ - k as dashed linetsee text. Note that in this method, the energy is precisely
Cancellation of Errors in CVM Free Energyl: that of Monte Carlo, thus the error in TS is also the error in free energy.
-0.8 1 1 | 1 1 1 1 1

12 14 16 18 20 22 24 26 28

Reduced Temperature (kgTH) Monte Carlo[thus, SE>0 in Fig. 1b)], demonstrating that

the energetic effect of short-range order in CVM is underes-
FIG. 1. Energy, entropy, and free energy as a function of temperature for thiMated, and hence the CVM internal energy is more randc_)m
nearest-neighbor anti-ferromagnetic Ising model. All quantities are given irthan that of Monte Carlo. The entropy of CVM is overesti-
dimensionless unitskgT/J for temperature, energies are given normalized mated[ §(— T S)< 0] relative to Monte Carlo, again indicat-

by J, and entropies are given normalized ky. (a) Results obtained from ing a more random solution than Monte Carlo. However. the
Monte Carlo simulations and thermodynamic integrati¢m Errors in stan- ’

dard CVM (disordered phase symmetrgompared to Monte Carlo. We error in the CVM free_ energyF is S|mply the sum of the
have used only the CVM entropy expression with the disordered phas€rrors SE+ &(—TS). Since SE and 6(—TS) have opposite

symmetry. Thus, ir(b), differences with Monte Carlo for temperatures be- sign, they partia“y cancel, and give an error in free energy
low the CVM transition(T=1.89) are overestimated and hence are shownwhich is considerably smaller in magnitude than either the
as dashed linetsee text . . . ..
error in energy or in entropy. Thus, owing to the variational
nature of the CVM, the free energy of CVM is more accu-
rate than one might expect from considering either the en-
the “exact” Monte Carlo results in Fig.(&), we may ascer- €rgy or entropy alone.
tain the errors in thermodynamic functions of the CVM. The
differencesdE, 6(—TS), and 6F between the respective
CVM and Monte Carlo functions are shown in Figbl In
our CVM calculations, we have used only the CVM entropy  Our foregoing discussion sheds light on a hybrid method
expression with the disordered phase symmetry. Thus, iwhich, naively thinking, might combine the accuracy of
Fig. 1(b) differences with Monte Carlo for temperatures be-Monte Carlo with the simplicity of CVM. In this method,
low the CVM transition T=1.89 are shown as dashed lines. one uses the correlation functiofd;} (or equivalently, the
Obviously, practitioners of CVM would correctly impose a cluster probabilitiequf}) of MC simulations in the expres-
lower symmetry on the entropy expression below the transisions for CVM entropy[Eq. (3)] and energyEq. (2)]. We
tion to the ordered phase and would not use the disordera@fer to this method as the Foyy(Ilyc)’”’ method. This
phase symmetry in this temperature range. The reason waethod would, of course, require one to perform a Monte
use the CVM disordered phase symmetry down to low tem€Carlo simulation for each composition and temperature of
perature is due to our wish to combine CVM methods withinterest; however, one could, in principle, obtain the entropy
MC, which as we describe in the next section, is problematicait each point from a single Monte Carlo simulati@e., one
when using ordered expressions for CVM entropy. composition and one temperaturether than a series of
As indicated in the Introduction, the CVM correlations Monte Carlo calculations which would be required for ther-
functions{I1;} are closer to zero than the MC values. By Eq. modynamic integration of the entropy. Since the Monte
(2), the CVM internal energy is less negative relative toCarlo correlation functions are used in this method in Eg.

B. Using MC correlation functions in CVM
calculations: Absence of cancellation of errors
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07 17— T . T ] ordered phase, whereas when evaluated with the CVM ex-
E - Semc(tme) ] pressions for the corresponding ordered phases, they will
0.6 3 SMyc) l _____ ] have non-negative entropies. However, this illuminates an-
05k ] other potential problem with th& cyy(ITyc) method: In
o 5 ] Monte Carlo simulations, the presence of anti-phase bound-
@ 04 . aries and finite-sized domains of long-range order preclude
§‘ ] one from unambiguously defining the distinction between
£ 03p ] sublattices and extent of long-range order present in the
- ] simulation. However, an ordered CVM expression for the
0.2 b . E entropy is written in terms of correlation functions and clus-
o1k :s () ] ter probabilities for all the symmetry-distinct figures for the
" | TCVMEIMC ] symmetry of the long-range ordered phase. Thus, the CVM
0.0L ! Ll : - ! - ] ordered entropy expressions presuppose the domains of long-
12 14 16 18 20 22 24 26 28 range order are infinite in size, and hence the distinction of
Reduced Temperature (kgT/J) various sublattices in the ordered phase is unambiguous.

Thus, using thé-u(ITyc) method with ordered CVM en-
FIG. 3. Entropy versus temperature for the nearest-neighbor anti:[rOpy expressions IS_ not practlcal _because one_ (_10es not
ferromagnetic Ising model. The open squafesnnected by a solid lings ~ Known from the MC simulations precisely how to divide the
the result of Monte Carlo simulations, the solid line is standard CVM, theMC simulations into sublattices of long-range order and
long dashed line is the CVM entropy expression evaluated with the Montghance one does not even know from the MC simulations
Carlo cluster probabilities, the thin short dashed line is the result of the hich ord d CVM . t Al d t
entropic Monte Carlo calculations, and the thick short dashed line is thVnIch ordere expression 1o use. Also one does no
simple correlation to the CVM, the “modified CVM.” know at what temperature to change the symmetry of the
CVM to the ordered entropy expression. Thus, an ideal
method combining Monte Carlo and CVM would only use a
single expressiofte.g., the disordered CVM expressjdor
the entropy at both low and high temperatures. We next de-

scribe such a method called entropic Monte C&HMC).

(2), there is no error in energydE=0). Thus, the error in
free energy, shown in Fig. 2, is equal to the error in entropy
SF=68(—TY9). Since there is no error in energy in this
method, there is no cancellation of errors. Hence, even

though the exact Monte Carlo correlation functions are used

in the Fcym(ITyc) method, it produces less accurate freeC. The entropic Monte Carlo method: A critical
energies than standard CVM: For example,Tat1.92, the evaluation of CVYM entropy

g(\a/eMenergT(a_'szalso glxeznogg MO(;]_H; (():;;ECVM(H,[’Y'C) I’ End Lee’ has shown a practical way to determine the entropy
, are=-—c. T » an ' , respectivelyFor .of a Monte Carlo cell as a function of any state variable. We

comparison, CVM in the tetrahedron—octahedron apProXie4 | this method entropic Monte Can&MCS). Thouah in his
mation givesF = —2.094 for this temperature. ! Pl ¢ ) ugh In i

, .. paper Lee applies the EMC method to the case of the energy

Other.d|s§dvantage§ of IPFQ:VM(H’.\"C) approach are_|l— as state variable in a quantized system, here we describe
Iustrate.d in Fig. 3, showing a comparison of the entropies aﬁ1$teadSEMC in terms of the state variabByy () which is
a function of temperature as calculated by M&y¢), by a continuous, not quantized, variable. Our strategy will be to
standard CVM[Scym(ITcvw)], and by theFCVM(.H'V'C) calculateSgyc(Scym) by the method of Lee, and then insert
method[SC_VM(HMC)]. (The other two curves of _F|g. 3 are Seum(Tye) into this expression, givinGeud Seum(Myc) ]
d_|scussed in Sec. C a_nd .”I D bel@v@_ne can again see that which we write asSgyc(IIyc). We will show that this func-
(i) standard CVM(solid line) overestimates the entropy at tion reproduces very welByc. First, we describe how
high temperatures relative to Monte Caflopen squares Senc(Sevn) is calculated ¢ '
(i) the CVM entropy of the disordered phase is not appli- =" <M '

ble at low t t i) the F o thod The EMC method is a self-consistent process in which
cable al 'ow temperatures, af ). € Fevm(Ilwc) metho each iteration is made from a series of Monte Carlo sweeps
underestimates the entropy at high temperatures, and at |

Where the driving “energy’E of the Monte Carlo equa-
temperatures this entropy takes on the unphysical valu g 9y"E(o) a

&Pons is not the true energy contained in the sample but an
Scvm(ITye) <0. These unphysical values are a result of the 9y P

fact that the expression for the disordef®d,, allows nega- approximation to the entropy

tive values for many atomic configurations. For instance, in

the fcc lattice, the S|mple§t ordered configurations sqch as  E(o)=E[Scum(o)], (5)
L1y, L14, L1, have negativeScyy, values.(These negative

values of CVM entropy are likely to persist no matter what

sized maximal cluster is used, and thus will always lead tavhich depends on the configuratienthrough the function
difficulties with the Foym(ITye) method at lower tempera- E[Scym], whose argument is the CVM entrofdper sitg
tures, since the CVM entropy will incorrectly tend to nega- calculated with Eq(3) for the cluster probabilitieﬁjf(cr) of
tive values rather than zejdOf course, one might argue that the configurations. The functionE[ Scyy] is assumed to be
these ordered configurations only possess negative CVM emonotonic. The EMC dynamics are given by the detailed
tropy when evaluated with the CVM expression for the dis-balance condition
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ex — (o) IW(i ) =exi{ —E()) IW(j—1),  (6) D(Sevw) = 2 d(Scvm) 3 Scvm—Scvm ()
M) = VM VM Ml

whereW are transition rates and(o) is given by Eq.(5).
After many MC sweeps of the full lattice, one obtains a
histogram

—(1X) 3 exp(E(Scvm) ) H (Scym)

H (Sovan) = X(Scun) X1 — E(Soun) ], ™ X 8(Scuu= Sewm( ), ®

. and the entropemc=S(Scym) per site is defined as
whered(Scyw) is the number of configurations with a given
value Sqyy of the CVM entropy(degeneracy irSqyy) and
X is a constant of proportionality. We distinguiStyy
which is a numerical argument attaining certain value, from
Scym Which is a function of both the microstaiirough Eq.  whereN is the number of sites in the MC cell.

(3)] and the cluster probabilitiq&;{(a). The density of states From Egs.(8) and (9), we may obtain the difference
function of the CVM entropyScyy IS given by between the entropy at two different valuggy.

eXINSI S 1= | TD(&)de, ©

S(SZ)) — S(SEm)
1
=N In > exp(NE[Scym(0)DH[Scym(0)]

! |
—=1n
U,SCVM(U)<S(CZ\}M N

> exp(NE[sCVMw)])H[SCVM(a)]],
,Scym(7) < Sty

(10

which is the basic equation used to determine the entropyange ofSc obtained in a series of MC swe@ds nearly
from the EMC runs. On the right-hand side of E0), the  constant, independent of the valueS,\ and(ii) the driv-
sums are over the microstate®btained in the EMC sweeps ing energy which is the approximation to the entrdjig.
whose CVM entropiesScym(o) are smaller thars&), or  (5)], becomes equal to the entropy calculated from the den-
S, As pointed out by Leé,the entropy determination sity of stategEq. (9)], or in other words, the EMC entropy
becomes especially simple when the interactdi$cyy) is  becomes exact. An important aspect of the EMC is that the
such that the histograrhi[ Scyy] is uniformly distributed — calculated entropy functional form &(Scyy) does not de-
and has little dependence @yy. In this case, Eq(10)  Pend on any particular Ising Hamiltoniaiso long as the

becomes important correlations are contained within the CVM
S(S@)w) — S(Stiny)
1 E 1.0 . T | T
N In S <2 exp(NE[Scvm(a)]) LEntropic Monte Carlo
a, o)< L
. o 0.8 | R
-5 2 expNE[Sew(@)])|. (1D o oot
UvSCVM(O')<SE;1\}M E 06 RyZd .
9 Ny
Because of the factor dfl, the exponential in Eq(11) is a & 04l Semc Scym |+ 1
rapidly increasing function 08¢y, and hence only the ex- @
tremes contribute significantly to the sums, or s L1
0.2 | °CVM (L1p) -
S(SG)— S CVM)~ < E(S&w) ~ E(ﬁé&m. (12 S(Scym
0.0 - .
-15 -1.0 -0.5 0.0 0.5 1.0
This equation then suggests the self-consistent procedure for Scyw (Tetrahedron) / In 2

determining the entropy: From a crude estimatS@qyy), FIG. 4. Entropic Monte Carlo results f@yc=S(Scvw)- Filled circles are
we use Eq.(12) to obtain the interactiorE(Sqyy) With the EMC calculations, and the solid line is the EMC-inspired entropy func-
which we make EMC runs, with which we recalculate tional S(chm) The dashed line is of unit slope simply to guide the eye.

EMC was performed for a cell of $2:1728 sites, using the CVM tetrahe-
S(SCVM) from the basic Eq(lO). This Process is taken to dron expression for the disordered entropy. Note that many configurations

S(_elf-consistency. When self-consist_ency is re_achédthe correspond to negative CVM entropy, with the most negatfoe all con-
histogramH[ Scyw ] (the number of microstates in each small figurations with<16 atoms per cellbeing thel 1, configuration.
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maximal cluste), because the role of the energy driving the mixing entropy: S(Ston)=S%(x)= —kg[x In x+(1—x)In
EMC calculations is played in EG10) by the entropy itself. (1—x)].

Figure 4 shows a typical resuizyc(Scywm) of the EMC (i) The slope ofS(Scyy) at the maximum value of
Calculations, using a MC cell WltN:123:1728 sites. We S’\CAOI\>/(1:SO should be unity because for near|y random con-
also performed EMC calculations with different MC cells, figurations the CVM approaches the exact result:
with the results being slightly different for the larger nega-qg/dS.|s0=1.

tive values ofScyy . The negative values obcyy corre- (i ) The most negative value of the CVM entropy should

spond to configurations of atoms with higher symmetry, USUtorrespond to zero true entropy. ThLS(aS’\c/%):O- The

ally associated with smaller repeat units, thus explaining why:onfiguration with most negative CVM entropy can be found

the curve depends to some extent on the size and shape 9§ examining all configurations up to some maximum unit-

the MC cell for the negative values &y : For instance, cell size, as described in Ref. 10. For instance, for the tetra-

for an EMC cell with an odd number of sités.g., 1£), one  hedron CVM, L1, has the most negative CVM entropy

could never obtain the stoichiometric configuratloh, with [SUN =Scum(L1e)=—1.34 In 2. This point is indicated in

its large negative CVM entropy. In fact, simple high- Fig. 4 py a square.

symmetry configurations such asly, L1, L1, all have (iv) The functionS(Scyy) should increase monotoni-

negative values oBcyy . Examining the CVM entropy for  ca|ly with Scyy as one can see from EQ.0). Also, S(Scywm)

all configurations with up to 16 atoms per cBliwe found  has a positive curvaturidue to the exponent ai in the

the configurations with the most negative CVM entropy hadright-hand side of Eq(10)].

very small unit cells. The largest negative CVM entropy oc-  \we select a simple functional form f&(Scyy)which

curs forL1, for which Sgyw(L1p)=—1.341n 2. satisfies(i)—(iv) above(but otherwise possesses no special
The resultsSgyd] Scym(ITwc) ] of EMC are shown in physical meaning.However, use of this simple form will

Fig. 3, where they are contrasted with the results of Montegyrovide a means of evaluating energies and entropies which

Carlo, CVM, andF cyw(ITyc).** By comparingSenc(Ilvc)  (a) is computationally much more efficient than either MC

andScym(IIcym) with Syc, we see that the EMC and CVM  thermodynamic integration or EM@l) possesses MC accu-

entropies are equa”y accurate at hlgh temperatures. Remarﬂﬁcy' and(c) may be extended to use any maximal cluster of

ably however, the EMC method also produces extremely ache CvM. The functional form we choose for the approxi-

curate entropies at low temperatures, in qualitative Contra%ationg(SCVM) to the trueS(Seyy) Which satisfies the four
with the Foym(ITye) method. Thus, even though one only properties(i)—(iv) above is

uses a single disordered expression for the CVM entropy in

the EMC calculations, the EMC reproduces both high tem- ~ _(S0_ g Scwm
perature(disordered and low temperaturéordered entropy S(Scvm) = ( la)+ @ EXp L
values, with no need to change the CVM entropy expression ] ]

at any point. Although the internal energy in EMC is exactWherea is the solution of

-1

e

(so this method does not benefit from the cancellation of 0 MIN
errors noted in Sec. Il A for the CVM we see that EMC 0=(S"- SYa)+— exp{a( CS.\!M—l)] (14)
does not need to be correct due to cancellation of errors. @

Instead, it is accurate because its individual terfisafnd | the case of the tetrahedron CVM=0.869 17. The func-
—T9) are accurate. tion in Eq. (14) depends only on a single parame&#\,

The EMC, like standard Monte Carlo, can be a compuyhich can be easily estimated from an enumeration of small-
tationally laborious procedure. However, our EMC calcula-pjt-cell configuration® using any maximal cluster of the
tions of S(Scym) suggest a very simple function&(Scym)  CVM method. (In contrast, an EMC calculation as we de-
which is appealing because the correction does not requirecribed in Sec. 11l C is only practical for the tetrahedron
one to perform an EMC calculation. We next describe thisc\VM approximation) While the negativeScy, configura-
simple correction. tions, which correspond to highly symmetric arrangements
of atoms, have no meaning in the standard CVM procedure
(since in standard CVM one would use a different expression
for CVM entropy to describe ordered phagdhe main merit

While Sevm(Iye) can be inaccurate, of a correction such as Egel3) and(14) is to restore these
Sencd Sevm(ITye) ] is accurate but computationally expen- highly ordered configurations into a single CVM expression
sive. Thus we will now develop a new functional by attributing a non-negative entropy to them. Naturally this
"s',[sCVM(HMC)] which is both accurate and inexpensive.  correction, when used together with the Monte Carlo corre-

The EMC results of Fig. 4 permit one to guess the bedation functions, will be especially important near the transi-
havior of the exact entrop®(Scyy) (in the limit N—) as  tion when the ordered configurations begin to be important.
a function of the CVM entropy obtained from a “good” _ To test these ideas, we calculate] Scym(ITyc)]
maximal cluster(e.g., the tetrahedron or the tetrahedron-=S(I1,), whereS is given by Eq.(13), and the CVM is
octahedron This “true” entropy functionS(Scyy) should  executed within the tetrahedron approximation. One sees
have the following properties: (Fig. 3 that this approach presents a remarkable improve-

(i) The most positiveSeyy(X) entropy Sty (x) should — ment over theém cyy(I1yc) method in all temperature ranges,
correspond to the exact entropy for this case, i.e., the ideaspecially below the transition temperature where

D. An EMC-inspired new entropy functional
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Scvm(ITye) is negative. Also, the simple functional repre- insights gained from our analysis of the CVM free energy

sented byg(HMC) effectively retains all of the improve- (which showed cancellation of energetic vs entropic ejrors

ments ovelF oyy(ITyc) that were obtained by the full EMC and from the EMC philosopHypermitting one to express the

calculation. In fact, for high temperatures, %GSCVM) ap- true entropy as a functional of an approximate, but determin-

proach is even closer to the exact Monte Carlo results thaf$tic entropy. The new functione®(Scyy) can be used in

the EMC calculations on which it was based! This fact canfuture applications either with CVM alorjsimply by replac-

be understood by examining the EMC calculations in Fig. 4ing the CVM entropy with Eq(13) in any existing CVM

Figure 4 shows that the EMC calculations using a cell ofProgram, or with a combination of CVM andlyc (using

1728 sites do not reproduce propertfii) above, S[Scvm(Ilmc)] as described in this paper

dSdScym|0=1. In fact, the slope of the EMC curve in Fig.
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The results presented in Fig. 4 correspond to a grand canonical EMC for
which the chemical potential, rather than compositioremained fixed.
We also made canonical EMC runs by flipping pairs of opposite spins,

The main accomplishment of this paper is to suggest a thu; mamtalnmg.con‘stam at the valges 0.50 and 0.25. We optam very
similar results with either the canonical EMC or grand canonical EMC,

simple functional S(SCVM) [Eqs- (13) and (14)] that im- provided that one normalizes both the EMC and CVM entropy with the
proves the CVM entropy. The development was based onideal entropy,—x In x—(1—x) In(1—x), instead of In 2 as in Fig. 4.

IV. SUMMARY



