
Evaluating and improving the cluster variation method entropy functional for Ising
alloys
Luiz G. Ferreira, C. Wolverton, and Alex Zunger 
 
Citation: The Journal of Chemical Physics 108, 2912 (1998); doi: 10.1063/1.475695 
View online: http://dx.doi.org/10.1063/1.475695 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/108/7?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Variational method for the minimization of entropy generation in solar cells 
J. Appl. Phys. 117, 134504 (2015); 10.1063/1.4916787 
 
Accurate results for Ising models from large order cluster variation method 
AIP Conf. Proc. 574, 132 (2001); 10.1063/1.1386829 
 
Examination of the cluster variational method for the Ising model and some possible corrections (abstract) 
J. Appl. Phys. 63, 3041 (1988); 10.1063/1.340887 
 
Improved variational method for axisymmetric plasmas 
Phys. Fluids 18, 1487 (1975); 10.1063/1.861033 
 
Improvement of the Cluster‐Variation Method 
J. Chem. Phys. 47, 195 (1967); 10.1063/1.1711845 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.11.31.139 On: Wed, 15 Jul 2015 01:40:58

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1409059336/x01/AIP-PT/JCP_ArticleDL_061715/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Luiz+G.+Ferreira&option1=author
http://scitation.aip.org/search?value1=C.+Wolverton&option1=author
http://scitation.aip.org/search?value1=Alex+Zunger&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.475695
http://scitation.aip.org/content/aip/journal/jcp/108/7?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/117/13/10.1063/1.4916787?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1386829?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/63/8/10.1063/1.340887?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof1/18/11/10.1063/1.861033?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/47/1/10.1063/1.1711845?ver=pdfcov


Evaluating and improving the cluster variation method entropy functional
for Ising alloys

Luiz G. Ferreira,a) C. Wolverton, and Alex Zunger
National Renewable Energy Laboratory, Golden, CO 80401

~Received 29 September 1997; accepted 4 November 1997!

The success of the ‘‘cluster variation method’’~CVM! in reproducing quite accurately the free
energies of Monte Carlo~MC! calculations on Ising models is explained in terms of identifying a
cancellation of errors: We show that the CVM produces correlation functions that are too close to
zero, which leads to anoverestimationof the exact energy,E, and at the same time, to an
underestimationof 2TS, so the free energyF5E2TS is more accurate than either of its parts. This
insight explains a problem with ‘‘hybrid methods’’ using MC correlation functions in the CVM
entropy expression: They give exact energiesE and do not give significantly improved2TS
relative to CVM, so they do not benefit from the above noted cancellation of errors. Addition-
ally, hybrid methods suffer from the difficulty of adequately accounting for both ordered and
disordered phases in a consistent way. A different technique, the ‘‘entropic Monte Carlo’’~EMC!,
is shown here to provide a means for critically evaluating the CVM entropy. Inspired by EMC
results, we find a universal and simple correlation to the CVM entropy which produces individual
components of the free energy with MC accuracy, but is computationally much less expensive
than either MC thermodynamic integration or EMC. ©1998 American Institute of Physics.
@S0021-9606~98!51406-7#

I. INTRODUCTION

The physics of phase transitions and phase stability of
alloys is often couched in terms of statistical mechanics
models on the generalized~long-range pair and multibody
interactions! Ising lattice and computed most accurately with
Monte Carlo~MC! methods.1 These are time consuming cal-
culations and usually are thus restricted to coarse grids of
chemical potential and temperatures. Further, MC simula-
tions do not give directly the values of important thermody-
namic variables such as entropy and free energy, since these
quantities cannot be written in terms of ensemble averages.
Instead, these are obtained laboriously by integration of ther-
modynamic relations from a known starting point. To rem-
edy this situation, one often uses the less accurate molecular
field methods, most notably the cluster variation method
~CVM! of Kikuchi.2 Despite its great simplicity, the CVM
reproduces many of the features of phase diagrams obtained
by the many-orders-of-magnitude more computer expensive
MC method: For the fcc nearest-neighbor antiferromagnetic
Ising Hamiltonian with coupling constantJ and zero chemi-
cal fieldh50, the transition temperatureTc

3 from MC simu-
lations is 1.744 while CVM in the tetrahedron~tetrahedron–
octahedron! approximation gives 1.89~1.81!. This and other
successes of the CVM2 are even more surprising in light of
the finding that the CVM correlation functions~the thermal
average of products of the Ising spin variables! differ con-
siderably from the exact MC values: For example, in the
nearest-neighbor fcc antiferromagnetic Ising model, the MC
pair correlation functions5 at T51.9 andh50 are20.208,

0.254, 0.036, 0.076 for the first to fourth neighbors, respec-
tively, while the tetrahedron-CVM first neighbor correlation
function is 20.188 and the tetrahedron–octahedron-CVM
first and second neighbor correlation functions are20.198
and 10.198. Thus, CVM correlation functions are substan-
tially closer to zero~i.e., more ‘‘random’’! than the exact
values. The error in tetrahedron-CVM first neighbor correla-
tion function leads to a;10% error in both energy and en-
tropy relative to MC~see below!. However, despite such
systematic discrepancies~of ;10% or less! in reproducing
correlation functions, the CVM seems to describe well ther-
modynamic properties~e.g., free energies! which depend on
these very correlation functions. The subject of this paper is
precisely these types of errors in CVM energy, entropy, and
free energy relative to MC. We make four points:

~i! We show that a reason for the success of the CVM in
describing the free energy is an interesting cancellation of
errors: The closer-to-zero CVM correlation functions imply
greater randomness and hence an overestimation of the inter-
nal energy compared to MC. However, the more random
CVM correlations also lead to a larger entropy, and hence to
an underestimation of the2TS term. Thus, the error in in-
ternal energy is of opposite sign to the error in the2TS
term, so these two errors partially cancel in the free energy.
This cancellation of errors is due to the fact that the CVM
free energy expression may be obtained from a variational
argument,2 but notE or S individually.

~ii ! Our analysis gives insight into the successes and fail-
ures of various approaches that attempt to improve CVM by
‘‘borrowing’’ certain quantities from MC. Indeed, for some
applications, one may require accuracies and flexibilities be-
yond those provided by the CVM, and so there is a desire in
the field to find accurate ‘‘hybrid’’ methods combining the

a!Also at: Instituto de Fı´sica, Universidade Estadual de Campinas, 13083-
970 Campinas, Sa˜o Paulo, Brazil.
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simplicity of the CVM with the accuracy and flexibility of
MC. A natural possibility is to use6 the correlation functions
PMC ~or cluster probabilities! obtained from MC simulations
in the CVM expression for free energyFCVM(PMC) in the
hope of obtaining a more accurate free energy. We demon-
strate that these methods6 are unlikely to succeed, as these
approximations do not benefit from the cancellations of er-
rors noted above.

~iii ! We use the entropic Monte Carlo~EMC! method of
Lee,7 which provides a method for determining the entropy
as a function of any state variable. We apply EMC to the
case of the CVM entropy as the state variable, and demon-
strate thatSEMC(SCVM) provides a means for critically evalu-
ating the errors in CVM entropy. The calculation of
SEMC@SCVM(PMC)# further shows that this functional accu-
rately describesSMC(PMC) and thus the Monte Carlo free
energy. However, this approach is computationally intensive.
Finally, inspired by the EMC philosophy,

~iv! We develop a functionalS̃@SCVM(PMC)# that repro-
duces the exactSMC(PMC) very closely, and is computation-
ally much less expensive than either MC thermodynamic in-
tegration or EMC. This functional permits one to borrow
from MC calculations the correlation functions~or cluster
probabilities!, evaluate the ensuing CVM entropy
SCVM(PMC), and thus obtain the nearly exact entropy
S̃@SCVM(PMC)#'SMC(PMC) and energyE(PMC). This ap-
proach thus combines the accuracy of MC with the compu-
tational simplicity of the CVM.

II. METHODS

All of the calculations described in this paper will be
tests of the various methods on the fcc nearest-neighbor an-
tiferromagnetic Ising model.

A. CVM quantities

We first briefly review our notation. Lets mean a con-
figuration ~‘‘microstate’’! of Ising spins~61! on a lattice.
Consider a cluster~‘‘figure’’ ! f with kf lattice points. The
spin variable, which takes on the valueŜi(s)521(11) if
there is anA (B) atom at sitei of the figure, depends on the
configurations of spins in the lattice. Consider now all the
clustersR f obtained from the clusterf by the symmetry
operationsR of the space group of the lattice. In the CVM,
we define the correlation functionP̄f(s) for the clusterf in
the configurations as the product of spin variables over the
sites of f , averaged over all the figures obtained fromf by
the space group operationsR

P̄f~s!5
SRŜ1Ŝ2•••Ŝkf

SR1
. ~1!

The CVM treats the correlation functions$P̄f% as thermody-
namic variables. For a clusterf of kf sites there are 2kf

arrangements of spins61 at its sites. Each arrangementj has
a cluster probabilityr j

f which is linearly dependent on the
correlation function values for all subclusters off . The cor-

relation functions$P̄f% ~or equivalently, cluster probabilities!
are determined by minimizing the free energy, composed of
the CVM internal energy

ECVM5 (
f #F

D f Jf ^P̄f&, ~2!

and the CVM entropy

SCVM52k(
f #F

Bf(
j

r j
f ln~r j

f !, ~3!

both written as a sum over all the subclusters of the maxi-
mumF. In the CVM entropy expression, one also sums over
the arrangements of spins at the sites of each subcluster. The
Barker coefficientsBf can be obtained from purely group
theoretical arguments.8,9 Unless otherwise noted, all CVM
calculations described in this paper are for the fcc tetrahe-
dron approximation.

In order to examine the errors involved in the CVM, we
first compute the accurate energy, entropy, and free energy
from Monte Carlo simulations of the nearest-neighbor anti-
ferromagnetic Ising model ath50.

B. Monte Carlo quantities

A Monte Carlo cell of 1728 sites was used with 106

Monte Carlo steps per site at each temperature. Although
finite-size effects were not taken into account, the calculated
heat capacity showed a sharp peak atT51.77, within;1%
to 2% of the most precise values for the transition tempera-
ture given in the literature;1.74 to 1.75.4 The energy is
given directly from MC, while the entropy is obtained by
thermodynamic integration down from infinite temperature

S~T!5k ln 21
E~T!

T
2E

0

1/T

E~T!d~1/T!. ~4!

~The entropy was also obtained by integrating the heat ca-
pacity down in temperature, however, this method was found
to be less efficient in that it required a finer grid of tempera-
tures near the transition for equal accuracy.!

The correlation functionsPMC for a figure f were ob-
tained by taking the thermal average~over the 106 Monte
Carlo steps! of the product of Ising spin variables over the
sites 1, 2,...,kf of all symmetry-equivalent figuresf @i.e., the
thermal average of Eq.~1!#.

III. RESULTS

A. Analysis of CVM errors vis-a-vis MC simulations

The energy, entropy, and free energy obtained from
Monte Carlo simulations are shown in Fig. 1~a!. The first-
order transition atT.1.77 is evident from the discontinuity
in energy and entropy. We have also computed the energy,
entropy, and free energy predicted by CVM~in the tetrahe-
dron approximation!. By comparing these CVM results with
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the ‘‘exact’’ Monte Carlo results in Fig. 1~a!, we may ascer-
tain the errors in thermodynamic functions of the CVM. The
differencesdE, d(2TS), and dF between the respective
CVM and Monte Carlo functions are shown in Fig. 1~b!. In
our CVM calculations, we have used only the CVM entropy
expression with the disordered phase symmetry. Thus, in
Fig. 1~b! differences with Monte Carlo for temperatures be-
low the CVM transition (T51.89! are shown as dashed lines.
Obviously, practitioners of CVM would correctly impose a
lower symmetry on the entropy expression below the transi-
tion to the ordered phase and would not use the disordered
phase symmetry in this temperature range. The reason we
use the CVM disordered phase symmetry down to low tem-
perature is due to our wish to combine CVM methods with
MC, which as we describe in the next section, is problematic
when using ordered expressions for CVM entropy.

As indicated in the Introduction, the CVM correlations
functions$P̄f% are closer to zero than the MC values. By Eq.
~2!, the CVM internal energy is less negative relative to

Monte Carlo@thus,dE.0 in Fig. 1~b!#, demonstrating that
the energetic effect of short-range order in CVM is underes-
timated, and hence the CVM internal energy is more random
than that of Monte Carlo. The entropy of CVM is overesti-
mated@ d(2TS),0# relative to Monte Carlo, again indicat-
ing a more random solution than Monte Carlo. However, the
error in the CVM free energydF is simply the sum of the
errorsdE1d(2TS). SincedE and d(2TS) have opposite
sign, they partially cancel, and give an error in free energy
which is considerably smaller in magnitude than either the
error in energy or in entropy. Thus, owing to the variational
nature of the CVM,2 the free energy of CVM is more accu-
rate than one might expect from considering either the en-
ergy or entropy alone.

B. Using MC correlation functions in CVM
calculations: Absence of cancellation of errors

Our foregoing discussion sheds light on a hybrid method
which, naively thinking, might combine the accuracy of
Monte Carlo with the simplicity of CVM. In this method,
one uses the correlation functions$P̄f% ~or equivalently, the
cluster probabilities$r j

f%! of MC simulations in the expres-
sions for CVM entropy@Eq. ~3!# and energy@Eq. ~2!#. We
refer to this method as the ‘‘FCVM(PMC)’’ method. This
method would, of course, require one to perform a Monte
Carlo simulation for each composition and temperature of
interest; however, one could, in principle, obtain the entropy
at each point from a single Monte Carlo simulation~i.e., one
composition and one temperature! rather than a series of
Monte Carlo calculations which would be required for ther-
modynamic integration of the entropy. Since the Monte
Carlo correlation functions are used in this method in Eq.

FIG. 2. Error in free energy as a function of temperature for the nearest-
neighbor anti-ferromagnetic Ising model obtained using the ‘‘FCVM(PMC)’’
method. All quantities are given in dimensionless units:kBT/J for tempera-
ture, energies are given normalized byJ, and entropies are given normalized
by kB . In the FCVM(PMC) method, MC correlation functions and cluster
probabilities are used in the CVM expressions for energy and entropy, re-
spectively. We have used only the CVM entropy expression with the disor-
dered phase symmetry. Thus, differences with Monte Carlo for temperatures
below the CVM transition~T51.89! are overestimated and hence are shown
as dashed lines~see text!. Note that in this method, the energy is precisely
that of Monte Carlo, thus the error in2TS is also the error in free energy.

FIG. 1. Energy, entropy, and free energy as a function of temperature for the
nearest-neighbor anti-ferromagnetic Ising model. All quantities are given in
dimensionless units:kBT/J for temperature, energies are given normalized
by J, and entropies are given normalized bykB . ~a! Results obtained from
Monte Carlo simulations and thermodynamic integration.~b! Errors in stan-
dard CVM ~disordered phase symmetry! compared to Monte Carlo. We
have used only the CVM entropy expression with the disordered phase
symmetry. Thus, in~b!, differences with Monte Carlo for temperatures be-
low the CVM transition~T51.89) are overestimated and hence are shown
as dashed lines~see text!.

2914 J. Chem. Phys., Vol. 108, No. 7, 15 February 1998 Ferreira, Wolverton, and Zunger
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~2!, there is no error in energy (dE50). Thus, the error in
free energy, shown in Fig. 2, is equal to the error in entropy:
dF5d(2TS). Since there is no error in energy in this
method, there is no cancellation of errors. Hence, even
though the exact Monte Carlo correlation functions are used
in the FCVM(PMC) method, it produces less accurate free
energies than standard CVM: For example, atT51.92, the
free energies as given by Monte Carlo,FCVM(PMC), and
CVM, are522.109,22.050, and22.067, respectively.~For
comparison, CVM in the tetrahedron–octahedron approxi-
mation givesF522.094 for this temperature.!

Other disadvantages of theFCVM(PMC) approach are il-
lustrated in Fig. 3, showing a comparison of the entropies as
a function of temperature as calculated by MC (SMC), by
standard CVM @SCVM(PCVM)#, and by theFCVM(PMC)
method@SCVM(PMC)#. ~The other two curves of Fig. 3 are
discussed in Sec. C and III D below.! One can again see that
~i! standard CVM~solid line! overestimates the entropy at
high temperatures relative to Monte Carlo~open squares!,
~ii ! the CVM entropy of the disordered phase is not appli-
cable at low temperatures, and~iii ! the FCVM(PMC) method
underestimates the entropy at high temperatures, and at low
temperatures this entropy takes on the unphysical values
SCVM(PMC),0. These unphysical values are a result of the
fact that the expression for the disorderedSCVM allows nega-
tive values for many atomic configurations. For instance, in
the fcc lattice, the simplest ordered configurations such as
L10, L11, L12 have negativeSCVM values.~These negative
values of CVM entropy are likely to persist no matter what
sized maximal cluster is used, and thus will always lead to
difficulties with theFCVM(PMC) method at lower tempera-
tures, since the CVM entropy will incorrectly tend to nega-
tive values rather than zero.! Of course, one might argue that
these ordered configurations only possess negative CVM en-
tropy when evaluated with the CVM expression for the dis-

ordered phase, whereas when evaluated with the CVM ex-
pressions for the corresponding ordered phases, they will
have non-negative entropies. However, this illuminates an-
other potential problem with theFCVM(PMC) method: In
Monte Carlo simulations, the presence of anti-phase bound-
aries and finite-sized domains of long-range order preclude
one from unambiguously defining the distinction between
sublattices and extent of long-range order present in the
simulation. However, an ordered CVM expression for the
entropy is written in terms of correlation functions and clus-
ter probabilities for all the symmetry-distinct figures for the
symmetry of the long-range ordered phase. Thus, the CVM
ordered entropy expressions presuppose the domains of long-
range order are infinite in size, and hence the distinction of
various sublattices in the ordered phase is unambiguous.
Thus, using theFCVM(PMC) method with ordered CVM en-
tropy expressions is not practical because one does not
known from the MC simulations precisely how to divide the
MC simulations into sublattices of long-range order and
hence one does not even know from the MC simulations
which ordered CVM expression to use. Also one does not
know at what temperature to change the symmetry of the
CVM to the ordered entropy expression. Thus, an ideal
method combining Monte Carlo and CVM would only use a
single expression~e.g., the disordered CVM expression! for
the entropy at both low and high temperatures. We next de-
scribe such a method called entropic Monte Carlo~EMC!.

C. The entropic Monte Carlo method: A critical
evaluation of CVM entropy

Lee7 has shown a practical way to determine the entropy
of a Monte Carlo cell as a function of any state variable. We
call this method entropic Monte Carlo~EMC!. Though in his
paper Lee applies the EMC method to the case of the energy
as state variable in a quantized system, here we describe
insteadSEMC in terms of the state variableSCVM(s) which is
a continuous, not quantized, variable. Our strategy will be to
calculateSEMC(SCVM) by the method of Lee, and then insert
SCVM(PMC) into this expression, givingSEMC@SCVM(PMC)#
which we write asSEMC(PMC). We will show that this func-
tion reproduces very wellSMC . First, we describe how
SEMC(SCVM) is calculated.

The EMC method is a self-consistent process in which
each iteration is made from a series of Monte Carlo sweeps
where the driving ‘‘energy’’E(s) of the Monte Carlo equa-
tions is not the true energy contained in the sample but an
approximation to the entropy

E~s!5E@SCVM~s!#, ~5!

which depends on the configurations through the function
E@SCVM#, whose argument is the CVM entropy~per site!
calculated with Eq.~3! for the cluster probabilitiesr j

f(s) of
the configurations. The functionE@SCVM# is assumed to be
monotonic. The EMC dynamics are given by the detailed
balance condition

FIG. 3. Entropy versus temperature for the nearest-neighbor anti-
ferromagnetic Ising model. The open squares~connected by a solid line! is
the result of Monte Carlo simulations, the solid line is standard CVM, the
long dashed line is the CVM entropy expression evaluated with the Monte
Carlo cluster probabilities, the thin short dashed line is the result of the
entropic Monte Carlo calculations, and the thick short dashed line is the
simple correlation to the CVM, the ‘‘modified CVM.’’
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exp@2E~s i !#W~ i→ j !5exp@2E~s j !#W~ j→ i !, ~6!

whereW are transition rates andE(s) is given by Eq.~5!.
After many MC sweeps of the full lattice, one obtains a
histogram

H~S̄CVM!5Xd~S̄CVM!exp@2E~S̄CVM!#, ~7!

whered(S̄CVM) is the number of configurations with a given
value S̄CVM of the CVM entropy~degeneracy inSCVM) and
X is a constant of proportionality. We distinguishS̄CVM ,
which is a numerical argument attaining certain value, from
SCVM which is a function of both the microstate@through Eq.
~3!# and the cluster probabilitiesr j

f(s). The density of states
function of the CVM entropySCVM is given by

D~S̄CVM!5(
s

d~S̄CVM!d~S̄CVM2SCVM~s!!

5~1/X!(
s

exp~E~S̄CVM!!H~S̄CVM!

3d~S̄CVM2SCVM~s!!, ~8!

and the entropySEMC5S(S̄CVM) per site is defined as

exp@NS~S̄CVM!#5E
2`

S̄CVMD~j!dj, ~9!

whereN is the number of sites in the MC cell.
From Eqs.~8! and ~9!, we may obtain the difference

between the entropy at two different valuesS̄CVM.

S~S̄CVM
~2! !2S~S̄CVM

~1! !

5
1

N
lnF (

s,SCVM~s!,S̄CVM
~2!

exp~NE@SCVM~s!#!H@SCVM~s!#G2
1

N
lnF (

s,SCVM~s!,S̄CVM
~1!

exp~NE@SCVM~s!#!H@SCVM~s!#G ,

~10!

which is the basic equation used to determine the entropy
from the EMC runs. On the right-hand side of Eq.~10!, the
sums are over the microstatess obtained in the EMC sweeps
whose CVM entropiesSCVM(s) are smaller thanS̄CVM

(2) or
S̄CVM

(1) . As pointed out by Lee,7 the entropy determination
becomes especially simple when the interactionE(SCVM) is
such that the histogramH@S̄CVM# is uniformly distributed
and has little dependence onS̄CVM. In this case, Eq.~10!
becomes

S~S̄CVM
~2! !2S~S̄CMV

~1! !

5
1

N
lnF (

s,SCVM~s!,S̄CVM
~2!

exp~NE@SCVM~s!#!G
2

1

N
lnF (

s,SCVM~s!,S̄CVM
~1!

exp~NE@SCVM~s!#!G . ~11!

Because of the factor ofN, the exponential in Eq.~11! is a
rapidly increasing function ofSCVM, and hence only the ex-
tremes contribute significantly to the sums, or

S~S̄CVM
~2! !2S~S̄CVM

~1! !.
1

N
E~S̄CVM

~2! !2
1

N
E~S̄CVM

~1! !. ~12!

This equation then suggests the self-consistent procedure for
determining the entropy: From a crude estimate ofS(SCVM),
we use Eq.~12! to obtain the interactionE(SCVM) with
which we make EMC runs, with which we recalculate
S(SCVM) from the basic Eq.~10!. This process is taken to
self-consistency. When self-consistency is reached,~i! the
histogramH@SCVM# ~the number of microstates in each small

range ofSCVM obtained in a series of MC sweeps! is nearly
constant, independent of the value ofSCVM and~ii ! the driv-
ing energy which is the approximation to the entropy@Eq.
~5!#, becomes equal to the entropy calculated from the den-
sity of states@Eq. ~9!#, or in other words, the EMC entropy
becomes exact. An important aspect of the EMC is that the
calculated entropy functional form ofS(SCVM) does not de-
pend on any particular Ising Hamiltonian~so long as the
important correlations are contained within the CVM

FIG. 4. Entropic Monte Carlo results forSEMC5S(SCVM). Filled circles are
the EMC calculations, and the solid line is the EMC-inspired entropy func-
tional S̃(SCVM). The dashed line is of unit slope simply to guide the eye.
EMC was performed for a cell of 12351728 sites, using the CVM tetrahe-
dron expression for the disordered entropy. Note that many configurations
correspond to negative CVM entropy, with the most negative~for all con-
figurations with<16 atoms per cell! being theL10 configuration.
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maximal cluster!, because the role of the energy driving the
EMC calculations is played in Eq.~10! by the entropy itself.

Figure 4 shows a typical resultSEMC(SCVM) of the EMC
calculations, using a MC cell withN512351728 sites. We
also performed EMC calculations with different MC cells,
with the results being slightly different for the larger nega-
tive values ofSCVM . The negative values ofSCVM corre-
spond to configurations of atoms with higher symmetry, usu-
ally associated with smaller repeat units, thus explaining why
the curve depends to some extent on the size and shape of
the MC cell for the negative values ofSCVM : For instance,
for an EMC cell with an odd number of sites~e.g., 113!, one
could never obtain the stoichiometric configurationL10 with
its large negative CVM entropy. In fact, simple high-
symmetry configurations such asL10, L11, L12 all have
negative values ofSCVM . Examining the CVM entropy for
all configurations with up to 16 atoms per cell,10 we found
the configurations with the most negative CVM entropy had
very small unit cells. The largest negative CVM entropy oc-
curs forL10 for which SCVM(L10)521.34 ln 2.

The resultsSEMC@SCVM(PMC)# of EMC are shown in
Fig. 3, where they are contrasted with the results of Monte
Carlo, CVM, andFCVM(PMC).11 By comparingSEMC(PMC)
andSCVM(PCVM) with SMC, we see that the EMC and CVM
entropies are equally accurate at high temperatures. Remark-
ably however, the EMC method also produces extremely ac-
curate entropies at low temperatures, in qualitative contrast
with the FCVM(PMC) method. Thus, even though one only
uses a single disordered expression for the CVM entropy in
the EMC calculations, the EMC reproduces both high tem-
perature~disordered! and low temperature~ordered! entropy
values, with no need to change the CVM entropy expression
at any point. Although the internal energy in EMC is exact
~so this method does not benefit from the cancellation of
errors noted in Sec. III A for the CVM!, we see that EMC
does not need to be correct due to cancellation of errors.
Instead, it is accurate because its individual terms (E and
2TS! are accurate.

The EMC, like standard Monte Carlo, can be a compu-
tationally laborious procedure. However, our EMC calcula-
tions of S(SCVM) suggest a very simple functionalS̃(SCVM)
which is appealing because the correction does not require
one to perform an EMC calculation. We next describe this
simple correction.

D. An EMC-inspired new entropy functional

While SCVM(PMC) can be inaccurate,
SEMC@SCVM(PMC)# is accurate but computationally expen-
sive. Thus we will now develop a new functional
S̃@SCVM(PMC)# which is both accurate and inexpensive.

The EMC results of Fig. 4 permit one to guess the be-
havior of the exact entropyS(SCVM) ~in the limit N→`) as
a function of the CVM entropy obtained from a ‘‘good’’
maximal cluster~e.g., the tetrahedron or the tetrahedron-
octahedron!. This ‘‘true’’ entropy functionS(SCVM) should
have the following properties:

~i! The most positiveSCVM(x) entropySCVM
MAX(x) should

correspond to the exact entropy for this case, i.e., the ideal

mixing entropy: S(SCVM
MAX)5S0(x)52kB@x ln x1(12x)ln

(12x)#.
~ii ! The slope ofS(SCVM) at the maximum value of

SCVM
MAX 5S0 should be unity because for nearly random con-

figurations the CVM approaches the exact result:
dS/dSCVMuS051.

~iii ! The most negative value of the CVM entropy should
correspond to zero true entropy. Thus,S(SCVM

MAX)50. The
configuration with most negative CVM entropy can be found
by examining all configurations up to some maximum unit-
cell size, as described in Ref. 10. For instance, for the tetra-
hedron CVM, L10 has the most negative CVM entropy
@SCVM

MIN 5SCVM(L10)521.34 ln 2#. This point is indicated in
Fig. 4 by a square.

~iv! The function S(SCVM) should increase monotoni-
cally with SCVM as one can see from Eq.~10!. Also, S(SCVM)
has a positive curvature@due to the exponent ofN in the
right-hand side of Eq.~10!#.

We select a simple functional form forS(SCVM)which
satisfies~i!–~iv! above~but otherwise possesses no special
physical meaning.! However, use of this simple form will
provide a means of evaluating energies and entropies which
~a! is computationally much more efficient than either MC
thermodynamic integration or EMC,~b! possesses MC accu-
racy, and~c! may be extended to use any maximal cluster of
the CVM. The functional form we choose for the approxi-
mationS̃(SCVM) to the trueS(SCVM) which satisfies the four
properties~i!–~iv! above is

S̃~SCVM!5~S02 S0/a!1
S0

a
expFaS SCVM

S0 21D G , ~13!

wherea is the solution of

05~S02 S0/a!1
S0

a
expFaS SCVM

MIN

S0 21D G . ~14!

In the case of the tetrahedron CVM,a50.869 17. The func-
tion in Eq. ~14! depends only on a single parameterSCVM

MIN

which can be easily estimated from an enumeration of small-
unit-cell configurations10 using any maximal cluster of the
CVM method. ~In contrast, an EMC calculation as we de-
scribed in Sec. III C is only practical for the tetrahedron
CVM approximation.! While the negativeSCVM configura-
tions, which correspond to highly symmetric arrangements
of atoms, have no meaning in the standard CVM procedure
~since in standard CVM one would use a different expression
for CVM entropy to describe ordered phases!, the main merit
of a correction such as Eqs.~13! and~14! is to restore these
highly ordered configurations into a single CVM expression
by attributing a non-negative entropy to them. Naturally this
correction, when used together with the Monte Carlo corre-
lation functions, will be especially important near the transi-
tion when the ordered configurations begin to be important.

To test these ideas, we calculatedS̃@SCVM(PMC)#
[S̃(PMC), whereS̃ is given by Eq.~13!, and the CVM is
executed within the tetrahedron approximation. One sees
~Fig. 3! that this approach presents a remarkable improve-
ment over theFCVM(PMC) method in all temperature ranges,
especially below the transition temperature where
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SCVM(PMC) is negative. Also, the simple functional repre-
sented byS̃(PMC) effectively retains all of the improve-
ments overFCVM(PMC) that were obtained by the full EMC
calculation. In fact, for high temperatures, theS̃(SCVM) ap-
proach is even closer to the exact Monte Carlo results than
the EMC calculations on which it was based! This fact can
be understood by examining the EMC calculations in Fig. 4:
Figure 4 shows that the EMC calculations using a cell of
1728 sites do not reproduce property~ii ! above,
dS/dSCVMuS051. In fact, the slope of the EMC curve in Fig.
4 is only about 0.82 at the maximum value of the entropy.
EMC simulations with even smaller cells were typically
found to possess even smaller slopes. Presumably, for larger
EMC simulations one would approach the correct slope of
unity. The slope of EMC being smaller than unity means that
as one comes down from infinite temperature, orSCVM

5 ln 2, the EMC entropy maintains a larger value than it
should. This explains whySEMC.SMC for temperatures
above the critical temperatures. Because theS̃(SCVM) ap-
proach was constructed to obey the requirement
dS/dSCVMuS051, it corrects the error in the slope of EMC
caused by the finite-sized simulation cell, and hence im-
proves the entropy above the transition. The reason that the
derivative of EMC is less than one for small cell sizes is due
to the negativeSCVM configurations, which are typically
high-symmetry, small-unit-cell configurations. Thus, these
negativeSCVM states are represented more in small EMC
cells relative to configurations with large-unit-cells and low
symmetry. If the density of states in Eq.~9! becomes artifi-
cially large for the negative region ofSCVM ~due to small
EMC cells!, it will have to be compensated by an artificially
small density of states in the region of positiveSCVM @since
the integral in Eq.~9! is constrained by the fact that it must
be 2N at SCVM5 ln 2.# Thus, the integral will grow more
slowly than it should for CVM entropies approaching ln 2,
and hence the slope will be less than one.

IV. SUMMARY

The main accomplishment of this paper is to suggest a
simple functionalS̃(SCVM) @Eqs. ~13! and ~14!# that im-
proves the CVM entropy. The development was based on

insights gained from our analysis of the CVM free energy
~which showed cancellation of energetic vs entropic errors!,
and from the EMC philosophy7 permitting one to express the
true entropy as a functional of an approximate, but determin-
istic entropy. The new functionalS̃(SCVM) can be used in
future applications either with CVM alone@simply by replac-
ing the CVM entropy with Eq.~13! in any existing CVM
program#, or with a combination of CVM andPMC ~using
S̃@SCVM(PMC)# as described in this paper!.
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