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Angular momentum projected tiar&-Fock (HF) and local density functional (LDF) nonlocal atomic pseudopotentials 
are derived from fist principles in a way that allows their comparison. It is found that in both casts the pseudopotential is 
given by a terin which vanishes fo&.ngular momenta species not present in the core and is strongly repulsive otherwise, plus 
a term that represents the difference. between an averaged total (a&electron) and valence potentials. It is shown that: (a) the 
HF and LDF pseudopotentials behave very simiily in the entire space, contrary to the marked differences in the corre- 
spondmg a@=Iectmn potentials. Tbii is due to both the cancellation of the self-interaction term in the LDF pseudopotential 

,fo&l &d the localization of the (otherwise state dependent) HF exchange; @) while the HF pseudopotentials for the diifer- 
ent l-components not present in the core are in general different, the anaiogous LDF pseudopotentials am identical; (c) the 
energy dependence of both pseudopotentials is small; (d) by properly determining the pseudowavefunctions from the all- 
electron exact orbitals, it is possible to reduce the long tails of these pseudopotentials in momentum space, making them 
UsefUl for methods that so& the associated single-particle equations in reciprocal space, with only small errors introduced 
into the valence part of the pseudowavefunctions: (e) the “transition state” theorem, which holds for the all-electron LDF, 
applies similarly to LDF pseudopotential results. We discuss the detailed comparison between the HF and LDF pseudopo- 
tential and their ret&ion to the Phillips-Kleinman form. It is seen that for the HF scheme, these can be made identical only 
for the bare core. Generally, the Phillips-Kleinman method will produce substantial structure in the potential and/or in the 
pseudowavefunction; this additional structure causes computational difficulties, such as the need to include extra basis func- 
tions. More serious is the fact that the original Phillips-Kleinman procedure applies only for single-vaIence-electron ions, 
which may be poor models for the right half of the periodic table. 

1. Introduction 

Nearly alI qualitative discussion of chemical bond- 
ing, of structural and transport properties of condensed 
phases, of optical, magnetic resonance and vibrational 
spectroscopy, and of molecular response properties 
and reactivities are presented with reference to the 
valence electrons of the system. For such discussions, 
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one usually omits entirely specific consideration of the 
core electrons, since their tight binding character (ai- 
ways at least several volts greater than valence electrons) 
and their approximately spherical symmetry make them 
nearly unresponsive to any low energy (bonding) per- 
turbations. Indeed, the notion of chemical periodicity 
is based on this essential passivity of core electrons to 
changes in bonding environment. When, however, one 
attempts quantitative description of the electronic 
structure of atoms, molecules or solids, the core elec- 
trons can no longer simply be omitted from explicit 
consideration. For example, one clearly cannot approxi- 
mate the Schrodinger equation for Li by that for H. 
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The straightforward sohition to this problem is simply 
to include the core electrons in any electronic struc- 
ture calculation, so that, for instance, Na, becomes a 
22electron problem. 

This approach is feasible and successful, and forms 
the basis for nearly all rigorous ab initio or first prin- 
ciples electronic structure calculation *. Nevertheless, 
one feels, on the basis of the stability of the core levels 
and the generality of periodic behavior, that this ex- 
plicit reckoning of the core levels is redundant. 

Many techniques for circumventing the inclusion 
of core levels have been proposed. The most straight- 
forward involves neglecting the core electrons, but 
modifying the valence hamiltonian, or, equivalently, 
its matrix elements within any chosen basis set. This 
is the scheme employed in most semi-empirical elec- 
tron structure methods [PPP (cf. ref. [3]), CNDO (cf. 
ref. [4]), extended Hiickel (cf. ref. [S])] and underlies 
many of the model hamihonians (Hubbard [6], tight- 
binding, Heisenberg) commonly employed in discus- 
sion of solid-state electronic structure. Most of these 
schemes are semi-empirical, with the relevant matrix 
elements parametrized to describe any given desired 
set of experimental data. A closely related approach, 
often referred to a~ the empirical pseudopotential’ 
procedure, has been of great utility [7] in describing 
the band structure of a large number of solids. In this 
scheme, one futes certain Fourier components of the 
potential due to the core electrons acting in the valence 
space, by matching experimental data such as interband 
transition energies. Once this empirical pseudopotential 
information is acquired, however, the valence behavior 

is treated in a first-principIes fashion. Thus the empiri- 
cal pseudopotential scheme forms a bridge between 
the semi-empirical model hamiltonian approach and 
the use of nonempirical, first-principles pseudopoten- 
tial methods. 

Pseudopotential schemes are based on the notion 
that Jhe effects of the core orbitals on the valence elec- 
trons can be approximated by an effective one-electron 
operator, replacing both the full Coulombic and the 
Pauli interaction of valence with core. Pseudopotentials 
were introduced by Helhnann [S] and by Gombas [9], 

* An excellent survey of HF molecular studies is given by 
Schaefer [l]_ No such comprehensive review of LDF calcu- 
lations is available, but extensive references are given in 
ref. [2]. 

but these spherically symmetric p&en&s were quan- 
titatively satisfactory only for cases of one or possibly 
two vaIerice eIectrons. The reason. for this was eluci- 
dated by Phillips and Kleinman [lo], who pointed out 
that since there are bothCoulomb and Pauli inierac- 
tions between core &d valence orbit&, the proper 
pseudopotentials must also account for both of these 
effects. For example, in a first row atom, the 2s func- 
tion is constrained by the Pauli principle to be ortho- 
gonal to the 1s core function, whereas the 2p wave- 
function is automatically orthogonal by virtue of its 
differing angular momentum. Thus the effective core 
potential felt by Qls would be expected to be repul- 
sive in the core region due to the.Pauli (orthogonality) 
condition, while that felt by Q, should be attractive 
near the nucleus, where the 1s orbital no longer effi- 
cientIy screens the core charge. Phillips and Kleinman 
[lo] thus proposed a nonlocal pseudopotential opera- 
tor involving a core. orbital projector, of the form 
&_(E,, - +)I 9,) <@cl, where E,, and cc are the core 
and valence energies and qc is a core orbital. These 
pseudopotentials were originally proposed to account 
only for the Pauli barrier (to remove the constraint of 
core orthogonality by means of an operato; added to 
the hamiltonian for a single valence electron), although 
formal generalizations to seveid valence electrons (e.g. 
ref. [l I]) as well as parametrized forms which included 
an approxitiation to the core-valence Coulomb inter- 

action [I21 were soon forthcoming. The use of these 
core-projection type pseudopotentials has become 
very widespread in Hartree-Fock-Roothaan molecu- 
lar orbital calculations in recent years [12,13] ; the 

methods of Huzinaga [ 121, in particular, have been 
quite successful for a number of molecules. 

Since the Pauli principle constraint in atoms can 
be expressed in terms of angular momentum symme- 
try, a number of pseudopotential methods have been 
introduced [ 14-201 which utilize an angular momen- 
tum projection pseudopotential on each atom, of the 
form Elm V~&)llm>(Zml. Here &(r) is a smooth 
function of the radial distance, and I, m are the orbital 
angular momentum and its component. This potential 
is intended to represent both Coulomb and Pauli ef- 
fects of the core on the valence electrons. Such poten- 
tials have been developed independently by a number 
of workers, especially by Kahn, Goddard and Melius 
[14,15], for utilization within Hartree-Fock- 
Roothaan calculations. Several successful studies em: 
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playing these p6tentials both at the single.detenninaut 
[16-19,21-251 and correlated wavefunction [18,26] 
level have been reported, and these potentials now ap- 
pear to allow accurate, first-principles valence-only 
Hartree-Fock-Roothaan calculations for marry mo- 
IecuIar systems. In particuIar, the papeLby Kahn et al. 
[ 161 contains an especially cIear discussion of the au- 
gular-momentum-projector pseudopotentials, and a 
lengthy reference list. 

Very recently, specifically designed pseudopoten- 
tiafs, both of Phi!+-Kleinman (core projection) 
type [27] and of angular momentum projector types 
1281, have been introduced for use in conjunction 
with Hohenberg-Kahn-Sham [29] local density func- 
tional (LDF) calculations. The LDF method involves 
solution of a one-electron eigenvalue equation of 
ffartree-Fock type, except that the nonlocal exchange 
potential of the Fock operator is replaced by a local 
exchange-correlation potential, which is a functional 
of only the total electron density. The LDF method is 
widely used in first-principles [30-331 and empirical 
[7,34] baud theoretic studies, and its application to 
atomic and molecular problems is becoming wide- 
spread [35-371. The applicability of pseudopotentials 
within this scheme must, however, be justified in a 
slightly different way than is done for Hartree-Fock, 
indeed, Slater [38] even questioned this applicability 
on a priori grounds, although the multiple scattering 
procedure he developed must be distinguished from 
LDF per se. 

The present paper presents a comparison of the role 
and nature of pseudopotentials within the Hartree- 
Fock (HF) and the LDF methods. It attempts to clari- 
fy the nature and utility of, and differences between, 
the LDF and HF first-principles pseudopotentials. We 
show that the use of pseudopotentials within LDF can 
be rigorously justified, and indeed, that in some senses 
the pseudopotential method, which is based on re- 
placing the local effects of the core by a smooth poten- 
tial [39], is more in keeping with the local potential 
picture of LDF than with the nonlocal exchange poten- 
tial of HF [28]. We also demonstrate the great similar- 
ity of LDF and HF angular-momentum dependent 
pseudopotentials, both of which contain an average, 
I-independent potential and a weak Z-dependent part. 

We feel that first-principles pseudopotential meth- 
ods are of great practical value in permitting rigorous 
valence-only calculations to be completed using both 

LDF and HF methods; the present paper constitutes 
a comparison, derivation and partial evaluation of 
these methods; numerical results using psegdopoten- 
tial HF [ 14-261 and pseudopotential LDF [28] are 
reported elsewhere. Sections 2 and 3 present unified 
derivations of the HF and LDF angular-momentum 
projected pseudopotentials, respectively; section 4 
compares the potentials so obtained. Section 5 exami- 
nes the general apphcability of the pseudopotentials in 
real systems, by consideration of the angular momen- 
tum dependence, of the relation to the frozen core 
approximation, of the energy dependence of the 
pseudopotential and of the superposition-of-atomic- 
pseudopotentials step which must be made for applica- 
tions to molecules or solids. Section 6 contrasts these 
angular-momentum projected pseudopotentials to the 
Phillips-Kleinman core-projection type which, we 
feel, have some serious drawbacks. Finally, section 7 
contains brief concluding remarks. 

2. Development of HF pseudopotentials 

Let the HF hamiltonian for the atomic (central 
field) valence state nl, in some chosen reference elec- 
tronic state g, be denoted (using Hartree atomic units) 
as 

(‘1 
where the total HF potential, partitioned into “core” 
and “valence” parts, is: 

Here 2, denotes the number of core electrons and 
2, = 2 - 2,. J$; and Kjj.$ denote the Coulomb and 
exchange integrals of core state ~‘2’ in the reference 
configuration g (the primed sum indicating exclusion 
of self-interaction terms) and G,,l(I3/31}) denotes col- 
lectively the valence-valence interactions, which de- 
pend on the entire valence manifold {$$$‘}, i.e., for 
an (ns, n’d) transition metal atom, 



end for a single valence electron atom G = 0. The 
Co&mb integral .$ is given by. the classic electro-. 
staticpotential 

(3)’ 

while the exchange potential.&(r) is a level-depen- ; 
dent nonlocal operator: 

The eigenvalue equation for a valence state $5; is 
given by 

E$, #,“I = $$glg; . (5) 

The usual requirement of the orthogonality of the 
valence orbitals {#,&r’) to the core orbitals {4,&l”} results 
in the familiar nodal behavior of $,&y and in the need 
to use a rather large basis set (e.g., analytic atomic-like 
orbitals or plane waves) for their representation. One. 
hence proceeds [IO, 11,141 by requiring that the va- 
lence set {I$#~ be replaced by a pseudo-orbital set- 
{dI} made up of combinations of the ail-electron 
eigenfunctions: The radial part of this “pseudo-orbital”, 
&$ is given in terms of the HF radial orbitals R,, as 

core+1 

= c @ Rg. 
ri 

nIpi n’l 9 (6) 

where the coefficients {C$r,) are chosen so that ~$1 
has some desired features, e.g., be nodeless and close 
to the original $5; [28], or have minimum kinetic 
energy [14-161, etc. Note that only Rn;l orbit& be- 
longing to the same I as in a,!$ are required in the sum. 
One then replaces the HF hamiltonian for the valence 
orbitals in (1) by a pseudo-hamiltonian 

H/p = - $ v2 + Vkjff(r) , (7) 

where the effective potential Vz” (r) for orbital nl -. 
in state g can be partitioned into a valence field plus 
an external potential 

and the-v&nce~p’ot&tif Vx h@ the fqr-rn(2):Since .. 
by-changing the HF potential for the vrlenceorbital< :. 
from Pti in (2) to ?$P$ff in @) and-requiring that for . . 
the reference sta’te g one obtains (6) &s eigenf&rctions 
one can s@l obtain any eigenvalue spect&one-uses 
this freedom;r’@uning that II&~ in (7) would have 
the same spe>trum as H$ for state g [eq. (S)] i.e., 

.ff:ips Y$l G +j 41 * + -. v-- i 
. . . 

: (9) 

This defines the pseudopotential in (8) in terms of the 
valence energy e$‘, the pseudo-orbital $$ and the 
valence potential, as 

(10%) 

For a central-field problem, the pseudopotential can 
be represented in terms of the radiaI pseudo-orbitals 
@$ and the associated kinetic operato&s 

W@5 1 I(C + 1) 
- -- -TrZ-(lOb) 

P nl 
The forms (9) and (10) have been used in numerous 
calculations on atoms and molecules to replace the 
original equation (1). For a system with one-electron 
outside a filled core, (IO) yields 

while for a bare closed shelI ionic core, this simply re- 
duces to 

(12) 

When the effective potential (8) is generated from (11) 
and (12) for the reference state g, the terms in the 
curly brackets tend to cancel against Vff; while when 
applied to ageneral state s # g, these terms persist. 

We now rewrite the second terms in (lob) in a dif- 
ferent form. using the fact that the orbit& $$ enter- 
ing the pseudo-orbital deftition (6) are eigenfunctions 
of the original HF hamiltonian [eqs. (1) and (S)] , we 
write .- 

or, for the radial component Rgell: 
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Defme now the “average” total potential function as 

, 

the average energy eigenvalue function as 

and the average centrifugal potential as 

c+l 

<P,&)>= c cg 
n’ 

, 11(1+1) R:,,(r) 
Ml 2 r2 I 

-? 
> 

(144 

WI 

(14c) 

where the index c f 1 indicates summation on the core 
(c) plus a single valence orbital nl. One obtains for the 
second term in (lob) 

and the pseudopotential becomes 

V$Yr) = [es + U?$(r))] 

+ <vzjrot(r)j - cv;j(r)) , (1% 

where the term (Pi1 (r)) - i 1(1+ I)/r2 drops since 
Z(1+ 1)/r* multiples all R$l in (14~) as a constant, and 
(V$“(r)) is defmed as in (14a) but for the valence 
field e{ only_ 

l’Jte fust term in brackets in (15) can be written as 

@I@) = $$ + (E$(r)) 

which takes the form of the Phillips-Kleinman repul- 
sive potential [IO] for a particuIar choice (6) of the 
coefficients CilTsk The final expression is hence 

V$PS(r) = U$(‘) f <V$“‘(r)> -<V;f(r)> . (17) 

The average total and valence potential [last two 
terms in (17)] depend on the particular pseudo-orbital 
indices nl, since the HF potentialin (14a) is state de- 
pendent [c.f. eq. (4)]. The pseudopotential can be 
computed directly from (17) using the forms (14a) 

and (16), or alternatively from (12) by direct applica- 
tion of the kinetic operator to the corresponding or- 
bitals. Expression (17) has however the theoretical 
advantage in that it demonstrates the type of averages 
involved in going from the nonlocal form of Vtpt in 
(5) to the local form (17) and in revealing the nature 
of Vn5ps(r) as a core-like potential (i.e., containing 
differences between total and valence potentials). 

We have transformed the origina! ah-electron eigen- 
value problem (5) to another problem (9) having a 
valence field V$?’ like the original problem, plus an 
additional potential V,$” (17), where the new prob- 
lem has the same valence spectrum e,!$’ as.the original 
problem, but with “smooth” eigenfunctions given by 
(6). The construction of V$‘” requires knowledge of 
the all-electron eigenvalues and eigenfunctions for 
state g and hence the use of (9) has no practical ad- 
vantage over the use of (5), for this state. The useful- 
ness of these pseudopotentials lies entirely. in the 
question whether one can use V$‘” to replace the 
core electrons for atomic states other than those used 

to generate FTgjps as well as for atoms in bonding 
states in mole~ule’s and solids. We will postpone the 
discussion of this question untii after the discussion 
of the pseudopotential generated from the local den- 
sity theory. 

3. Development of LDF pseudopotentials 

The local density formalism of Hohenberg and 

Kohn [ZS] and Kohn and Sham [40] rests on the fun- 
damental theorem that in the presence of an external 
potential field We&r), the total energy of an interact- 
ing inhomogeneous electron system (including correla- 
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tio:n) can be written as 

W 

where F [p(r)j is a universal functional of the density 
p(r), independent of’the external potential, and that 
for the correct ground state density, E is a minimum. 
This theorem forms the basis for an entire electronic 
structure theory in that it provides an effective one- 
particle equation (derived by applying variation to 
(18) with respect to p(r), and replacing the function 
derivative of the non-interacting kinetic energy, by 
the exact quantum mechanical laplacian) of the form 

I- iv2 + ~,,JP(r>l) & = ${ G,h{ (19) 

(we consistently denote LDF potentials by Wand HF 
potentials by V; note that the LDF $ of (19) and the 
HF $ of (5) will differ). The total potential in the 
ground electronic state g is given by 

W,, b&II = w&(r) + WC,:, [Pg(rN + % bgWl, (20) 
where, for an all-electron calculation We&) is usually 
identified with the electron-nuclear term -Z/r and 
the Coulomb potential is just a sum of the Jil terms 
(3) over the occupied states: 

where Nnr are the occupation numbers. The last term 
in (20) represents the total exchange and correlation 
potential. In lowest order in the gradient expansion 
[40], it is given by 

wxc [P&‘)l = w, [Pg(r)J f wc [P&j] > WI 

where Wx [p&)] is the well known k’p1/3” term 

&[P&)l = -(3/,-j113 bg(r~l li3 ,’ (23) 

while the free-electron correlation potential WC [p.Jr)] 
is a more complicated functional of p(r), given by 
many authors [41-43]. The total energy is given in 
the LDF formalism as 

E=E +_$ ss p&~p&'~ 

i If _ f’l drdr’ 

T / p,(r) W,, b&N dr + -& [p,(r)] ; (24) 

where the total exchange and correlation energy 
Ei,[p(r)] is related to the corresponding potential 

w,, [p&N by. 

wx, I&(r)] = 6&, [pe(r)] IQ&) .: (25) 

In principle, the LDF theorem. as&es that given 
the form of E,,[p(r)], one can generate the potential 
(20), solve (19) self-consistently and obtain tire .exect 
variational total energy (24) of the system, and the 
ground state observables related to p(r). In practice, 
despite extensive work on the related many-body 
theory [41-43],the fomofE,,[p(r)] forageneral 
form of p(r) is not known yet, and one has to resort 
to approximate forms [such as those leading to (22j- 
(23)J that are exact only for some limiting forms of 
p(r) (e.g., slowly varying density [40]). Despite this 
limitation, one finds that when some of the rather 
drastic computational approximations (i.e., muffin- 
tin approximations to Wtot [p(f)] [44], non-self-con- 
sistency or basis set limitations), previously involved 
in solving (19) with the functionah (22)-(23) are 
eliminated, extremely useful results are obtained for 
ground state properties of molecules 135-371 and. 
solids [30-33,461, such as binding energies, lattice 
constants, bulk moduli, Compton profiles, X-ray scat- 
tering factors and magnetic moments. In particular, 
detailed comparison of careful restricted HF and LDF 
calculations on solids such as diamond [3 I], LiF [32] 
and boron nitride [33] and diatomic molecules 1351, 
has revealed a clear superiority of the latter for most 
properties. However, when the simplifying assumptions 
of spherical site symmetry of W,,,[p(r)J used in 

“standard” augmented plane wave [46], multiple 
scattering Xa [44] or linear muffm-tin orbitals [47] 
is relaxed, the ah-electron solution of (19) becomes 
rather involved, mainIy due to the needfo compute 
the many center integrals of W,,,[p(f)] over some 
basis set, and the corresponding integrals for. 
W,,[p(r)] that are not simply reducible to a many- 
center form. Hence, a pseudopotential reduction of 
(19) to a valence electron problem becomes advantage- 
ous. 

To do that, we consider a fictitious (pseudo) atom 
in the reference (valence) .eLectronic state g, having Nv 
electrons (where IV., is the number of valence electrons 
in the real atom) which move in an external field 
Wext (r) = -Z,/r + Wzies(r) and the Coulomb and exi 
change correlation field, W&[n,(r)] and FU,, [rr&j] , 
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respectively. We denote by n(r) the charge density of 
the.pseudosystem, and by p(r) theall-electron charge 
density. We shall require that the eigenfunctions of 
this system, in state g, take the form (6) and that the 
valence eigenvalue spectra for g be identical to that 
produced by the corresponding all-electron hamiltonian 
described by (19). Hence we set a modified eigenvaiue 
problem 

Note that i? deriving (30), no localization of any 

+ q&m vjj* = E$& 9 

where the self-consistent density is given by 

.em 

(26) 

“a(‘) = 3 %I I&(r) I2 3 (27) 

and Nil are the occupation numbers for the pseudo- 
atom (identical to that of the valence orbitals in the 
real atom). Solving for the unknown potential in (26) 
we get 

1 V2Yi?l w$ps(r) = qy + - - 
2 & 

- c-q + wcoul bg(r)l + w,, rn,(r)l~ I (28) 
and, using the fact that the all-electron orbitals $I$ 
entering the definition of the pseudo-orbital I& in (6) 
are eigenfunctions of the total LDF hamiltonian (19) 
we get for the radial part ‘Pi,: 

1 V,‘@n”r 
- - = Wto,[~g(r)l f U’,$(‘)) + (E:l(r)) , 
2 @iI 

!29) 

which should be compared with (14d). The pseudo- 
potential hence becomes 

f+$ps(r) = %1(r) + ~toJP,(~)] - w$vr@)] I m 

where the valence field is given by 

(31) 

which takes a similar form to the HF effective poten- 
tial in (17). The L&(r) term is defined as in (16), but, 
of course, LDF $‘s rather than HF rj?s are to be used. 
.Afternatively, we could derive (26) and (28) by setting 
au expression for the total energy of the fictitious atom 
in an external field W,,(r), of the type (18), and fol- 
low the K&u and Shamvariational treatment, to yield 
the effective single-particle equation for that system. 

of the functionals is necessary [as is the case in the 
analogous HF pseudopotentials, eq. (14)] since 
W,,[nn] and W,,,[n] are local from the start. Again, 
eq. (26) with the potentials (30) is identically satisfied 
for the chosen reference state g of the atom, and the 
possible usefulness of this approach relies on the ex- 
tent to which the core electrons in an arbitrary system 
can be replaced by (30). The pseudopotential (30) has 
been computed for several atoms [28] and tested by 
solving (26) self-consistently for electronic states other 
than g, yielding an accuracy of order 10m3 au for 
eigenvalues and total energy differences for an excita- 
tion energy range of 8-l 7 eV. 

4. Comparison of HF and LDF pseudopotentials 

To elucidate the differences between the HF and 
the LDF pseudopotential and discuss the various under- 
lying approxinations related to their use for states 
other than the reference state g, we first examine the 
various terms entering the corresponding potentials in 
(17) and (30). 

The form 3f the U$(r) term (16) is identical in 
both the HF and the LDF pseudopotentials. For 
pseudo-orbitals & with I that does not appear in the 
core (and n restricted to the ground state valence shell, 
e.g., 2p, 3d for first row atoms), there is no need to 
mix core orbitals $~$c in (6) to obtain a nodeless pir 
since $$’ is already nodeless, and hence I& = J/$;(r) 
and U$(r) is identically zero for all r. For orbitals 
with I components present in the core, C~~p~~ f 0. 
Several limiting cases can be realized. If one chooses 
as & the true valence orbital $2;, (i.e., C,$? = 
6,, &, Uil(r) is again identically zero (note that even 
if k,$ includes a radial node, as is the case for @,$ = 

@/, still v%&nr can be nodeless) while if a single 
core orbital $L,&r” is chosen to represent & (e.g., the 
nodeless Is), then (15) reduces to 

c$(r)=(e$v-E~)Inc~(nfl (32) 

(where the projector indicates that U:,(r) operates 
only on the izl orbital) which has the Phillips-Kleinman 
[lo] form. Path these choices assure of course that the 
eigenvalue problem (3) and (26) would yield the cor- 
rect spectrum ~3 and reproduce the chosen orbitals 
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(6), but the result&effective potential V,5jfff(r) in 
@).*a (26) might have _“unFhysical” features (e.g., 
in the second choice leading to (32), the effective po- 
tentiaI does not approach zero at large r, but a con- 
staiit value pf en&r - f$‘)_ In general, only if there ex- 
iSts some radius R,, such that for r > R, all core or- 
bit& entering the construction of lp,$ e(6) have es- 
sentially zero amphtude, wlule $Q &’ is still non-zero, 
then, Em,+, Uij(r> = e&r - efjv = 0. Otherwise, 
@l(r) and hence V,, gef$r) would have a non-zero VA- 
ue at infinity *_ Any “legitimate” choice of the pseudo- 
orbitals in (6) leads (for I components present in the 
core) to a Vi&r) that is strongly repulsive at small r, 
and decays very rapidly to zero (much faster than the 
valence orbit& themselves, due to cancellation with 
the denominator for r>R,). In particular, if ,P,gr in (6) 
is chosen such that it has zero amp!itude at the origin 
g$(O) = 0, the Uil(r> term would have a strong repul- 
sive character at small r (for I not present in the core): 

lirn U$(r) a (21+3)/G +6(1/r) f . . . ) (33) 
PO 

and wouid be zero everywhere for o+Jler C values. Since 
HF and LDF atomic orbitals are rather similar and 
since U$(r) obeys (33) in both cases, one might ex- 
pect that the HF and LDF derived U$(r) would be 
similar. Note particularly that [ 16,481, the short 
range repulsive character of Vaeff(r) is not needed 
to prevent a variational “collapse” of the valence 
pseudo-orbitals having the same 1 as some core state 
into the core. Any choice of y$ that does not satis- 
fy &(O) = 0 (i.e., mixing in (6) more core charac- 
ter than needed to remove the nodes of $,&r>, or even 
the choice leading to (32), may give a non-repulsive 
ql(r), but still yield the correct valence eigenvalues. 
One notes, however, that the choice @$&O) = 0 usually 
yields the m&mum possible similrrrty between t&(r) 
and $,,&I’( in the chemically important tail region. 
Any mixture of core character into &, more than re- 
quired to remove the nodes from $& (which is re- 
quired to avoid unphysical singularities in (16) at 
r + 0) wouId reduce the possible similarity between 
Ip,gr and G$” and would hence make the discussion of 

* This suggests that for a tightly bound valence orb@ which 
has amplitude simii to that of a core state (e.g., f-electrons 
in rare earth elements) one would have to modify the defj- 
tion of the core to include only shorter range orbit& 

. . 
bon&g character&& in molecules (and other valence 
properties relatkd to &) in terrns.of the.psdudowtile- 
functions,-less meaningful; Simikly; if tlii: cork n-k- 
ing coefficients Ci[,,i for n’l = cqre levels, are not 
minimized, $I:[ might have wiggles at small r that neces- 
sitate more plane waves or more atom&like baSis func- 
tions in linear expansion techniques [49]. In addition, 
the core region behavior of the pseudowavefunctiok 
would be unsatisfactory: too much mjxing of core 
into the defining pseudo-orbital will lead- to too little 
repulsion in the pseudopotential at small radius, and, 
as expected, too Iarge a core contribution in all result- 
ing valence functions. (Note that this rkpulsivb charac- 
ter evolves from the fact that the core-and valence or- 
b&k have regions of mutual overlap; if this were not 
the case, (16) would reduce to a constant Z,$ &?.) 
We conclude that if an accurate representation of the 
pseudowavefunctions (and not only eigenvalues) in 
the valence region is sought, t!.&(r) tends to be strong- 
ly repulsive in the core region. 

Note tbat the U$ term is largely confined to the 
core region: for r > R, all R$f usually have small am- 
plitudes and onIy the single term -C~~filR~~~,$“/ 
Ci~~lR$f survives from the second term of (lG).This, 
in turn, tends to cancel against the first $1’ term for 
large r, leaving a rapidly decaying l&f&) in this region. 

Before passing to the discussion of the other pseudo- 
potential terms, we briefly comment on the implica- 
tions of this repulsive character on the Fourier repre- 
sentation of the pseudopotential. Clearly, the repulsive 
f-2 dependence of gl(f) at small r, overweight&e 
attractive --r-l dependence of the coulombic terms 
near the core, leading to sharply localized features of 
Vj$jps(r) at small r, or alternatively, to a long tail in its 
Fourier representation Vi?‘(q) in momentum space 
[28]. Numerous applications of empirical pseudopo- 
tentials to the optical properties of solids [7,50] have 
indicated that a “foldgg in” procedure of the plane 
wave representation of thk pseudoh&ltonian results 
in an effective potential that requires only relatively 
few q components (e.g.. q* = (h* +.k* + Z*) ,< 12;: 
where h, k, and 2 are the Miller indices of the reciprocal 
lattice.vector) for an adequate_representation of the 
low energy (< 10 ev) spectra of group IV and III-V. 
semiconductors. We note here that in terms of both. 
the HF and the LDF fast-principle pseudopotentials,. 
this implies $e relaxation of-the I&(O) L.0 (i-e:, maxi- 
mum orbital similarity) requirement and hence a reduc- 

: 
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Fig. 1. (a) Local density pseudo 2s orbital of carbon obtained by allowing extra 5% admixture of 1s character. (b) The “maximum 
similarity” pseudo 2s orbital of carbon, in which the core character is minimized. 
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Fig. 2. Local density s pseudopotentials for carbon (displayed 
as r times the pseudopotential). - “ma?rimum similarity” 
pseudo-orbital. - - - 20% extra core mixture. 

tion in the accuracy of the representation of the wave- 
function in the valence region. To test how severe this 
trade-offmight be, we have regenerated the carbon 
LDF pseudopotential, allowing some extra 5% mix$rre 
of $I?: into the &. Solving for the ground state self- 
consistently with this pseudopotential, we get the 
wavefunction depicted in fig. 1 (note the wiggle at 
small r, not present in the exact pseudowavefunction). 
The moments of r(@>, for -1 < h < 3) deviate from 
the exact pseudopotential results by 5.4%, Id%, 2.2% 

and 2.4% for A = -1, 1,2 and 3, respectively. If an 
extra 20% admixture of $$sc is permitted, the poten- 
tial, as shown in fig. 2 can actually become attractive 
near the origin. As explained above, this will not af- 
fect the eigenvalue, but may very badly distort the 
value of wavefunction-related observables. The pseudo- 

potential with extra $ls lacks the rM2 dependence of 
C$(T) and consequently has a considerably shorter 
range Fourier representation (fig. 3). It hence appears 
that a moderate supression of the strongly repulsive 
“spike” in the pseudopotential does lead to a more 
convenient potential for use in reciprocal space techni- 
ques, without too much loss in the accuracy of the 
wavefunction representation. 

The second term in (17) <V#ot(r)>, can be inter- 
preted as a weighted average of the HF potential over 
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Fig. 3. Fourier components of the local density effective s- 
potential of carbon, in units of the atomic volume (S2 = 38.1 
au [?I). The momentum is measured in units of twice the 
Fermi wave vector for carbon (2Q = 2.9 188 au 171). - - - 
2@& extra core character in the pseudo-orbital. - “‘maximum 
similarity” pseudo-orbirals. 

the all-electron orbitals defining the pseudo-orbitals 
I& the weights being the orbital mixing coefficients 

ql,n,P Note that while the Coulomb potential .&(r> 
[eq. (3)] entering V$p is local, the exchange terms 
K$(rj [eq. (4)] depend on the state on which they 

operate. The potential W,ff”(r)> can hence be inter- 
preted as arising from a localization scheme such as 
U&1= K$ $,&)/$,Jr), where the localization 
subspace is just that determining pseudo-c:bital $$, 
in much the same way as the HF exchange potential 
is localized within a plane wave space to produce the 
local exchange functional [38, p. 21]_ The analog of 
the (etot(r)) term in the local density pseudopoten- 
tial theory [eq. (30)] is W,,, [p&)], where _o.#) is 
the all-electron charge density and Wtot is the total 
LDF potential (Coulomb plus exchange correlation 
of core and valence). There is an important difference 
between the two: while tV$“‘(~)> depends Gn the 

particular pseudo-orbital in question (and is hence 
Z-dependent), Wtotot[~&)] is Z-independent, since this 
operator, unlike the I-IF exchange, is local and hence 

factors out of the corresponding sums in eqs. (14a)- 
(14b). This implies that for aJI Z-components not pres- 
ent in the core, the HJ? seudopotential is.still Z-depen- 

dent (i.e., Vf ps # tip’ etc. for first row atoms) 

while the LDF pseud$kzntial for I not present in 
the core is Z-independent. In practice, one notes how- 

ever [16,51], th&the I-depend+ce.of G$i’% for 

the lowest Z states not present in the core, is rather 

weak, and can usually be ignored. This simply results 
from the fact that in many cases; all the *$Y for the 

lowest Z states not.present in *e Ore are spatially 
rather similar (e.g., 2p and 3d for fitit row atoms,_ 

having no nodes and obeying GET(O) = 0) and hence 
lead to similar K$I& values (4)*. 

A further difference between the LDF to&l poten- 

tial W 
\ 
ot[p(r)] and the HF “averaged” total potential 

W’$” ) arises from the& limiting behavior at larger 
- since the LDF hamiltonian (20) does not provide 
complete cancellation between the Coulomb and ex- 
change-correlation self-interaction [40;38, p_ 211 the 
electron-nuclear and the electron-electron Coulomb 
potentials tend to cancel one another at large r, leaving 

the (exponentially decaying) exchange correlation tail. 

The HF, potential, on the other hand, does decay a- 
symptotically to the correct electrostatic val=e 

-(I + Q)/r, where Q is the net atomic charge. This fun- 

damental difference leads to the well known discrepan- 
cies between HF and LDF energy, eigenvalues (i.e., 
the non-existence of Koopmans’ theorem in LDF 

[38, p. 211). At small r, both iu,,,[p(r)] and <V,!$ot) 
decay to the -Z/I- value. 

Consider now the sum of t+e terms Gl(r) i-<V~~t> 
and U$(r) t Wtot [p&r)] appearing in the HF and LDF 
pseudopotentials, respectively. This is the total effec- 
tive potential for the ground state, eq. (8). The repul- 
sive character of U$(r) in the core region would tend 
to cancel the all-electron Coulomb attraction, leaving 
a net “weak” potential. By “weak” we mean here 
simply that @l(r) + Wtot[p,(r)] (or the corresponding 
HF ten) would have fewer bound states than the 
original potential Wtot f&r)], which has core states 
as its lowest lying solutions [52] _ This is just another 

way of displaying the “pseudopotential cancellation 
theorem” [39] _ It is noted however that for “maximum 
similarity” choices of the pseudo-orbitals in (6) (e.g., 
y&(O) = Oj, the repulsive character of Vii(r) over- 

* However, for larger f values, the centrifugal barrieral(l +l)/r2 
appearing in the all-electron hamilton+ (5) might localize 
the high I orbit& and lead to more substantial differences 
(e.g., d versus f orbit&). Thus we might expect the approxi- 
mation made in many ap$ications (X)-(25) of HF pseudo- 
potentials. that thk Pseudopotential (17) is constant for all 
I not pr&ent in the core to break dowa for sufficiently 
highz. 
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weights the attractiveness of W,,t[p(r)], or even that 
combined with WF, leading to a net result that is 
“weak” in t&e sense of Heine [52] above, but not 
“weak” in the perturbative sense (e.g., might have a 
slowly convergent plane wave representation). Obvi- 
ously, for I components not present in the core, 
qr(r) E 0 and the electron feels the full potential, 
with no cancellation. Hence, the p effective potential 
[eq. (S)] for the ground state g of a fast-row atom has 
the form 

V&;” = Wtot [ /YE@)] + ; Z(I + 1)/G , 

while the s effective potential is 

vgeff = w,,, [P&)1 f U$(r) - 

The 17$~(r) term is hence seen to replace the angular 
centrifugal barrier present for I # 0, and indeed Vggff 
with this angular centrifugal potential added, resem- 
bIes the 2s effective potential [lo]. 

Finally, the last pseudopotential term W,“r”[n(r)] 
or <V,$‘(r)> in LDF and HF, respectively, represents 
the field of the valence electrons in the presence of 
the external potential. At small r they both decay to 
-2,/r while at large r, the HF field decays to 
-(I + Q)/r, and the LDF fieId decays exponentially. 
Note however that the difference 

= -Z& + W,,,, [P Ml - F~cxJ~ b Ml 1 

+ w,, im1 - w,, b co1 I > (34) 

would asymptotically decay approximately as 
W,&(r)] - ~&z(r)], Coulomb effects being al- 
ready smaller at large r, and hence the spurious long 
range behavior of the totaZLDFpotentiaZ would dis- 
appear in the LDFpseudopotentia~ to the extent that 
p(r) and n(r) are similar in the tail region (which is. 
usually the case, by construction, cf. (6)). Since, at 
small r, both (34) and the corresponding HF expres- 
sion decay as -Z&and since we have already argued 
that U$(r) is similar in the HF and LDF case, one 
might expect that the HF and LDF pseudopotentials 
would be rather similar in the entire range both due 
to the localization of W$of(r)> in the HF case, and 
due to the tail cancellation in the LDF case. 

Fi 
Pf WFP 

s. 4 and 5 show VfSps and W~ps and Vfls and 
for the ground state g of carbon, respectrvely, 

where the HF-results are taken from Kahn et al. [ 161. 
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Fig. 4. Hartree-Fock (- - -) and local density (-) 
s-pseudopotentials for carbon. Note the cut-off at rV G 10 e. 
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Fig. 5. Hartree-Fock (- - -) and local density (-_) 
p-pseudopotentials for carbon. 

It is clear that within the employed scale, they are in- 
deed indistinguishable. To further test this point, we 
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Table 1 not indicate however that these pseudopot&tials 
represent a bare&n [7,53-571 .(i.e., core) effective 
field. The last two terms in (17) a&(30) g&e i&e to 
direct core:valence interaction ten& due to both the 
non-linearity of the L.DF exchange-correlation func- 

tiond (i-e., ~x&,+~,l + Wx&J + ~x,[pJ j and 
the state dependence of the HF exchange (i.e., the ex- 
plicit omission of the self-exchange terms results in 
<V$t”f(r)> - U$“(r)) # (V,!$(r))). Rather, these 
pseudopotentials replace the core field in the presence 
of the actual valence-valence and core-valence inter- 
actions in the reference electronic state g. This should 
be contrasted with the widely used model “ionic 
pseudopotentials” developed by Heine and co-workers 
[53,54] and the Iocal density pseudopotentials used 
by Cohen and co-workers [56,57]. In these models 
one actually uses for the pseudopotential Vifs a - 
field generated from the bare ion core (e.g., Si4+, 
Nbs+) with no valence electrons, and applies it direct- 
ly to systems including a complete valence manifold 
(e.g., Si” and NbO). In practice, the bare ion pseudo- 
potential is usually generated by assuming an Bnalytic 
form either in direct [53-551 or in momentum [56, 
571 space with suitable asymptotic behavior, and 
fling the adjustable parameter of the forms to repro- 
duce the observed one-electron excitations of the cor- 
responding single valence electron systems (e.g., Si3+, 
Nb4+ 

2 
. Once the bare pseudopotential is fured, 

V,!yf (r) [eq. (S)] is constructkd by either adding to 
T$$p’(,> a dielectrically screened free-electron field 
with a position independent valence exchange correla- 
tion energy 1541, or a Kohn-Sham valence field 
[X-57] with pure exchange only. If one is to take 
up the first principles HF or LDF pseudopotential ap- 
proach as a starting point, as we have done here, the 
bare-ion approach implies: 
(a) linearization of the LDF exchange-correlation func- 
tionals with respect to the core and valence densities, 
(e.g., core-valence non-penetrability approximation 
[39]), or, alternatively, assuming that *he valence and 
core-orbitals are solutions to the.same Fock operator; 
(b) replacement of the valence part of the charge den- 
sity p(r) which includes radial nodes by the pseudo- 
charge density; this is referred to in a slightly different 
context, as neglect of the “orthogonality hole” [52, 

581; 
(c) appro-ximating the neutral atom core orbitals deter- 
mining the Coulomb and-exchange parts of the core 

Energy eigenvalues and orbital moments for carbon obtained 
in: (a) exact aU-$ectron LDF calculation, (b) LDF calculation 
with LDF pseudopotentials, (c) LDF calculation with HF 
pseudopotential of ref. [16]. Energy in atomic units and mo- 
ments of r in the corresponding b&r radii units. Superscript 
“0” denotes the ls22s22p2 ground state and “*” denotes the 
ls22s1 2p3 excited state 

(a) 0 Cc) 
exact LDF LDF pseudo HF pseudo 

LDF calculation LDF calculation 

orbital 
-energy 

orbital 
moments 

-0.45738 -0.45738 -0.45688 
-0.15795 -0.15795 -0.15632 
-0.47448 -0.47265 -0.47128 
-0.17344 -0.17556 -0.173821 

3.54994 0.82143 0.80642 

0.91358 0.79909 0.79364 

1.59383 1.56258 1.56845 

3.08962 2.97877 2.99561 

3.58021 0.82931 0.82106 

0.91777 0.80350 0.79931 
1.58557 1.55143 1.55161 

3.05354 2.93134 2.94331 

have solved the LDF pseudopotential equation (26) 
for tie ground and the 2s12p3 states of carbon, re- 
#icing the LDF pseudopotential W,“p”(r). by the HF 
pseudopotential V$‘“(r) of Kahn et al. The results 
are shown in table 1, where they are compared with 
those obtained with W$‘“(r) and from the direct 
solution of the a&electron LDF equation (19j. It is 
clear that not only are the eigenvalues obtained with 
these pseudopotentials very close, but also the wave- 
fimctions are well reproduced (as they should be since 
the C,l~l were chosen in the same way). 

We close this section by a note on the “core-l&e” 

character of the pseudopotentials derived here. We 
have indicated already that wff(r) and W,&t”ff(r) are 
largely confined to the core space and that they corre- 
spond to au effective field of anNc-electron system in 
that the last two terms in the corresponding expres- 
sions (17) and (30) [cf. eq. (34)] contain a difference 
between an &electron and a valence field. This does 
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field [eq. (34)]. by those pertaining to a bare ion (i.e., 
neglect of core relaxation in going from Si4+, Nb5+ to 
Si and Nb). 

Some previous documentation of these approxima- 
tions in a different context, for example, approxirnatin& 
the mre Pock operator for a single valence electron sys- 
tem by a valence Fock operator [49], neglect of core- 
valence interference terms in linearized versions of the 
LDF exchange [59] or neglect of orthogonality hole 
iu molecular calculations [27] indicates that their ef- 
fect, relative to the non-approximated first principles 
results, might be rather severe. As a stiple test, we 
solve eq. (26) for the ground state g of oxygen atom, 
where the pseudopotential Weep” is approximated 
by a “bare ion” form. We fust assume linearization 
(a) but not aneglect of the orthogonahty hole (b) or 
the core relaxation (c): 

W,&,“(r) 23 U$(r) 

spond to actual elementary excitations, not only be- 
cause of the neglect of orbital relaxation effects [38, 
p_ 431 (i.e., the inaccuracy in the approximation under- 
lying Koopmans’ theorem, namely that the orbitals 
involved in the excitation process do not relax spatial- 
ly, relative to the ground state orbit&, due to the 

hole formation), and the lack of “complete” electron- 
electron correlation terms in the approximate Forms 
of the LDF functionals (i.e., neglect of correlation 
self-energy [60]), but also because Koopmans’ theorem 
does not apply to this h&riltonian [32;38, p. 211 in 
some cases, even to extended system [32]. This stems 
from the well known non-cancellation between the 
Coulomb and exchange self-interact+ terms [38, p. 
211. This difficulty can be partially circumvented by 
using total energy,.rather than eigenvahre differences, 
(“ASCF” model [32,61]) to approximate the actual 
excitation energy, in which case, self-interaction can- 

cellation as well as relaxation effects are properly ac- 

counted for. Previous experience with this approach 
using either a complete ASCF [32], or an approxi- 
mate “transition state”%odel [62] has indicated that 
the correction to the eigenvalue difference, necessary 
to bring it into agreement with the correct’theoretical 
excitation energy;a(which is close to the observed val- 
ues) is sfrong~‘y state dependent. An empirical param- 
etrization of the bare ion pseudopotential, designed 
to yield eigenvalues that match the observed excita- 
tion energies in extended systems via an LDF screening 
function, thus has to compensate not only for the 
deficiencies mentioned in the text, but also for this 
state dependence (not only I-dependence) of the cal- 
culated excitation energies. Numerous attempts in 
this direction [55-571 have shown that this goal carr 
apparently be achieved with moderate succesr for cer- 
tam energy ranges in polyatomic systems. Still, the 
theoretical difficulties mentioned here remain largely 

unresolved and call for a better understanding of the 

success of these procedures for predicting energetics, 
as well as their implication on the quality of the result- 
ing wavefunctions.] 

+ 0% [P,(r)1 - 4, Ml II , (35) 

where pv and pc denote real valence and core densities, 
respectively. The error iu the 2s and 2p eigenvalues is 
0.43 eV and 0.5 eV, respectively, relative to the cor- 
rect form of W$“(r) in eq. (30) which satisfies (26) 
for the ground state as an identity. We next neglect 
the orthogonahty hole in both the Coulomb and the 
exchange correlation part by discarding the last two 
curly brackets in (35). The errors in the 2s and 2p 
eigenvahres are now 0.44 eV and 0.51 eV, respectively, 
here, the neglect of the orthogonal& correction in 
the interelectronic (repulsive) Coulomb potential is 
partially compensated by the similar neglect in the 
(attractive) exchange correlation potential_ Finally, 
we neglect core relaxation by using for pc in (35) the 
core density of a 06+ ion. This yields errors of 0.85 
eV and 0.95 eV in the 2s and 2p eigenvahres, respec- 
tively. Clearly, a bare ion approach to the fust prin- 
ciple LDF pseudopotential does not work, and some 
suitable empirical or theoretical parametrization of 
the pseudopotential is needed in order to obtain sensi- 5. Use of pseudopotentials for arbitrary states 
ble results. [Such an empirical parametrization, when 
carried out in the framework.of a local density screening We have shown so far that the original HF and LDF 
field [55-571, gives rise to an additional theoretical equations for an atom in electronic state g can be 
difficulty. The LDF energy eigenvahres do not corre- rigorously transformed to the pseudohamiltonian 
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equations (7) and (26) having the same eigenvalues 
but wavefunctions given by (6) instead of the original 
nodal I/#‘; We now inquire whether the same pseudo- 
potential Vkfs Wflps can be used to replace the 
core electrons for states other than g and for atoms 
in an arbitrary bonding configuration. 

the pseudo- 
and has indicated a strong Z-depen- 

dence: the Pauli principle manifests itself in real space 
by rXuming a repulsive Vi&) for Z-components pres- 
ent in‘the core and a vanishing U$(r) for I 

present the An additional I-depen- 
appears the 

<VEf’t(r)l [eq. (ILFa)] due to the nonlocabty of the 
HF exchange. Hence, when applied to an arbitrary sys- 
tem, V:[” and Wgps ,,[ operate on individual I-compo- 
nents of given atomic sites. This can be written for- 
mally as 

m 

rp-(r-R,) =z v~ps(r-Ra)lzm~a(lnzla > (36) 

where jkrz>, %&at& angular momentum projectors on 
site a and V~yps(r-R,) is the totaI pseudopotential of 
atom of typ”e 01 replacing the core electrons on this 
site. Obviously, had we solved a non-central field-atom- 
ic equation instead of the approximately spherically 
averaged forms (5) and (19), we would have obtained 
a vector pseudopotential with explicit m-dependence. 
Similarly, a spin-polarized version of (5) and (19) or a 
relativistic version would have resulted in additional 
spin and wavefunction components (minor and major) 
dependence and the corresponding projectors in (36). 

Theseare however considered as extensions of the 
simple theory of sections 2 and 3 and would not con- 
cern us here. 

Eq. (36) indicates the type of trade-off involved in 
using the pseudopotential; while the original LDF all- 
eIectron equation is characterized by a state indepen- 
dent hamiltonian (and hence all wavefunctions are 
sohrtions to a single operator), the solution of the 
pseudohamiltonian involves a different operator (30) 
for the I-components present in the core than from 
those not present in the core. The number of impor- 
tant Z-components in (36) is just the number of angular 

momenta required to represent the particular wave- 
function of interest, and for most energy regions in 
molecu!es and solids this can be truncated to a fairly 
small number (I < 3) [16,35]. Furthermore, the sum 
in eq. (36) can be rather easily extended to a high 
limit by replacing the pseudopotential of the high 
Z-components not present inthe core, by that of the 
lowest one; as shown in section 4, th& is exact for 
the LDF pseudopotential and a good approximation 
for the HF pseudopotentials [16,51]. 

5.2. Frozen core approximation 

The replacement of the effect of core electrons by 
a pseudopotential calculated from the orbitals of a 
chosen reference electronic state g implies “freezing” 
these core orbit& in the system under consideration 
at the level g. Consideration of any observable that is 
related to the modification of the core in an actual 
system relative to a ground state atom, such as core 

polarization in rare earth, Knight shifts or Fermi con- 
tact interactions, would generally require an exphcit 
all-electron solution, although reorthogonalization to 
the new valence field may produce a reasonable ap- 
proximation [28]. The effect of the frozen core ap- 
proximation on “valence properties” is usually small 
and can frequently be neglected [16,36,631_ The es- 
sential approximation here is that we replace the ac- 
tual valence-valence interaction VkT in eq. (5) and 
(19) in the presence of the dynamic core potential 
P$-, by an interaction having the same form but ad- 
ded to a static external potential which is fmed at a 
given electronic reference state of the atom. This ex- 
ternal potential is constructed from the actual core + 
valence solutions at state g, and is “frozen” at that 
level when applied to an arbitrary state e f g. We note 
that contrary to the methods that construct the pseudo- 
potential from a single valence electron ion [S-57, 
641 (e.g., @+, &+, OS*) and then apply it to poly- 
atomic systems made of neutral atoms, where the 
valence-valence interactions are computed from 
pseudo rather than true orbitals, the method described 
in this paper uses the exact valence-valence interac- 
tions in the neutral system held in the reference state 
g to describe the pseudopotential. The reference state 
can be chosen to be sufficiently close to that pertain- 
ing to the polyatomic systems of interest (e.g., sp3 
atoms to be used in tetrahedrally bonded systems) so 
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that the core orbit& are frozen in a state that resem- 
bles that of the system under consideration. 

We have chosen to construct the pseudopotential, 
by inverting an atomic one-particle equation of the 
form (5) or (19). In fact, there is no special reason to 
construct this potential from a system having solutions 
that decay to zero at infmity; since the pseudopotential 
is going to be used to replace core electrons in apoly- 
atomic system, ye might as well construct it from 
some other single-site eigenvalue problem such as that 
pertaining to an atom embedded in a spherically aver- 
aged potential field due to the other nuclei, a Wigner- 
Seitz sphere, a “renormalized atom” [65 J , etc. Since 
the boundary conditions on the wavefunction in these 
systems are different from those pertaining to an 
atom in free space (e.g., vanishing logarithmic deriva- 
tive on some Wigner-Seitz boundary), the resulting 
central field orbitals and energies {Gnr, Q} would be 
different, and hence the pseudopotential would be 
different even within a given I-component. Similarly, 
one could have constructed an s potential for a first 
row atoms not only from the ground state 1s and 2s 
orbitals, but also from the 3s, 4s, ___ orbitals or from 
some excited (1s 2s 2p) configurations (e.g., ls22s12p3). 
In all these cases, a distinctly different s potential 
would be obtained. These are just different ways of 
stating that 6ur pseudopotential is energy dependent 
(or, principal quantum number dependent) even for 
equal 1. It is clear that such a pseudopotential is useful 
only to the extent that this energy dependence is weak, 
otherwise it will have to be reconstructed for different 
situations. 

This energy dependence originates from two (re- 
lated) sources: the energy dependence of the core or- 
bit& to state g (which is usually very small and neg- 
lected in the fro&en core approximation) and the mod- 
ification of each of the Z-components of the valence 
field. Consider the energy dependence of the pseudo- 
potential that results from using different central-field 
solutions for its construction (e.g., varying g or changing 
the atomic boundary conditions). The difference in 
the corresponding pseudopotentials would be mostly 
confmed to the core region, since U$(r) is non-zero 
only in this region (cf., section 4) and since the differ- 
ence W$P(r)> - <VF> or Wtot[P&)] - W,“” [n(r)] 

between total and valence potentials reflects approxi- 
mately a core field, where the 1ocaIization of the HF 
exchange potential in G’$tot(r)) [es. (14a)] weights 
mostly the core part of the valence potential. Hence, 
to the eitent that the orbitals of states gl and g2 are 
similar in the core region for each I-component, one 
would expect similar pseudopotentials, and conversely, 
any variation in these orbitals in the core region results 
in an energy dependence of thepseudopotential. In 
cases where the Frozen core approximation is appiicable, 
it is reasonable to assume that the resulting energy de- 
pendence would be small. 

One can test this energy dependence inseveral sim- 
ple ways: For instance, one can generate the pseudo- 
potential from a reference electronic state g which has 
only certain principal quantum numbers occupied (e.g., 
ground state) and apply it to some excited states e 
having additional principal quantum numbers occupied- 
(e.g., 2s23s*,2s24s*, etc. in a first row atom). Ifwe 
denote by ~2; the exact (all electron) eigenvalue in 
the electronic state e and by er;l” [g] the eigenvalue at 
the same state obtained by using the pseudopotential 
generated from the electronic state g, then the error 
A$: [gi = e:,f - $$ [g] forms a measure to the ener- 
gy depeildence of the pseudopotential. Table 2 shows 
AE2Se [g; , Ae>Se [g] and AE~;” [g] for carbon, 6here g 
is the ground configuration ls2 2s2 2p2 and e is 
2s2 2p2,2s* 2~03s~ and 2s22p04s2, respectively. The 
error is usually within X lo-* au of the exact eigenval- 
ue [28]. One can alternatively vary g and keep e con- 
stant, i.e., generate the pseudopotentiai from different 
configurations and test it on a given configuration e. 
Table 3 shows Aevge and Acvae for g = 1s2 2s2 2p2, 
ls22s12p3 and 1s 2s 9 lS 2~33. Again, the errors AE 
do not exceed = 10-S au of&e corresponding exact 
eigenvalues. We hence ne 

%s 
ect the energy dependence 

of our pseudopotential VIlr ,g(r) and drop the reference 
state index g and the principal quantum number index 
n. The total HF atomic pseudopotential for atom of 
type (Y located at site Q in the polyatomic system is . 
hence given by 

q(r) = z vps(r)lzm>,p7zl, . (37) 
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Table 2 
The etror A$‘[g] in the energy eigenvalue N, obtained when 
the LDF pseudopotential generated from confiiration g = 
Is* 2s2 2p2 in carbon, is applied to configuration e. Results 
in atomic units_ The 3s and 4s states were obtained as “bound 
state” by placing the carbon atom in a potential welt of depth 
-1.0 au and :adius 10 au. The errors for e = g = 2s22p2 reflect 
the numerical inaccuracies 

to 
configuration e 

7.0 x 5.0 x 4.0 x 
2s*3s*4s0 1.4 lo* 1.0 IO-5 2.1 10-s 
2s23s04s2 x 10-s x 1F3 8.4 x 1O-3 

Table 3 
The error aey[gl in the energy eigenvaiue P, obtained when 
the LDF pseudopotential is generated from different confii- 
rations g and applied to the confiiration.e s ls22s22p2. 
Results given in atomic units. See caption to table 2 for more 
details 

Generated from Ac;k=lgl A&$=Igl A&=[gl 
configuration g lr=2s fi=2p &l=3s 

1s*2s22ps 7.0 x 10-a 1.0 x lo-’ 1.0 x 10-s 
1s* 2s’ 2ps 6.2 x 1O-8 3.1 X 1O-7 2.3 X 1O-s 
1s*2sr*s2p*-s 6.6 x IO* 2.2 x 1O-7 2.4 X lO-s 

5.4. Superposition approximation 

In order to apply the atomic pseudopotential 

Vz”@ - Ra) [eq. (37)J to polyatomic systems, we as- 
sume that the total effective potential is given by 

where Vv is the valence potential in the polyatomic sys- 
tem calculated utilizing the valence pseudo-orbitals, 
and the sum in the sgcond term in (38) is extended 
over all atoms in the system of types Q at sites a. Here 
we have assumed that the atomic pseudopotentiak 
V~“(J- - R,) can be superposed to yield an external 
field that replaces the core electrons in the polyatomic 
system. Clearly, ifwe were to apply the pseudopoten- 
tial formalism directly to the polyatomic system, we 
would obtain a form that is not directly separable to 

a linear superposition of atomic-like terms, due both 
to the nonsphericalgeometry and to non-linearity of 
the exchange in both HF and LDF approaches with 
respect to the tails extending from one site into the 
domain of another site, and hence (38) is an approxi- 
mation. It seems difficult to assess the validity of the 
superposition approximation, not knowing the exact 
interference effects involved in a pseudopotential 
transformation pertaining to the polyatomic system. 
Some discussion of the non-additivity corrections has 
been presented by Animalu and Heine [54] _ Molecular 
finite-basis HF calculation [ 16-261 reveal no serious 
errors arising from (38). Note, however, that in the ap- 

proach presently used, we use only the transferability 
and additivity of the atomic pseudopotential Vt’(r-R,) 
and not of the effective atomic potential [Vz’(r -Ra) + 

Vv(r --R,)], as used in some model potential approaches 
[7]. We hence only assume the additivity of the rather 
short range ‘%ore” potential, while the valence field 
Vv in the polyatomic system remains in the same form 
it had in the all-electron model (Le., non-linear with 
respect to the contributions Vv(r -R,) coming from 
individual sites), and is allowed to adjust self-consis- 
tently, reflecting accurately the valence-valence inter- 
actions in the system of interest:Our analysis of sec- 
tion 4 indicates that the atomic pseudopotential 
V:“(r) is rather short-range. Due to both the rapid 
f&off of U&r) and the tail cancellation in 
<V$tot(r)> - <V$Y or Wtot log(f)] - W,g”[n(r)], the 
resulting V:‘(r) is even shorter range than the all- 
electron potentials Vipt and W,,,lo,(r)] , so that 
the interference between nearest neighbor pseudopo- 
tentials in (38) is minimal. For example, the carbon 1s 
pseudopotential is only 0.034 au at the distance from 
the origin corresponding to the bond center in diamond 
(compared with -0.865 au for the full potential). 

The superposition assumption in (38) allows the 
use of simple forms for the matrix representation of 
the pseudopotential. If a plane wave basis set is used, 
such as 

1~)~ e-i(k+G)r ; 1~‘) = e-i(k+G’P , (39) 

where k indicates the position in the Brillouin zone 
and G is a reciprocal lattice vector, then the matrix of . 
the to&Z pseudopotential e,(r) [eq. (38)] is given by 
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(40) 

where PI is the Legendrepolynomial,j@) are the 
spherical Bessel functions (here we used the standatd 
expansion of a plane wave in terms of the Legendre 

polynomial and the Bessel function) and the structure 
factor S& G’) for species ct is 

SP(G _ G’) = $ F e-W--G’)&,, , (11) 
a 

where N is the number of atoms and R, Q denotes the 
position vector of species cf in cell CI. Thk superposition 
model (38) in connection with a plane wave basis hence 
allows one to factor out the structural information for 
each sublattice into S&G,, while the rest of the po- 
tential elements are given by the F[,&, K’) terms, 
which can be calculated by a one dimensional numeri- 
cal integration for each atom. 

’ 5.5. Total energy 

The calculation of the total electronic energy Et of 
a polyatomic system in the HF pseudopotential scheme 
has been discussed by Kahn et al. [ 161, where it was 
shown the Et can be partitioned into a core part not 
included in.the pseudopotential scheme and a valence 
part. The two center contribution of the core part, 

which is geometry dependent, can either be calculated 
directly from the core densities or approximated by a 
simple asymptotic form, such as a screened nuclear- 

nuclear term. In both cases, the quality of the com- 
puted equilibrium bond length is comparable to that 

obtained in the corresponding all-electron calculation. 
Since the same discussion applies to the LDF pseudo- 
potential, it will not be repeated here. Instead, we will 
briefly mention another aspect of the LDF total ener- 

gy in the pseudopotential scheme, namely the existtince 
of the “transition state” concept. 

One of the attractive features of the allelectron 
LDF theory is the fact that one can calculate, to with- 
in a good approximation, the total energy difference 

AEii between an excited and a ground state system 
(“ASCF”) by performing a single calculation on a sys- 

tern having its i andj occupation numbers halfway 

between that of the corresponding ground and excited 

states. This concept has been of great importance for 
computing binding and excitation energies for moie- 

cules [62] and solids [32] in that it allows a conve- 
nient way to introduce relaxation and self-interaction 
cancellation. 

The fact that the LDF total energy [eqs. (24) and 
(27)] is an analytic function of the orbital occupation 
numbers Ni, has been used by Slater [38, p_ 431 to 

construct a Taylor series expansion of the total energy 
difference AEii around a specific single point in the 

occupation number space, where all the odd terms in 
the occupation number differences vanish. To the ex- 
tent that the second derivatives of the energy with re- 

spect to the sum of the ith andjth occupation num- 
bers can be neglected, the total energy difference is 
simply given by the eigenvalue difference, computed 
with the specific occupation numbers, gene&y Ni = 
A$$ = f _ Since only the density is effected by W,,,(r), 
the total energy expression (24) does not depend ex- 
plicitly on the external field and therefore the same 
argument can be carried for the energy expressed in 

terms of thf pseudodensity n(r). 

To demonstrate the applicability of the transition 
state concept to the LDF pseudopotential problem, 
we have cakulated the all-electron total energy differ- 

ence AEQ and the all-electron transition state eigenval- 
ue difference A$, as well as the corresponding quan- 

tities AEES and AeTsPPS for the pseudopotenGal prob- 
lem, for &bon (ta$e 4). The quantity AEv - A$ 

Table 4 
Comparison of exact LDF total energy differences AEg with 
pseudopotential total energy differences ~Ef3~ for carbon. 
The corresponding transition state eigenvalue differences are 
denoted as Ads and AE$‘,“. The quantity AI?# - AE@ mea- 
sures the error in the transition state calculation for the all- 
electron LDF model, while AEzs - A@ measures the similar 
error in the LDF pseudopotential model. Results are given in 
atomic units 

Configuration ~EQ 

2s22pa -t 
2s22p: 

2s22pz -f 
2s’2p2 

-, 

0.35802 0.35736 0.00543 0.00530 

0.36021 0.35982 0.00421 0.00411 
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measures the accuracy of the transition state model with arbitrary core components in them. Note, how- 
ever, that condition (45) is ndt’metin general: inthe 
HF scheme, (45) applies only to bare ions having a 
closed shell with no valence electrons, in whichease 
G({$E]) in (7) is zero, while in systems with valence 
electrons, (45)-(46) is incorretit. 

in the exact ah-electron calculation, while the numeri- 
cal quantity (AI$ _A$‘) - (AEY - &P’S) 

forms a measure for the extra error introduced by the 
pseudopotential scheme. These errors are indeed seen 
to be small, confiing the usefulness of the transition 
state method in the pseudopotential framework. 

6. Relation to the Phillips-Kleinman scheme 

Here we compare the angular momentum projected 
pseudopotentials with the Phillips-Kleinman (PK) 
[lo] pseudopotential scheme- Phihips and Kleinman 
showed that since the valence orbitals $I: are orthogo- 
nal to the core functions Jr;, one can display the 
valence solutions as 

where pi is an arbitrary valence-like function which 
does not have to be core orthogonal, and use $I: in 
the valence eigenvalue problem 

If one assumes that the core orbitals $z are also eigen- 
functions of the valence hamiltonian H”, i.e. 

HV$,C = @I; ) (45) 

then (42~(44) yield 

[HV f ?$)(E, r)] (p’ = e$ fl P 
where the pseudopotential is given’by 

(46) 

One has hence replaced the original valence equation 
(43) having core-orthogonal (and hence oscillatory) 
solutions I& by a modified equation (46) having the 
same eigenvalue spectra but solutions of the form 

(481 

In many studies using the PK formalism, the valence 
field was neglected. For a single valence electron out- 
side a closed shell core, the valence Fock-hamiltonian 
is 

HV=-$72-_Z,*+ @4C-~5 

and the core hamiltonian 

(49) 

C 

This was approximated by 

HC=Hv, (51) 

which is usually referred to as “neglect of core polar- 
ization by the valence field” [53,543 _ With approxhna- 
tion (5 l), one can compute the pseudopotential 
VP)@, r) as a function of energy E by assuming a given 
model form for the pseudo-orbital $ = $ and using 
known HF solutions for the core {$,“, ez}. Eq. (46) is 
then solved self-consistently [using the HF core inte- 
grals J, and K, in (SO)] to obtain consistency in E be- 
tween successive iterations and maximum similarity be- 
tweenthemodel~andthesolution$of(46).This 
defmes a self-consistent potential V# (r).m terms of 
the assumed rp;, for each state cc, to be later used to 
replace the core electrons in molecules and solids. 

Calculations along these lines performed by 
Abarenkov and Bratzev [66], Abarenkov and Heine 
[53] and Szasz and M&ii [49] have indicated that 
if the pseudo-orbitals were chosen to be smooth, the 
resulting pseudopotential was highly oscillatory, and 
alternatively, if the pseudo-orbital coefficients 
&$I$~> were chosen to n&e the pseudopotential 
smooth, the resulting self-consistent pseudo-orbit& 
cpz, were not smooth. This poses some problems for 
calculations employing real-space expansion techniques, 
since more basis functions would be required in LCAO. 
It also causes severe problems in’calculations such as 
the nearly free electron scheme, based on reciprocal 
space expansion, in which the pseudopotential and 
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pseudowavefimctions are required to have a rapidly 
convergent Fourier representation. This observed 
behavior has discouraged many, workers in the field 
(e.g., refs. [53,54]) and has led to abandoning the 
first principle pseudopotential approach in favor of 
model potentials which are not constructed from 
valence functions like (48) and lead to some com- 
promise in the smoothness of the pseudopotential and 
pseudowavefunctions 1541. We note that no such prob- 
Iems occur with the first principle pseudopotentials. 
described in sections 2 and 3 of the present paper. 
Neither the pseudo-orbitals nor the pseudopotentials 
oscillate [16,28], because of the smooth, nodeless 
character of @ir in (6). 

The self-consistency cycle encountered in the solu- 
tion of (46) in the PK approach converges to a solu- 
tion of the form (48). Since, however, both $$ and 
4: are degenerate solutions to (46) with the same 
energy E, any arbitrary linear combination of core 
components (e.g., arbitrary afiU) can be mixed into 
the solution, and still yield a valid energy eigenvalue, 
but might introduce oscillations in g; (even if the trial 
q ‘did not have them) that are apparent also in V~)(r). 
In contrast, the HF and LDF pseudopotential schemes 
described in the present paper proceed by f&g the 
energy E, to coincide with the pth valence eigenvalue 
and determine the afir, coefficients to produce the de- 
sired features in I$- They do not contain arbitrary 
core components. This also implies that although the 
PK scheme guarantees the correct ejgenvahre e, it does 
not assure any meaningful wavefunction, unless S is 
carefully chosen to prevent convergence to an undes- 
ired result. 

One can compare the PK scheme to the angular 
projector schemes used here, by considering the sys- 
tem for which (51) holds, i.e., a bare core. The HF 
effective potential is given by 

(52) 
which, for a bare core, yields 

which can be compared with the PK form (46) 

i,rg,eff= &(e,r)-Z/r+ f;2JF-KEc. (53) 
U 

Hence, for the bare core, the present pseudopotential 
is formally analogous to the PK pseudopotential: com- 
pare C&(r) in (16) with VR in (47) with the coeffi- 
cients (pLIJ/z) replaced by C’+I~I. However, for most 
systems of interest containing more than one valence 
electron, (5 1) does not hold in the HF scheme, and 
one has to use the generalized Phillips-Kleinman po- 
tential [ll]: 

VGPK=-HP-PH+PHP+eP, R (54) 

where P are core projectors, in place of (47). In this 
form, the pseudopotential becomes rather difficult to 
empIoy since a complicated mixture of core, valence 
and pseudo-orbitah enters the expression for Pi”. 

In the LDF approach, the total potential is state 
independent; hence, both core and valence orbit& 
are eigenstates of the same hamiltonian and the origi- 
nal Phillips-Kleinman form (46) holds. The effective 
potential in the PK form 

V@ff = wfOt [ p (r)] + V$r)(e, r) 9 (55) 

should then be compared with the angular projected 
LDF effective potential (generated from state p) 

Hence, for the reference state both forms are andogous, 
while for a general state e (#lu> one has in principle to 
recompute the potential (55) from the all-elecfron 
(valence + core) density, while in the form (56) the 
potential in the curly brackets is fared at the reference 
state and the valence We*v [n(r)] is computed from the 
pseudochsirge density. There is hence an enormous 
simplification in the angular projected LDF form (56) 
relative to the PK form (55). Note that in many calcu- 
lations using the PK form, the all-electron density in 
the state of interest is approximated by the pseudo- 
charge density, and their difference (“orthogonality 
hole”) neglected [12,13] or approximated’by some 
form [27]. 

7. Summary remarks 

We have attempted to derive from a rigorous first- 
principles approach angular-momentum-projector 
pseudopotentials for use within the HF and LDF sche- 
mes for calculating atomic wavefunctions. While several 
marked similarities exist between the two, we also feel 
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that there are significant differences. In general, the 
most important differences (cut-off of the potential 
for I > &,, +-1, relation to frozen core, energy depen- 
dence) tend to favor the LDF procedure, since both 
pseudopotential and LBF procedures attempt to deal 
with a smoothed wavefunction (LDF by a gradient ex- 
pansion in the density, pseudopotential by removing 
from the valence functions the wiggles required for 
core orthogonality). Numerical tests for a number of 
atoms and states indicate that the LDF pseudopoten- 
tial procedure is fast and accurate, at least for the 
first row. We have also compared our first-principles 
pseudopotentials with semi-empirical pseudopotentials 
and with Phillips-Kleinman forms, and feel that, for 
LDF calculations, our potentials are less arbitrary and 
should be of greater utility- 

Of course, the real value of such pseudopotentials 
Iies in applications to electronic structure studies for 
atoms and molecules. Because of the nature of most 
working LDF codes, only for plane-wave expansions 
(see section 5.4) is our pseudopotential easy to irnple- 
ment. Nevertheless, we feel that it possesses great po- 
tential for providing an avenue toward accurate, va- 
lence-only LDF calculations. 
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