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Angular momentum projected Hartree—Fock (HF) and local density functional (LDF) nonlocal atomic pseudopotentials
are derived from first principles in a way that allows their comparison. It is found that in both cases the pseudopotential is
given by a term which vanishes for angular momenta species not present in the core and is strongly repulsive otherwise, plus
a term that represents the difference between an averaged total (all-electron) and valence potentials. It is shown that: (a) the
HF and LDF pseudopotentials behave very similarly in the entire space, contrary to the marked differences in the corre-
spondmg all-electron potentials. This is due to both the cancellation of the self-interaction term in the LDF pseudopotential

form’ and the localization of the (otherwise state dependent) HF exchange; (b) while the HF pseudopotentials for the differ-
ent l-components not present in the core are in general different, the analogous LDF pseudopotentials are identical; (c) the
energy dependence of both pseudopotentials is small; (d) by propezly determining the pseudowavefunctions from the all-
electron exact orbitals, it is possible to reduce the long tails of these pseudopotentials in momentum space, making them
useful for methods that solve the associated single-particle equations in reciprocal space, with only small errors introduced
into the valence part of the pseudowavefunctions; () the “transition state” theorem, which holds for the ali-electron LDF,
applies similarly to LDF pseudopotential results. We discuss the detailed comparison between the HF and LDF pseudopa-
tential and their reldtion to the Phillips~Kleinman form. It is seen that for the HF scheme, these can be made identical only
for the bare core. Generally, the Phillips—Kleinman method will produce substantial structuse in the potential and/or in the
pseudowavefunction; this additional structure causes computational difficulties, such as the need to include extra basis func-
tions. Moze serious is the fact that the original Phillips—Kleinman procedure applies only for single-valence-electron ions,
which may be poor models for the right half of the periodic table.

1. Introduction one usually omits entirely specific consideration of the
core electrons, since their tight binding character (ai-
Nearly all qualitative discussion of chemical bond- ways at least several volts greater than valence electrons)
ing, of structural and transport properties of condensed  and their approximately spherical symmetry make them
phases, of optical, magnetic resonance and vibrational nearly unresponsive to any low energy (bonding) per-
spectroscopy, and of molecular response properties turbations. Indeed, the notion of chemical periodicity
and reactivities are presented with reference to the is based on this essential passivity of core electrons to
valence electrons of the system. For such discussions, changes in bonding environment. When, however, one

attempts quantitative description of the electronic
* Supported by NSF through the Notthwestem Matenals structure of atoms, n_lolecules or S.Ohds’ the core ?k_:c-
Research Center. trons can no longer simply be omitted from explicit
* Present address: Department of Physics, University of consideration. For example, one clearly cannot approxi-
California, Berkeley, California 94720, USA. mate the Schrodinger equation for Li by that for H.
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The straightforward solition to this problem is simply
to include the core electrons in any electronic struc-
ture calculation, so that, for instance, Na, becomes a
22-electron problem.

This approach is feasible and successful, and forms
the basis for nearly all rigorous ab initio or first prin-
ciples electronic structure calculation *. Nevertheless,
one feels, on the basis of the stability of the core levels
and the generality of periodic behavior, that this ex-
plicit reckoning of the core levels is redundant.

Many techniques for circumventing the inclusion
of core levels have been proposed. The most straight-
forward involves neglecting the core electrons, but
modifying the valence hamiltonian, or, equivalently,
its matrix elements within any chosen basis set. This
is the scheme employed in most semi-empirical elec-

tron structure methods [PPP (cf. ref. [3]), CNDO (cf.
ref. [4]), extended Hiickel (cf. ref. [5])] and underlies
many of the model hamiltonians (Hubbard [6], tight-
binding, Heisenberg) commonly employed in discus-
sion of solid-state electronic structure. Most of these
schemes are semi-empirical, with the relevant matrix
elements parametrized to describe any given desired

set of experimental data. A closely related approach,
often referred to as the empirical pseudopotential’
procedure, has been of great utility [7] in describing
the band structure of a large number of solids. In this
scheme, one fixes certain Fourier components of the
potential due to the core electrons acting in the valence
space, by matching experimental data such as interband
transition energies. Once this empirical pseudopotential
information is acquired, however, the valence behavior
is treated in a first-principles fashion. Thus the empiri-
cal pseudopotential scheme forms a bridge between

the semi-empirical model hamiltonian approach and
the use of nonempirical, ﬁrst»prmcxp[es pseudopoten-
tial methods.

Pseudopotential schemes are based on the notion
that the effects of the core orbitals on the valence elec-
trons can be approximated by an effective one-electron
operator, replacing both the full Coulombic and the
Pauli interaction of valence with core. Pseudopotentials
were introduced by Hellmann [8] and by Gombas [9],

* An excellent survey of HF molecular studies is given by
Schaefer [1}. No such comprehensive review of LDF calcu-
lations is available, but extensive references are given in
ref. {2].

but these spherically symmetnc potentxa]s were quan- -
titatively satisfactory only for cases of one or possibly
two valence electrons. The reason for this was eluci-
dated by Phillips and Kleinman [10], who pointed out
that since there are both Coulomb and Pauli intérac- -
tions between core and valence orbitals, the proper
pseudopotentials must also account for both of these
effects. For example, in a first row atom, the 2s func-
tion is constrained by the Pauli principle to be ortho-
gonal to the Is core function, whereas the 2p wave-
function is automaticaily orthogonal by virtue of its
differing angular momentum. Thus the effective core
potential felt by ¥, would be expected to be repul-
sive in the core region due to the Pauli (orthogonality)
condition, while that felt by ¥aop should be attractive
near the nucleus, where the 1s orbital no longer effi-
ciently screens the core charge. Phillips and Kleinman
[10] thus proposed a2 nonlocal pseudopotential opera-
tor involving a core orbital projector, of the form
Z (e, — eIF (W ], where €, and €, are the core
and valence energies and ¥, is a core orbital. These
pseudopotentials were originally proposed to account
only for the Pauli barrier (to remove the constraint of
core orthogonality by means of an operator added to
the hamiltonian for a single valence electron), although
formal genecralizations to several valence electrons (e.g.
ref. [111]) as well as parametrized forms which included
an approximation to the core—valence Coulomb inter-
action [12] were soon forthcoming. The use of these
core-projection type pseudopotentials has become
very widespread in Hartree—Fock-—-Roothaan molecu-
lar orbital calculations in recent years [12,13]; the
methods of Huzinaga [12], in particular, have been
quite successful for a number of molecules.

Since the Pauli principle constraint in atoms can
be expressed in terms of angular momentum symme-
try, a number of pseudopotential methods have been
introduced [14—20] which utilize an angular momen-
tum projection psendopotential on each atom, of the
form Z,, V,,,(Nim>(Im|. Here ¥}, (7) is a smooth
function of the radial distance, and /, m are the orbital
angular momentum and its component. This potential
is intended to represent both Coulomb and Pauli ef-
fects of the core on the valence electrons. Such poten-
tials have been developed independently by a number
of workers, especially by Kahn, Goddard and Melius
[14,15], for utilization within Hartree—Fock—
Roothaan calculations. Several successful studies em~
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ploying these potentials both at the single-determinant
[16~—19,21—-25] and correlated wavefunction [18,26]
Ievel have been reported, and thege potentials now ap-
pear to allow accurate, first-principles valence-only
Hartree—Fock—Roothaan calculations for many mo-
Iecular systems. In particular, the paper by Kahn et ai.
[16] contains an especially clear discussion of the an-
gular-momentum-projector pseudopotentxals, and a
lengthy reference list.

Very recently, specifically deSIgned pseudopoten-

h-ﬂe both of Dl-"“"\e_r(lnvnmqn {rora nroiection)
il saeimall (COre projecuon)

type [27] and of angular momentumn projector types
[28]. have been introduced for use in conjunction
with Hohenberg—Kohn—Sham [29] local density func-
tional (LDF) calculations. The LDF method involves
solution of 3 one-electron eigenvalue equation of
Hartree—Fack type, except that the nonlocal exchange
potential of the Fock operator is replaced by a local
exchange-correiation potential, which is a functional
of only the total electron density. The LDF method is
widely used in first-principles [30—33] and empirical
{7,34] band theoretic studies, and its application to
atomic and molecular problems is becoming wide-
spread §35—37]. The ap
within this scheme must, however, be justified in a
slightly different way than is done for Hartree—Fock;
indeed, Slater [38] even questioned this applicability
on a priori grounds, although the multiple scattering
procedure he developed must be distinguished from .
LDF per se.

The present paper presents a comparison of the role
and nature of pseudopotentiais within the Hartree—
Fack (HF) and the LDF methods. It attempts to clari-
fy the nature and utility of, and differences between,
the LDF and HF first-principles pseudopotentials. We
show that the use of psendopotentials within LDF can
be rigoronsly justified, and indeed, that in some senses
the pseudopotential method, which is based on re-
placing the local effects of the core by a smooth poten-
tial [39], is more in keeping with the iocal potential
picture of LDF than with the nontocal exchange poten-
tial of HF [28]. We also demonstrate the great similar-
ity of LDF and HF angular-momentum dependent
pseudopotentials, both of which contain an average,
L'-.ulucpcud&u.l. yuu:.uua}. and a weak l'uvymldcul. pait.

We feel that first-principles pseudopotential meth-
ods are of great practical value in permitting rigorous
valence-only calculations to be completed using both

a annlicahility of necenndanatentiale
yuvuuuu._y A2 P-‘l\auu\ll}\lb\tll.l.l >

LDF and HF methods; the present paper constitutes

a comparison, derivation and partial evatuation of
these methods; numerical results using pseudopoten-
tial HF [14—26] and pseudopotential LDF [28] are
reported elsewhere. Sections 2 and 3 present unified
derivations of the HF and LDF angular-momentum
projected pseudopotentials, respectively; section 4
compares the potentials so obtained. Section 5 exami-
nes the general applicability of the pseudopotentials in
real systems, by consideration of the angular momen-

tum dnnpnﬂnnr—n of the relation to the frozen core
tum gepengen:

approximation, of the energy dependence of the
pseudopotential and of the superposition-of-atomic-
pseudopotentials step which must be made for applica-
tions to molecules or solids. Section 6 contrasts these
angular-momentum projected pseudopotentials to the
Phillips—Kleinman core-projection type which, we
feel, have some serious drawbacks. Finally, section 7
contains brief concluding remarks.

2. Development of HF pseudopotentials

l‘ et tha HE hamiltonian for the at

in amic (rentral
WIkw KLiL llmllub\l 1111 L Wiv gquuaiyae \\. 29

field) valence state nl, in some chosen reference elec-
tronic state g, be denoted (using Hartree atomic units)
as

Hgl:_%vz.‘. Vsilot’ . (1)
where the total HF potential, partitioned into *“core”
and “‘valence™ parts, is:

V’%}tot = st + VI%V

core,

L Z/r+Z) 2J%, .—Kg.,.]

+ [Z,r+ Gy (O3 DI- @
Here Z,, denotes the number of core electrons and
Z,=Z — Z..J&§ and KB} denote the Coulomb and
exchange mtﬂgrals of core state n'l" in the reference
configuration g (the primed sum indicating exclusion
of self-interaction terms) and G,,;({$&}'}) denotes col-
lectively the valence—valence interactions, which de-
PR AN

nd ~ nla. H €n
Pcuu Oft Luc blllllU vaience .uuuluuxu LIRS c. ., 10T

an (s, n'd) transition metal atom,

1= 72V + s-\ frgiv _ L %A AY
U ns ;[’ Yr'd,my — 2%nd,my) »
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and for a smgle valence electron atom G =0.The
Couloinb integral J8 =1 1s given by. the cIassm electro-
_statm_potentxal B :

l() f‘pﬁ(')‘!’ l(') ar

lr—r|

. o (3)

while the exchange potential K&,(r) is a level- depen— S

dent nonlocal operator:

g (P B ('
i f‘lbn[( )"xbn%( )dr'

Ko OV =45y =71 @),

The eigenvalue equation for a valence state llln y is
given by

HE VR =<5 il - 9
The usual requirement of the orthogonality of the
valence orbitals {/&)’} to the core orbltals {YEF} results
in the familiar nodal behavior of \[/ Y and in the need -
to use a rather large basis set (e.g., analytlc atoric-like
orbitals or plane waves) for their representation. One
hence praceeds [10,11,14] by requiring that the va-
lence set {¢/&'} be replaced by a pseudo-orbital set:
{8} made up of combinations of the all-electron
eigenfunctions: The radial part of this “pseudo-orbital”,
&E, is given in terms of the HF radial orbitals R, ; as

(81
O = ChumRE + L1 Co iRy
core+1
? CE1RE ©

where the coefficients {C%; ./} are chosen so that o5,
has some desired features, e.g., be nodeless and close
to the original Y&y [28], or have minimum kinetic
energy [14--16], etc Note that only R,;; orbitals be-
longing to the same { as in B; are required in the sum.
One then replaces the HF hamiltonian for the valence-
orbitals in (1) by a pseudo-hamiltonian

H,%’[PS - _

where the effective potential ngff (r) for orbital nl
in state g can be partitioned mto a valence field p]us :
an external potential '

V'%,'eff - V’%,Iv + V,%’IPS , (8)

1V2+ VEFG), M

: and the valence potennal ng' has the form (2) Smce -
by changing the HF potential for the valence orbitals

from ¥%;in (2) to- ngffm (8) and requiring that for -
the reference state g one obtains (6) as elgenfunctwns .
one can still obtain any exgenvalue spectra; one uses -

. this fréedom, requmng that H&S in (7) would have

‘the same spectrum as H,%[, for state g [eq (5)] ie.,

7 ‘Pnl = r%?v‘pnl R N )
This defines the pseudopotentlal in (8) in terms of the

-valence energy €5y’ the pseudo-orbltal ga,,, and the

valence potential, as

v (pg Vg,v‘pg '
Vg,PS— g+ —2 = —-—-——";g L (103)
nl - nl

For a central-field problem, the pseudopotential can

be represented in terms of the radial pseudo-orbitals

®£; and the associated kinetic operator as

1 VZRE, VE'®h 1iq+1)

~= -(10b)

1A ey I P

The forms (9) and ( 10) have been used in numerous

calculations on atoms and miolecules to replace the

}PS =

- original equation (1). For a system with one—electron

out51de a filled core, (10) yields

2
VERS = 8 1 1Y%
li’nl
(2, o )

—;;(—T JE —3KE 03
while for a bare closed shell ionic core, this simply re-
duces to

V oE Z.
5 = e+ ! (——rl) (12)

- ®F
When the effective potential (8) is generated from (11)
and (12) for the reference state g, the terms in the
cuily brackets tend to cancel against V/3;"; while when
applied to a general state s # g, these terms persist. -
We now rewrite the second terms in (10b) in a dif-

“ferent form. Using the fact that the orbitals ¥, 1 €nter-

ing the pseudo-orbital definition (6) are eigenfunctions
of the original HF hamiltonian [eqs (1) and (5)] we
write :

2 VZIIJ" 1 (Vg’tot - eg'l') wn I' (133)

or, for the radial component R
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1o2es o fomot LEEHD 5 Yeg. i
$2REy = (VEPt 35— ol )RS (130
Define now the “average” total potential function as

ctl

(VE}& (;)) =[ Z Cr%l,n'l VEIH(D Rzgz'z(’)]
. . n

[Cil Cr;lannl(’)]_l .

the average energy eigenvalue function as

(142)

ct+l

(E5,(r) = -[? Ch 1 €5 RE:(r )]

C+1 q-1

xLL Chint R )| (14b)

and the average centrifugal potential as

ctl
1I{+1
(Pr%l('P:[{? Cr%l,n’l"z' 1)

ctl -1
X[,nE CEI,n’IRrgz'[(’)] :

where the index ¢ + 1 indicates summation on the core
{c) plus a single valence orbital #i. One obtains for the
second term in (10b)

1 VEeE
2

Ry (’)]

(l4c)

= WEOLG) + PE N +(EE (), (14d)

nl
and the pseudopotential becomes

VEFS(r) = [eff + (B ()]
HPHO ) — VE D, (15)

where the term(P5,(r)) — (I + 1)/r? drops since
1l + 1)/r? multiples all R%; in (14c) as a constant, and
(VE'(r)) is defined as in (14a) but for the valence
field VZ only.

The ﬁrst term in brackets in (15) can be written as

URi() = ey + (B, ()

[
[E (" — B R

rotl

9=l
xLL ,,,.,Rg.,(r)] . (16)

which takes the form of the Phillips—Kleinman repul-
sive potential [10] for a particular choice (6) of the
coefficients Cfy . The final expression is hence

FEPS(r) = U (r) + (VB () —(VEV () . a”n

The average total and valence potential [last two
terms in (17)] depend on the particular pseudo-orbital
indices nf, since the HF potential in (14a) is state de-
pendent [c.f. eq. (4)]. The pseudopotential can be
computed directly from (17) using the forms (14a)
and (16), or alternatively from (12) by direct applica-
tion of the kinetic operator to the corresponding or-
bitals. Expression (17) has however the theoretical

advyantona in that it damanctratae tha tuna nf avaranae
4atVaiiidgl i aldu it aemonstrates the Lype Ui davCIdgss

involved in going from the nonlocal form of V§;°! in
5)to the local form {17) and in revealing the nature
of ng S(r) as a core-like potential (i.e., containing
differences between total and valence potentials).

We have transformed the original all-electron eigen-
value problem (5) to another problem (9) having a
valence field V&' like the original problem, plus an
additional potential V; PS (17), whcre the new prob-
fem has the same valence spectrum €f as.the original
problem, but with “smooth™ eigenfunctions-given by
(6). The construction of V,%)PS requires knowledge of
the all-electron eigenvalues and eigenfunctions for
state g and hence the use of (9) has no practical ad-
vantage over the use of (5), for this state. The useful-
ness of these psendopotentials lies ennrely in the
question whether one can use Vg; to replace the
core electrons for atomic states other than: those used
to generate VE}PS, as well as for atoms in bonding
states in malecules and solids. We will postpone the
discussion of this question until after the discussion
of the pseudopotential generated from the local den-
sity theory.

3. Developnient of LDF pseudopotentials

The local density formalism of Hohenberg and
Kohn {29] and Kohn and Sham [40] rests on the fun-
damental theorem that in the presence of an external
potential field W, (r), the total energy of an interact-
ing inhomogeneous electron system (including correla-
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tion) can be written as -

E= [Weu@p®) dr+Flp@] , @18)
where F[p(r)] is a universal functional of the density
p(), independent of the external potential, and that
“for the correct ground state density, £ is a minimum.
This theorem forms the basis for an entire electronic
structure theory in that it provides an effective one-
particle equation (derived by applying variation to
(18) with respect to p(r), and replacing the function
derivative of the non-interacting kinetic encrgy, by -
the exact quantum mechanical laplacian) of the form

{-3V2 + Wio [ (I} V5, = b F, ()
(we consistently denote LDF potentials by W and HF
potentials by V; note that the LDF ¢ of (19) and the

HF ¢ of (5) will differ). The total potential in the
ground electronic state g is given by

wtot [pg(r)] = Wéxt(r) + WCO:IJ. [pg(r)] + u’xc [pg(r)]: (20)

where, for an all-electron calculation W,y (r) is usually
identified with the electron—nuclear term —Z/r and
the Coulomb potential is just a sum of the J£; terms
(3) over the occupied states:

Pl SN
Wcoul[pg(r)l =f|rg__r71 dr'= % IV,,[ Jr%l ’ (21)

where N, are the occupation numbers. The last term
in (20) represents the total exchange and correlation
potential. In lowest order in the gradient expansion
[40], it is given by

Wyelpgl = W, [0,(r)] + W [0,(N] , (22)
where W, [0,(r)] is the well known “ptf3* term
Wy [0, = —G/mPB [p 1B, (23)

while the free-electron correlation potential W, [pg(r)]
is a more complicated functional of p(r), given by
many authors [41—43]. The total energy is given in
the LDF formalism as

S et [[ORD
E= - Nig—3 f—"l‘r—_‘Tdrdr

= [0 Wyolo@dr + Ex Lo, ], 249

where the _tOtal exchange ah_g correlation energy .
£, [p(r)] is related to the corresponding potential

’ wxg[pg(r)] by . 7

Wiel0g@)] = 0E o [pg@)]/6p,() . (@9

In principle, the LDF theorem assures that given
the form of E, [ (r)], one can generate the potential
(20), solve (19) self-consistently and obtain the exact
variational total energy (24) of the system, and the
ground state observables related to p(r). In practice,
despite extensive work on the related many-body
theory [41—43], the form of E, . [p(r)] for a general
form of p(r) is not known yet, and one has to resort
to approximate forms [such as those leading to (22)—
(23)] that are exact only for some limiting forms of
p(r) (e.g., slowly varying density [40]). Despite this
limitation, one finds that when some of the rather
drastic computational approximations (i.e., muffin-
tin approximations to Wy, [p(@)] [441, non-self-con-
sistency or basis set limitations), previously involved
in solving (19) with the functionals (22)—(23) are
eliminated, extremely useful results are obtained for
ground state properties of molecules [35-37] and’
solids [30—33,46], such as binding energies, lattice
constants, bulk moduli, Compton profiles, X-ray scat-
tering factors and magnetic moments. In particular,
detailed comparison of careful restricted HF and LDF
calculations on solids such as diamond [31], LiF {32]
and boron nitride [33] and diatomic molecules [35],
has revealed a clear superiority of the latter for most
properties. However, when the simplifying assumptions
of spherical site symmetry of W, [p ()] used in
“standard” augmented plane wave [46], multiple
scattering Xo [44] or linear muffin-tin orbitals [47]
is refaxed, the all-electron solution of (19) becomes
rather involved, mainly due to the need fo compute
the many center integrals of W ,1[p ()] over some
basis set, and the corresponding integrals for
W, [p(@)] that are not simply reducible to a many-
center form. Hence, a pseudopotential reduction of
(19) to a valence electron problem becomes advantage-
ous. .

To do that, we consider a fictitious (pseudo) atom
in the reference (valence) electronic state g, having N,
electrons (where N, is the number of valefice electrons
in the real atom) which move in an external field

Wt () =—2Z,/r + W,%;PS(Q-) and the Coulomb and ex-

change correlation field, Wqy [r5(r)] and W, [, (1,
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respectively. We denote by 2(r) the charge density of
the pseudosystem, and by p(r) the all-electron charge
density.. We shall require that the eigenfunctions of
this system, in state g, take the form (6) and that the
valence eigenvalue spectra for g be identical to that
produced by the corresponding all-electron hamiltonian
described by (19). Hence we set a modified eigenvalue
problem

{—3V2 — Z,fr + WEFS@) + Wy [n()]
+ Wy ln, 1} By =efyofy, (26)

where the self-consistent density is given by

occ .
n(r) = g} Ny leE O, @7

and Vy; are the occupation numbers for the pseudo-
atom (identical to that of the valence orbitals in the
real atom). Solving for the unknown potential in (26),
we get ’
1 VPR
2

o

- {—ZVIT+ wcoul[ng(r)] + er [ng(r)l} ) (28)

and, using the fact that the all-electron orbitals &,
entering the definition of the pseudo-orbital 5; in (6)
are eigenfunctions of the total LDF hamiltonian (19),
we get for the radial part ®2;:

WESE) = €ff +

1 V795 _ - .
2 gr  Motlpg@ +FR O+ ECD). (29
nl

which should be compared with (14d). The pseudo-
potential hence becomes

WEFS() = U1 () + Wioelog®] — WE' [n, )], (30)
where the valence field is given by

V[n (r)] - —Z /T' + oul[ng(r)] + ch [ng(r)] 3
(3 1)

which takes a similar form to the HF effective poten-
tial in (17). The UZ,(r) term is defined as in (16), but,
of course, LDF s rather than HF §’s are to be used.
‘Alternatively, we could derive (26) and (28), by setting
an expression for the total energy of the fictitious atom
in an external field W, (r), of the type (18), and fol-
low the Kohn and Sham variational treatment, to yield
the effective single-particle equation for that system.

Note that in deriving (30), no localization of any
of the functionals is necessary [as is the case in the
analogous HF pseudopotentials, eq. (14)] since
Wy In] and W, [n] are local from the start. Again,
eq. (26) with the potentials (30) is identically satisfied
for the chosen reference state g of the atom, and the
possible usefulness of this approach relies on the ex-
tent to which the core electrons in an arbitrary system
can be replaced by (30). The pseudopotential (30) has
been computed for several atoms [28] and tested by
solving (26) self-consistently for electronic states other
than g, yielding an accuracy of order 10~3 au for
eigenvalues and total energy differences for an excita-
tion energy range of 8—17 eV.

4. Comparison of HF and LDF pseudopotentials

To elucidate the differences between the HF and
the LDF pseudopotential and discuss the various under-
lying approximnations related to their use for states
other than the reference state g, we first examine the
various terms entering the corresponding potentials in
(17) and (30}.

The form of the U5, (r) term (16) is identical in
both the HF and the LDF pseudopotentials. For
pseudo-orbitals g, with I that does not appear in the
core (and n restricted to the ground state valence shell,
e.g., 2p, 3d for first row atoms), there is no need to
mix core orbitals Y5 in (6) to obtain a nodeless pg;
since ¥&y is already nodeless, and hence g, = U5 (r)
and UE;(r) is identically zero for all 7. For orbitals
with [ components present in the core, C5, 1 # 0
Several limiting cases can be realized. If one chooses
as 8, the true valence orbital Y57, (ie., C5y =

Snin ,) E,(r) is again identically zero (note that even
if ®§; includes a radial node, as is the case for BE, =
YE, still v ‘PnI/‘PnI can be nodeless) while if a smgle
core orbital 11; is chosen to represent ap,,, (e.g., the
nodeless 1s), then (15) reduces to

UE () = (£ — eEF) nD)<nl| (32)
(where the projector indicates that U8, (r) operates
only on the :! orbital) which has the Phillips—Kleinman
[10] form. Poth these choices assure of course that the

eigenvatue problem (3) and (26) would yield the cor-
rect spectrum €57 and reproduce the chosen orbitals
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(6), but the resultmg effective potential V&L () in
(8) and (26) might have “unphysical” features e,
in the second choice leading to (32), the effective po-
“tential does not approach zero at large r, but a con- -
stant value of g’ — €£°). In general, only if there ex-
ists some radlus R such that for r >R all core or- -
bitals entering the construction of ¢n, in (6) have es-
‘sentially zero amplitude, while ¢&7 is still non-zero,
then, lim, , ,, U5;(r) = 5 — 5" 0 Otherwise,
UZ,(p) and hence VEF (r) would have a non-zero val-
" ue at infinity * Any “legmmate choice of the pseudo-
orbitals in (6) leads (for / components present in the
core) to a US,(r) that is strongly repulsive at small r,
and decays very rapidly to zero (much faster than the
valence orbitals themselves, due to canceliation with
the denominator for r> R ). In particular, if ¢f; in (6)
is chosen such that it has zero amplitude at the origin
¢E,(0) = 0, the UE;(r) term would have a strong repul-
sive character at small » (for / not present in the core):

Us(=<Ql+3)r2+0Q/N+ ..., (33)

and would be zero everywhere for other / values. Since
HF and LDF atomic orbitals are rather similar and
since UZ;(r) obeys (33) in both cases, one might ex-
pect that the HF and LDF derived U£;(r) would he
similar. Note particularly that [16 48], the short
range repulsive character of V%e (r)is not needed

to prevent a variational “collapse™ of the valence
pseudo-orbitals having the same / as some core state
into the core. Any choice of f; that does not satis-

fy ¢2,(0) =0 (i.e., mixing in (6) more core charac-

ter than needed to remove the nodes of ¥&/'), or even
the choice leading to (32), may give a non-repulsive
UE;(r), but still yield the correct valence eigenvalues.
One notes, however, that the choice p£,(0) =0 usually
vields the maximum possible similarity between 9§ (r)
and ¥&/(r) in the chemically unportant tail region.
Any mmture of core character into (pn 1> mote than re-
quired to remove the nodes from ¥&) (which is re-
quired to avoid unphysical singularities in (16) at

r -,—O) would reduce the possible similarity between
v&; and Y&’ and would hence make the discussion of

¥ This suggests that for a tightly bound valence orbital which
has amplitude similar to that of a cose state (e.g., f-electrons
in rare earth elements) one would have to modify the defini-
tion of the core to include only shorter range orbitals. -

* bonding charactensncs in molecules (and other valence

properties related to ¢g;) in terms of the. pseudowave-

* functions; less meamngful Similarly, if the core mix-

ing coefficients C i forn'l= = core levels, are not
minimized, (p,,, nught have w1ggles at small » that neces-
s1tate more plane waves Oor more atomlc-hke basis func-
tions in linear expansion techniques [49] ‘In addition,
the core region behavior of the pseudowavefunction .
would be unsatisfactory: too much mixing of core
into the defining pseudo-orbital will lead to too little
repulsion in the pseudopotential at small radius, and,
as expected, too large a core contribution in all result-
ing valence functions. (Note that this repulsive charac-
ter evolves from the fact that the core and valence or-
bitals have regions of mutual overlap; if this were not
the case, (16) would reduce to a constant Zgy €51°.)
We conclude that if an accurate representation of the
pseudowavefunctions (and not only eigenvalues) in
the valence region is sought, UE; () tends to he strong-
Iy repulsive in the core region. )
Note that the UE, term is largely confined to the
core region: for 7> R, all R%Y usually have small am-
plitudes and only the single term —CE  RET eBY'/
Ch1 RS survives from the second term of (16). This,
in turn, tends to cancel against the first eEy’ term for
large r, leaving a rapidly decaying UE,(r) in this region.
Before passing to the discussion of the other pseudo-
potential terms, we briefly comment on the implica-
tions of this repulsive character on the Fourier repre-
sentation of the pseudopotential. Clearly, the repulsive
r—2 dependence of UZ(r) at small r, overweights the
attractive ——! dependence of the coulombic terms
near the core, leading to sharply localized features of
ngps(r) at small 7, or alternatively, to a long tail in its
Fourier representation VE{> (¢) in momentum space
[28]. Numerous applications of empirical pseudopo-
tentials to the optical properties of solids {7,50] have
indicated that a “folding in” procedure of the plane
wave representation of the pseudohamiltonian results
in an effective potential that requires only relatively
few ¢ components (e.g.,g2 = (?2 + k2 +12) S 12,.-
where 1, k, and / are the Miller indices of the reciprocal
lattice vector) for an adequate representation of the
low energy (< 10 eV) spectra of group [V and II-V.

_semiconductors. We riote here that in terms of both -

the HF and the LDF f'u;t-pnnc;lple pseudopoten_tlals :
this implies the relaxation of the vg,(0) =0 (i.e., maxi-
mum orbital similarity) requirement and hence a reduc-
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Fig. 1. (a) Local density pseudo 2s orbital of carbon obtained by allowing extra 5% admixture of 1s character. (b) The “maximum
similarity™ pseudo 2s orbital of carbon, in which the core character is minimized.
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Fig. 2. Local density s pseudopotentials for carbon (displayed
_asr times the pseudopotential). —— “maximum similarity™
_ pseudo-orbital. — — — 20% extra core mixture.

tion in the accuracy of the representation of the wave-
function in the valence region. To test how severe this
trade-off might be, we have regenerated the carbon
LDF pseudopotential, allowing some extra 5% mixture
of ¥§f into the p§,. Solving for the ground state self-
consistently with this pseudopotential, we get the
wavefunction depicted in fig. 1 (note the wiggle at
small r, not present in the exact pseudowavefunction).
The moments of r({r), for —1 < A < 3) deviate from
the exact pseudopotential results by 5.4%, 1.6%, 2.2%
and 2.4% for A=—1, 1, 2 and 3, respectively. If an
extra 20% admixture of Y5 is permitted, the poten-
tial, as shown in fig, 2 can actually become attractive
near the origin. As explained above, this will not af-
fect the eigenvalue, but may very badly distort the
value of wavefunction-related observables. The pseudo-
potential with extra ¥ lacks the r~2 dependence of
UE,(r) and consequently has a considerably shorter
range Fourier representation (fig. 3). It hence appears
that a moderate supression of the strongly repulsive
“spike” in the pseudopotential does lead to a more
convenient potential for use in reciprocal space techni-
ques, without too much loss in the accuracy of the
wavefunction representation.

The second term in (17), (VE{°%(r)?, can be inter-
preted as a weighted average of the HF potential over
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Fig. 3. Fourier components of the local density effective s-
potential of carbon, in units of the atomic volume (£ = 38.1
au [7]). The momentum is measured in units of twice the
Fermi wave vector for catbon (2&F = 2.9188 au {7]). — ——

20% extra core character in the pseudo-orbital. — *“‘maximum

similarity” pseudo-orbitals.

the all-electron orbitals defining the pseudo-orbitals
‘Pnh the weights being the orbital mixing coefficients
CE, ;1- Note that while the Coulomb potential J; X0
[eq- (3)] entering V'5f°! is local, the exchange terms
K& [eq. (4)] depend on the state on which they
operate. The potential (¥5;"°%(r)) can hence be inter-
preted as arising from a localization scheme such as
(KEBp>= KEp W,y (D[ 9, (), where the localization
subspace is just that determining pseudo-orbital ¢,
in much the same way as the HF exchange potential
is localized within a plane wave space to produce the
local exchange functional {38, p. 21]. The analog of
the (P5°%(r)} term in the local density pseudopoten-
tial theory [eq- (30)] is Wy, [pg(r)], where _og(r) is -
the all-electron charge density and W, is the total
LDF potential (Coulomb plus exchange corzslation
of core and valence). There is an important difference
between the two: while (VE!°I(7)) depends on the
particular pseudo-orbital in question (and is hence
I-dependent), W, [pg(r)] is l-independent, since this
operator, unlike the HF exchange, is local and hence
factors out of the corresponding sums in egs. (14a)—
(14b). This implies that for all I-components not pres-
ent in the core, the HF g)seudopotential is still /-depen-
dent (ie., VB’PS # V%‘ , et. for first row atoms)
while the LD% pseudopotential for I not present in
the core is l-independent. In practice, one notes how-

ever [16,51], that the I-dependence of (VE;t°% for
the lowest / statés not present in the core, is rather -
weak, and can usually be ignored. This simply results
from the fact that in many cases, all the & for the
lowest [ states not present in the core are spatially
rather similar (e.g., 2p and 3d for first row atoms,
having no nodes and obeying wg’v(O) 0) and hence
lead to similar K& &, values (4)*.

A further difference between the LDF total poten-
tial W, ;[p ()] and the HF “averaged” total potential
(Vg}mtt) arises from their limiting behavior at large r
— since the LDF hamiltonian (20) does not provide
complete cancellation between the Coulomb and ex-
change-correlation self-interaction {40;38, p. 21] the
electron—nuclear and the electron—electron Coulomb
potentials tend to cancel one another at large r, leaving
the (exponentiaily decaying) exchange correlation tail.
The HF potential, on the other hand, does decay a-
symptotically to the correct electrostatic value
—(1 + Q)/r, where Q is the net atomic charge. This fun-
damental difference leads to the well known discrepan-
cies between HF and LDF energy, eigenvalues (i.e.,
the non-existence of Koopmans’ theorem in LDF
[38, p. 21]). At small », both W, [p(*)] and (VE{tOh
decay to the —Z/r value.

Consider now the sum of the terms U%, () +(Vg}t°t)
and U5, (r) + W, [pg(r)] appearing in the HF and LDF
psevdopotentials, respectively. This is the total effec-
tive potential for the ground state, eq. (8). The repul-
sive character of UE,(r) in the core region would tend
to cancel the all-electron Coulomb attraction, leaving
a net “weak” potential. By “weak” we mean here
simply that UE;(r) + Wy [p,(r)] (or the corresponding
HF term) would have fewer bound states than the
original potential Wmt[p (1. which has core states
as its lowest lying solutlons [52]. This is just another
way of displaying the “pseudopotential cancellation
theorem™ [39]. It is noted however that for “maximum
similarity™ choices of the pseudo-orbitals in (6) (e.g.,
¢E;(0) = 0}, the repulsive character of U, () over-

* However, for larger [ values, the centrifugal barrier%l a+1/r
appearing in the all-electron hamiltonian (5) might localize
the high [ orbitals and lead to more substantial differences
(e.g., d versus f orbitals). Thus we might expect the approxi-
mation made in many applications (15)—(25) of HF pseudo-

- potentials, that the pseudopotential (17) is constant for all
I not present in the core to break down for sufﬁcxently

highl.
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weights the attractiveness of Wy, [p(r)], or even that
combined with WE7, leading to a net result that is
“weak” in the sense of Heine [52] above, but not
“weak” in the perturbative sense (e.g., might have a
slowly convergent plane wave representation). Obvi-
ously, for ! components not present in the core,
UE,(r) = 0 and the electron feels the full potential,
with no cancellation. Hence, the p effective potential
[eq. (8)] for the ground state g of a first-row atom has
the form

V%i:ffz Wm[[Pg(’)] +%I(I + 1)/"2 >
while the s effective potential is
VETT = Wioulog®l + UEE).

The UZ;(r) term is hence seen to replace the angular
centrifugal barrier present for I # 0, and indeed Vg’eff
with this angular centrifugal potential added, resem-
bles the 2s effective potential [10].

Finally, the last pseudopotential term W&y’ [(r)]
or {V5;'(r) in LDF and HF, respectively, represents
the field of the valence electrons in the presence of
the external potential. At small r they both decay to
—Z,[r while at large r, the HF field decays io
—(1 + Q)fr, and the LDF field decays exponentially.
Note however that the difference

Wtot [p (r)] - wp%’lv [)’1 (r)]
=—Zfr+ Weou[p ()] — Weoy[n ()1}
+ {WXC [p (r)] - wxc [n (r)] } 2 (34)

would asymptotically decay approximately as
" Wy [0(M] — Wy [n ()], Coulomb effects being al-
ready smaller at large r, and hence the spurious long
range behavior of the total LDF potential would dis-
appear in the LDF pseudopotential to the extent that
p(r) and n(r) are similar in the tail region (which is-
usually the case, by construction, cf. (6)). Since, at
small r, both (34) and the corresponding HF expres-
sion decay as —Z_/r and since we have already argued
that UE, () is similar in the HF and LDF case, one
might expect that the HF and LDF pseudopotentials
would be rather similar in the entire range both due
to the localization of (V&!°Y(r)) in the HF case, and
due to the tail cancellation in the LDF case.

Figs. 4 and 5 show VE'S and WEFS and V£S and
'ngp for the ground state g of carbon, respectively,
where the HF results are taken from Kahn et al. [16].
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Fig. 4. Hartree~Fock (— — —) and local density (——)
s-pseudopotentials for carbon. Note the cut-off atrV < 10 e.
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Fig. 5. Hartree—Fock (— — —) and local density (—)
p-pseudopotentials for carbon.

It is clear that within the employed scale, they are in-
deed indistinguishable. To further test this point, we
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Table 1
Energy eigenvalues and orbltal moments for carbon obtained
in: (a) exact a]l-electron LDF calculation, (b) LDF calculation
with LDF pseudopotentials, (¢) LDF calculation with HF
psendopotential of ref. [16]. Energy in atomic units and mo-
ments of r in the corresponding bohr radii units. Superscript
“Q” denotes the 1522s22p? ground state and “*+” denotes the
15225 2p® excited state

() () (©)
exact LDF LDF pseudo HF pseudo
LDF calculation LDF calculation
orbital
_enexgy
s —0.45738  -0.45738 —0.45688
p ~0.15795 -0.15795 —0.15632
€35 ~0.47448  —0.47265 —0.47728
ep —0.17344  -0.17556 —0.173821
orbital
moments
o 3.54994  0.82143 0.80642
o LY 091358  0.79909 0.79364
o1 1.59383  1.56258 1.56845
o 3.08962  2.97877 2.99561
& g 3.58021  0.82931 0.82106
bl 091777  0.80350 0.79931
s 1.58557 1.55143 1.55161
g 3.05354  2.93134 2.94331

have solved the LDF pseudopotential equation (26)
for the ground and the 25! 2p7 states of carbon, re-

placing the LDF pseudopotennal WEFS(), by the HF
pseudOpotentlal (r) of Kahn et al. The results
are shown in table 1 where they are compared with
those obtained with W, (r) and from the direct
solution of the all-electron LDF equation (19). It is
clear thrat not only are the eigenvalues obtained with
these pseudopotentials very close, but also the wave-
functions are well reproduced (as they should be since
the G,y 7y were chosén in the same way).

We close this section by a note on the “core-like™
character of the pseudopotentla]s derived here. We
have indicated already that ng ) and ngf () are
largely confined to the core space and that they corre-
spond to an effective field of an NV -electron system in
that the last two terms in the corresponding expres-
sions (17) and (30) [cf. eq. (34)] contain a difference
between an all-electron and a valence field. This does

not indicate however that these pseudopotentials
represent a bare-ion [7,53--57] (i.e., core) effective --
field. The last two terms in (17) and (30) give Tise to
direct core—valence interaction terms due to both the
non-linearity of the LDF exchange-correlation funec-
tional (Le., Wyc[p * oyl # Wyclocl + Wy [py]) and
the state dependence of the HF exchange (i.e., the ex-
plicit omission of the self-exchange terms results in
(VELOUr)) = (VEY (1)) # (WEL())). Rather, these
pseudopotentlals replace the core field in the presence
of the actual valence—valence and core—valence inter-
actions in the reference electronic state g. This should
be contrasted with the widely used model “ionic
pseudopotentials” developed by Heine arid co-workers
[53,54] and the local density pseudopotentials used
by Cohen and co-workers [56,57]. In these models
one actually uses for the pseudopotential VEfSa -
field generated from the bare ion core (e.g., Si%*
Nb5*) with no valence electrons, and applies it direct-
ly to systems including a complete valence manifold
(e.g., Si0 and Nb9). In practice, the bare ion pseudo-
potential is usually generated by assuming an analytic
form either in direct [53—55] or in momentum [56,
57) space with suitable asymptotic behavior, and
fixing the adjustable parameter of the forms to repro-
duce the observed one-electron excitations of the cor-
responding single valence electron systems (e.g., Si3*,
2 Once the bare pseudopotential is fixed,
ngf (r) [eq. (8)] is constructéd by either adding to
VEPS(#) a dielectrically screened free-electron field
with a position independent valence exchange correla-
tion energy {541, or a Kohn—Sham valence field
[55—57] with pure exchange only. If one is to take
up the first principles HF or LDF pseudopotential ap-
proach as a starting point, as we have done here, the
bare-ion approach implies:
(2) linearization of the LDF exchange-correlation func-
tionals with respect to the core and valence densities,
(e.g., core—valence non-penetrability approximation
[39]), or, alternatively, assuming that the valence and
core orhitals are solutions to the same Fock operator;
(b) replacement of the valence part of the charge den-
sity p(r) which includes radial nodes by the pseudo-
charge density; this is referred to in a slightly different
context, as neglect of the “orthogonality hole™ [52,
581;
(c) approximating the neutral atom core orbltals deter-
mining the Coulomb and exchange parts of the core-
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field [eq. (34)] by those pertaining to a bare ion (i.e.,
neglect of core relaxation in going from Si**, Nb3* to
Si and Nb). - ’

Some previous documentation of these approxima-
tions in a different context, for example, approximating
the core Fock operator for a single valence electron sys-
tem by a valence Fock operator [49], neglect of core—
valence interference terms in linearized versions of the
LDF exchange [59] or neglect of orthogonaiity hole
in molecular calculations [27] indicates that their ef-
fect, relative to the non-approximated first principles
results, might be rather severe. As a simple test, we
solve eq. (26) for the ground state g of oxygen atom,
where the pseudopotential W,%",P (r) is approximated
by a “bare ion”’ form. We first assume linearization
(a) but not a neglect of the orthogonahty hole (b) or
the core relaxation (c):

WEFS() ~ U, ()
H{=Zfr + Wegloc(] + W lo ]}
+ Weom[2o@)] — Womu (@]}
+ Wy loy @] — Wy [0 O]}, 35)

where p, and p, denote real valence and core densities,
respectively. The error in the 2s and 2p eigenvalues is
043 eVand 0.5 eV respectively, relative to the cor-
rect form of Wgy () in eq. (30) which satisfies (26)
for the ground state as an identity. We next neglect
the orthogonality hole in both the Coulomb and the
exchange correlation part by discarding the last two
curly brackets in (35). The errors in the 2s and 2p
eigenvalues are now 0.44 eV and 0.51 eV, respectively,
here, the neglect of the orthogonality correction in

the interelectronic (repulsive) Coulomb potential is
partially compensated by the similar neglect in the
(attractive) exchange correlation potential. Finally,

we neglect core relaxation by using for o, in (35) the
core density of a O6* jon. This yields errors of 0.85
eV and 0.95 eV in the 2s and 2p eigenvalues, respec-
tively. Clearly, a bare ion approach to the first prin-
ciple LDF pseudopotential does not work, and some
suitable empirical or theoretical parametrization of
the pseudopotential is needed in order to obtain sensi-
ble results. {Such an empirical parametrization, when
carried out in the framework of a local density screening
field [55—57], gives rise to an additional theoretical
difficulty. The LDF energy eigenvalues do not corre-

spond to actual elementary excitations, not only be-
cause of the neglect of orbital relaxation: effects [38,
p- 43] (i-e., the inaccuracy in the approximation under-
lying Koopmans’ theorem, namely that the orbitals
involved in the excitation process do not relax spatial-
ly, relative to the ground state orbitals, due to the
hole formation), and the lack of “complete” electron—
electron correlation terms in the approximate forms
of the LDF functionals (i.e., neglect of correlation
self-energy [60]), but also because Koopmans’ theorem
does not apply to this hamiltonian [32;38, p. 21] in
some cases, even to extended system [32]. This stems
from the well known non-cancellation between the
Coulomb and exchange self-interaction terms [38, p.
21]. This difficulty can be partially circumvented bv
using total energy, tather than eigenvalue differences,
(“ASCF” model [32,61]) to approximate the actual
excitation energy, in which case, self-interaction can-
cellation as well as relaxation effects are properly ac-
counted for. Previous experience with this approach
using either a complete . ASCF [32], or an approxi-
mate “transition state” model [62] has indicated that
the correction to the eigenvalue difference, necessary
to bring it into agreement with the correct theoretical
excitation energy (which is close to the observed val-
ues) is strongly state dependent. An empirical param-
etrization of the bare ion pseudopotential, designed

to yield eigenvalues that match the observed excita-
tion energies in extended systems via an LDF screening
function, thus has to compensate not only for the
deficiencies mentioned in the text, but also for this
state dependence (not only /-dependence) of the cal-
culated excitation energies. Numerous attempts in
this direction [55—57] have shown that this goal can
apparently be achieved with moderate success for cer-
tain energy ranges in polyatomic systems. Still, the
theoretical difficulties mentioned here remain largely
unresolved and call for a better understanding of the
success of these procedures for predicting energetics,
as well as their implication on the quality of the resuli-
ing wavefunctions.]

5. Use of pseudopotentials for arbitrary states

We have shown so far that the original HF and LDF

- equations for an atom in electronic state g can be

rigorously transformed to the pseudohamiltonian
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equations (7) and (26) having the same eigenvalues
but wavefuncticns given by (6) instead of the original
nodal Y%7 We now mquue whether the same pseudo-
potential V&S and Wg’ can be used to replace the
core electrons for states other than g and for atoms

in an arbitrary bonding configuration.

3.1. Angular momentum dependence

The analysis of the terms appearing in the pseudo-
potentials (17) and (30) has indicated a strong I-depen-
dence: the Pauli principle manifests itself in real space
oy 12quiring a repulsive U%;(r) for -components pres-
ent in the core and a vamshmg UZ,(r) for I components
not present in the core. An additional weak I-depen-
dence appears in the HF pseudopotential teom

&) [eq. (14a)] due to the nonlocality of the
HF exchange. Hence when applied to an arbitrary sys-
tem, V‘g PS and W operate on individual /-compo-
nents of given atomlc sites. This can be written for-
mally as

VERSG_R) =Z3 VEFS(r— R )iy, (ml,,  (36)

where [im), lndxrates angular momentum projectors on
site 2 and Vg’ S(—R,) is the total pseudopotential of
atom of type a replacmg the core electrons on this

site. Obviously, had we solved a non-central field atom-
ic equation instead of the approximately spherically
averaged forms (5) and (19), we would have obtained

a vector pseudopotential with explicit m-dependence.
Similarly, a spin-polarized version of (5) and (19) or a
relativistic version would have resulted in additional
spin and wavefunction components (minor and major)
dependence and the corresponding projectors in (36).
These are however considered as extensions of the
simple theory of sections 2 and 3 and would not con-
cern us here.

Eq. (36) indicates the type of trade-off involved in
using the pseudopotential; while the original LDF all-
electron equation is characterized by a state indepen-
dent hamiltonian (and hence all wavefunctions are
solutions to a single operator), the solution of the
pseudohamiltonian involves a different operator (30)
for the I-components present in the ¢ore than from
those not present in the core. The number of impor-
tant .components in (36) is just the number of angular

momenta required.-to represent the particular wave-
function of interest, and for most energy regions in-
molecules and solids this can be truncated to a fairly
small number {I < 3) [16,35]. Furthermore, the sum
in eq. (36) can be rather easily extended to a high
limit by replacing the pseudopotential of the high
l-components not present in the core, by that of the
lowest one; as shown in section 4, this is exact for
the LDF pseudopotential and a good approximation
for the HF pseudopotentials [16,51].

5.2. Frozen core approximation

The replacement of the effect of core electrons by
a pseudopotential calculated from the orbitals of a
chosen reference electromic state g implies “freezing”
these core orbitals in the system under consideration
at the level g. Consideration of any observable that is
related to the modification of the core in an actual
system relative to a ground state atom, such as core
polarization in rare earth, Knight shifts or Fermi con-
tact interactions, would generally require an explicit
all-electron solution, although reorthogonalization to
the new valence field may produce a reasonable ap-
proximation [28]. The effect of the frozen core ap-
proximation on “valence properties” is usually small
and can frequently be neglected [16,36,63]. The es-
sential approximation here is that we replace the ac-
tual valence—valence interaction V5’ in eq. (5) and
(19) in the presence of the dynamic core potential
VEF, by an interaction having the same form but ad-
ded to a static external potential which is fixed at a
given elecironic reference state of the atom. This ex-
ternal potential is constructed from the actual core +
valence solutions at state g, and is “frozen” at that
level when applied to an arbitrary state e # g, We note
that contrary to the methods that construct the pseudo-
potential from a single valence electron ion [55-57,
64] (e.g., C3*+, A12*, 05%) and then apply it to poly-
atomic systems made of neutral atoms, where the
valence—valence interactions are computed from
pseudo rather than true orbitals, the method described
in this paper uses the exact valence—valence interac-
tions in the neutral system held in the reference state
g to describe the pseudopotential. The reference state
can be chosen to be sufficiently close to that pertain-
ing to the polyatomic systems of interest (e.g., sp3
atoms to be used in tetrahedrally bonded systems) so
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that the core orbitals are frozen in a state that resem-
bles that of the system under consideration.

5.3. Energy depeiidence

We have chosen to construct the pseudopotential,
by inverting an atomic one-particle equation of the
form (5) or (19). In fact, there is no special reason to
construct this potential from a system having solutions
that decay to zero at infinity; since the pseudopotential
is going to be used to replace core electrons in a poly-
atomic system, we might as well construct it from
some other single-site eigenvalue problem such as that
pertaining to an atom embedded in a spherically aver-
aged potential field due to the other nuclei, a Wigner—
Seitz sphere, a “renormalized atom™ [65], etc. Since
the boundary conditions on the wavefunction in these
systems are different from those pertaining to an
atom in free space (e.g., vanishing logarithmic deriva-
tive on some Wigner—Seitz boundary), the resulting
central field orbitals and energies {¥,,;, €,,;} would be
different, and hence the pseudopotential would be
different even within a given I-component. Similarly,
one could have constructed an s potential for a first
row atoms not only from the ground state 1s and 2s
orbitals, but also from the 3s, 4s, ... orbitals or from
some excited (1s 2s 2p) configurations (e.g., 1s22s12p3).
In all these cases, a distinctly different s potential
would be obtained. These are just different ways of
stating that our pseudopotential is energy dependent
(or, principal guantum number dependent) even for
equal /. It is clear that such a pseudopotential is useful
only to the extent that this energy dependence is weak,
otherwise it will have to be reconstructed for different
situations.

This energy dependence originates from two (re-
lated) sources: the energy dependence of the core or-
bitals to state g (which is usually very smail and neg-
lected in the frozen core approximation) and the mod-
ification of each of the I-components of the valence
field. Consider the energy dependence of the pseudo-
potential that results from using different central-field
solutions for its construction (e.g., varying g or changing
the atomic boundary conditions). The difference in
the corresponding pseudopotentials would be mostly
confined to the core region, since US;(r) is non-zero
only in this region (cf., section 4) and since the differ-
ence (VE10N — (V& or Wyo, [0, — Wi [n ()]

between total and valence potentials reflects approxi-
mately a core field, where the localization of the HF
exchange potential in (V¥ g’mt(r)) [eq. (14a)] weights
mostly the core part of the valence potential. Hence,

to the extent that the orbitals of states g1 and g2 are
similar in the core region for each I-component, one
would expect similar pseudopotentials, and conversely,
any variation in these orbitals in the core region results
in an energy dependence of the pseudopotential. In
cases where the frozen core approximation is appiicable,
it is reasonable fo assume that the resulting energy de-
pendence would be small.,

One can test this energy dependence in several sim-
ple ways: For instance, one can generate the pseudo-
potential from a reference electronic state g which has
only certain principal quantum numbers occupied (e.g.,
ground state) and apply it to some excited states e
having additional principal quantum numbers occupied’
(e.g-, 252352, 252452 etc. in a first row atom). If we
denote by ¢ Ie the exact (all electron) eigenvalue in
the electronic state e and by € [g] the eigenvalue at
the same state obtained by using the pseudopotential
generatgd from the electronic state g, then the error
Aeyplel = ef — enf[g) forms a measure to the ener-
gy dependence of the pseudopotential. Table 2 shows
Aez’se {gi. Aev ~[gl and Aerf gl fi 1or carbon, where g
is the ground conﬁguratlon *152 252 2p? and e is

2522p2, 252 2p03s2 and 2s22p04s2, respectively. The
error is usually within < 10~2 au of the exact eigenval-
ue [28]. One can alternatively vary g and keep e con-
stant, i.e., generate the psendopotentiai from different
configurations and test it on a given conﬁguration e.
Table 3 shows A € and AeY® for g = 152252 2p2,

152251 2p3 and 1s 251 5 7p%5 Again, the errors Ae
do not exceed 2 10—3 au of the corresponding exact
eigenvalues. We hence ne%gct the energy dependence
of our pseudopotential ¥,,78(r) and drop the reference
state index g and the prmmpal quantum number index
n. The total HF atomic pseudopotential for atom of
type a located at site # in the polyatomic system is
hence given by

vES(r)= Izm) VES ()i iml,, 367)
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Table 2

The error Ae, e[g] in the energy eigenvalue u, obtained when
the LDF pseudopotentlal generated from configuration g =
152 252 2p? in carbon, is applied to configuration e. Results

in atomic units. The 3s and 4s states were obtained as “bound
state™ by placing the carbon atom in a potential well of depth
—1.0 au and radius 10 au. The errors for e = g = 2522p2 reflect
the numerical inaccuracies

Applied to ackllel  oefflel  Aifla)
configuration e =25 u=3s n=4s
252252350450 7.0x10% 5.0x10% 4.0x10%
2s523524s° 14x107% 1.0x10° 21x10°
25235942 5.1%103 62x103 84x1073
Table 3

‘The error Ae"’e {gl in the energy exgenvalue o, obtained when
the LDF pseudopotentxal is generated from different configu-
rations g and applied to the configuration'e = 1s2s22p2.
Results given in atomic units. Sec¢ caption to table 2 for more
details

Generzted from  Ae¥f[e]  Ae¥fle] AeYElz]
configuration g ©L=12s u=2p u=3s
1522522p2 7.0x10% 1.0x1077 10x10°
1s22s!2p3 62X 1078 3.1x1077 23x10°
1s2251-52p2-5 66x 108 22x107 24x107°

5.4. Superposition approxz'matibn

In order to apply the atomic psendopotential
VPS(r R,) [eq. (37)] to polyatomic systems, we as-
sume that the total effective potential is given by

f_ v PS
Vfét V' VtOT. ?

Vot za) by Var-R

where V'V is the valence potential in the polyatomic sys-
tem calculated utilizing the valence pseudo-orbitals,
and the sum in the second term in (38) is extended
over all atoms in the system of types a at sites g. Here
we have assumed that the atomic pseudopotentials
st(r — R,) can be superposed to yield an external
field that replaces the core electrons in the polyatomic
system. Clearly, if we were to apply the pseudopoten-
tial formalism directly to the polyatomic system, we
would obtain a form that is not directly separable to

(38)

a,a) H

a linear superposition of atomic-like terms, due both
to the non-spherical geometry and to non-linearity of
the exchange in both HF and LDF approaches with
respect to the tails extending from one site into the
domain of another site, and hence (38) is an approxi-
mation. It seems difficult to assess the validity of the
superposition approximation, not knowing the exact
interference effects involved in a pseudopotential
transformation pertaining to the polyatomic system.
Some discussion of the non-additivity corrections has
been presented by Animalu and Heine [54]. Molecular
finite-basis HF calculation [16—26] reveal no serious
errors arising from (38). Note, however, that in the ap-
proach presently used, we use only the transferablllty
and additivity of the atomic pseudopotennal V (r—R )
and not of the ¢fffective atomic potential [V (r R+
V¥(r —R,)], as used in some model potential approaches
[7]. We hence only assume the additivity of the rather
short range “core” potential, while the valence field
VYV in the polyatomic system remains in the same form
it had in the all-electron model (i.e., non-linear with
respect to the contributions V¥(r — R,) coming from
individual sites), and is allowed to adjust self-consis-
tently, reflecting accurately the valence—valence inter-
actions in the system of interest. Our analysis of sec-
txon 4 indicates that the atomic pseudopotential
V (r) is rather short-range. Due to both the rapid
fall-off of Uy(r) and the tail cancellation in

(V) - (Vﬁ’,") or Wyot[og(M] — W [n ()], the
resulting ¥ °(r) is even shorter range than the all-
electron potentlals VES' and Wy, [0, (1], s0 that
the interference between nearest neighbor pseudopo-
tentials in (38) i minimal. For example, the carbon 1s
pseudopotential is only 0.034 au at the distance from
the origin corresponding to the bond center in diamond
(compared with —0.865 au for the full potential).

The superposition assumption in (38) allows the
use of simple forms for the matrix representation of
the pseudopotential. If a plane wave basis set is used,
such as

IK)=e—ik+G)r. K'Y= e—i&+G)r , (39)

where k indicates the position in the Brillouin zone
and G is a reciprocal lattice vector, then the matrix of
the total pseudopotenhal Vfgt(r) [eq. (38)] is given by
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Ki tOtIK) 4HE(21+1)‘PI(COSGKK)

X F (K, K')S%G — G'),
Fio(K, K'Y = G EAWVFS O (KT

(40)

where P, is the Legendre polynomial, j,(Kr) are the
spherical Bessel functions (here we used the standard
expansion of a plane wave in terms of the Legendre
polynomial and the Bessel function) and the structure
factor S(g;_ ) for species a is

S*(G - G')= LY ei6-6Rs , *1)
N p »
where N is the number of atoms and R, , denotes the

position vector of species « in cell 2. The superposition
model (38) in connectien with a plane wave basis hence
allows one to factor out the structural information for
each sublattice into S¢_ 5+ while the rest of the po- .
tential elements are gwen by the Fj,(K, K') terms,
which can be calculated by a one dimensional numeri-

cal integration for each atom.
* 5.5. Total energy

The calculation of the total electronic energy £ of
a polyatomic system in the HF pseudopotential scheme
has been discussed by Kahn et al. [16], where it was
shown the E| can be partitioned into a core part not
included in the pseudopotential scheme and a valence
part. The two center contribution of the core part,
which is geometry dependent, can either be calculated
directly from the core densities or approximated by a
simple asymptotic form, such as a screened nuclear—
nuclear term. In both cases, the quality of the com-
puted equilibsium bond length is comparable to that
obtained in the corresponding all-electron calculation.
Since the same discussion applies to the LDF pseudo-
potential, it will not be repeated here. Instead, we will
briefly mention another aspect of the LDF total ener-
gy in the pseudopotential scheme, namely the existence
of the “transition state” concept.

One of the attractive features of the all-electron
LDF theory is the fact that one can calculate, to with-
in a good approximation, the total energy difference
AE; between an excited and a ground state system
(*“ASCF”) by performing a single calculation on a sys-

tem hmnna its 7 and 7 occunation num

oI n1ay i3 1 anlc y OcCupalion i

between that of the corresponding ground and excited
states. This concept has been of great importance for
computing binding and excitation energies for mole-
cules [62] and solids [32] in that it allows a conve-
nient way to iniroduce relaxation and self-interaction
cancellation.

The fact that the LDF total energy [eqs. (24) and
(27)] is an analytic function of the orbital occupation
numbers AV, has been used by Slater [38, p.43] to
construct a Taylor series expansion of the total energy
difference AEj; around a specific single point in the
occupation number space, where all the odd terms in
the occupation number differences vanish. To the ex-
tent that the second derivatives of the energy with re-
spect to the sum of the ith and jth occupation num-
bers can be neglected, the fotal energy difference is
simply given by the eigenvaiue dlfference computed
with the specific occupation numbers, generally N;=
N-- . Since only the density is effected by ext(r)
the total energy expression (24) does not depend ex-
plicitly on the external field and therefore the same
argument can be carried for the energy expressed in
terms of the pseudodensity n(r).

To demonstrate the applicability of the transition
state concept to the LDF pseudopotential problem,
we have calculated the all-electron total energy differ-
ence AEj; and the all-electron transition state eigenval-
ue dlfference Ae , as well as the corresponding quan-
tities AE; 2S and Aeﬂfs S for the pseudopotential prob-
lem, for carbon (table 4). The quantity AE; — A

bers halfwav

1DCIsS Idlway

Table 4

Comparison of exact LDF total energy differences AEj; with
pseudopotential total energy differences AE,_I;S for carbon.
The corresponding transition state eigenvalue differences are
denoted as Ae;IS and Asj; PS. The quantity AEj; — Aejj mea-
sures the error in the transition state calculation for the all-
electron LDF model, while AE};S - Ae,l; measures the similar
error in the LDF pseudopotential model. Results are given in
atomic units

Configuration ALz AE,‘-}S AE‘,-]-—Aeg:S AE,-’}S -
AEgs,Ps

2522p% —» :

2s22p! 0.35802 0.35736 0.00543 0.00530

2522p2% —»

2s12p? 0.36021 0.35982 0.00421 0.00411
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measures the accuracy of the transition state model

in the exact all-electron calculatlon, while the numeri-
cal quantity (A Ae,] 5y — (AEPS - Ae,]s £S)
forms a measure for the extra error introduced by the
pseudopotential scheme. These errors are indeed seen
to be small, confirming the usefuiness of the transition
state method in the pseudopotential framework.

6. Relation to the Phillips—Kleinman scheme

Here we compare the angular momentum projected
pseudopotentials with the Phillips—Kleinman (PK)
[10] pseudopotential scheme. Phillips a_nd Kleinman
showed that since the valence orbitals ¥ are orthogo-
nal to the core functions ¥, one can dxsplay the
valence solutions as

c
- 'Z} (el WEIe, “2)

where \p is an arbitrary valence-like function which
does not have to be core orthogonal, and use 1[1”
the valence eigenvalue problem

HYY =y, 43)
to get
Z) GO IS =egt —e = G .
’ @9

If one assumes that the core orbitals ¥S are also eigen-
functions of the valence hamiltonian HV, i.e.

HYg=egly “5)
then (42)—(44) yield
[H+ Vi el =egl (46)

where the pseudopotential is given'by

[+4
Ve, ) = E (e~ NS UEHg), - @7)

One has hence replaced the original valence equation
(43) having core-orthogonal (and hence oscillatory)
solutions ¥, by a modified equation (46) having the
same eigenvalue spectra but solutions of the form

=yl + l;)a,wwg, 8)

with arbitrary core components in them. Note, how-
ever, that condition (45) is not met in general in'the
HF scheme, (45) apphes only to bare ions havinga .
closed shell with no valence electrons in which case
G ({1[1 1 in (7) is zero, while in systems with valem:e
electrons (45)—(46) is incorrect. _
In many studies using the PK formalism, the valence
field was neglected. For a single valence electron out-
side a closed shell core, the valence Fock—hamiltonian
is

c .
=_iv2_Zpr+ l;) 2BC_KEC . (49)

and the core hamiltonian

—KBC+JBY K8V,
(50

[
!
He=_1V2_Zr+ 25 2J5°
144

This was approximated by -
He=HY, | G

which is usually referred to as “neglect of core polar-
ization by the valence field” |53,54). With approxima-
tion (51), one can compute the psendopotential
V“‘)(e, r) as a function of energy € hy assummg a given
model form for the pseudo-orbital (p# & :p and using
known HF solutions for the core {/C, ¢5}. Eq (46) is
then solved self-consistently [using the HF core inte-
grals J, and K, in (50)] to obtain consistency in e be-
tween successive iterations and maximnm similarity be-
tween the model 3 ¥, and the soluuon . of (46). This
defines a self-consistent potential V§?(r) in terms of
the assumed g, for each state g, to be later used to
replace the core electrons in molecules and solids.
Calculations along these lines performed by
Abarenkov and Bratzev {66], Abarenkov and Heine
[53] and Szasz and McGinn [49] have indicated that
if the pseudo-orbitals were chosen to be smooth, the
resulting pseudopotential was highly oscillatory, and
alternatively, if the pseudo-orbital coefficients
(195> were chosen to make the pseudopotential
smooth, the resulting self-consistent pseudo-orbitals
\p;, were not smooth. This poses some problems for
calculations employing real-space expansion techniques,
since more basis functions would be required in LCAQ.
It also causes severe problems in calculations such as

- the nearly free electron scheme, based on reciprocal

space expansion, in which the pseudopotential and -
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pseudowavefuncnons are requued to have a rapidly
convergent Fourier representatmn This observed
behavior has discouraged many workers in the field
(e.g., refs. [53,54]) and has led to abandoning the
first principle pseudopotential approach in favor of
model potentials which are not constructed from
valence functions like (48) and lead to some com-
promise in the smoothness of the pseudopotential and
pseudowavefunctions [54]. We note that no such prob-
Iems occur with the first principle pseudopotentiais-
described in sections 2 and 3 of the present paper.
Neither the pseudo-orbitals nor the pseudopotentials
oscillate {16,28], because of the smooth, nodeless
character of ®; in (6).

The self-consistency cycle encountered in the solu-
tion of (46) in the PK approach converges to a solu-
tion of the form (48). Since, however, both 1# and
YE are degenerate solutions to (46) with the same
energy €, any arbifrary linear combination of core
components (e.g., arbitrary auu) can be mixed into
the solution, and still yield a valid energy eigenvalue,
but might introduce oscillations in (p“ (even if the trial

PY did not have them) that are apparent also in ¥ ("‘)(r).

In contrast, the HF and LDF pseudopotential schemes
described in the present paper proceed by fixing the
energy €, to coincide with the uth valence eigenvalue
and determine the auu coefficients to produce the de-
sired features in «.pn They do not contain arbitrary
core components. This also implies that although the
PK scheme guarantees the correct cigenvalue e, it does
not assure any meaningful wavefunction, unless Co';{ is
carefully chosen to prevent convergence to an undes-
ired result.

One can compare the PK scheme to the angular
projector schemes used here, by considering the sys-
tem for which (51) holds, i.e., a bare core. The HF
effective potential is given by .
Vg;;ff = U (r) + WEOU), 2)
which, for a bare core, yields

r

Vf’)eff =UE() —Z)r +Z) 2/BE — KBS

which can be compared with the PK form (46)

VBRI = (e, ) — Zfr+ I2UB° KBS, (53)
v

Hence, for the bare core, the present pseudopotential
is formally analogous to the PK pseudopotential: com-
pare UE;(r) in (16) with ¥}, in (47) with the coeffi-
cients (g}, 1) replaced by €, . However, for most
systems of interest containing more than one valence
electron, (51) does not hold in the HF scheme, and
one has to use the generalized Phillips—Kleinman po-
tential [11]:

V¥ = _HP - PH+PHP+¢P, (54)

where P are core projectors, in place of (47). In this
form, the pseudopotential becomes rather difficult to
employ since a complicated mixture of core, valence
and pseudo-orbitals enters the expression for ¥ GPK

In the LDF approach, the total potential is state
independent; hence, both core and valence orbitals
are eigenstates of the same hamiltonian and the origi-
nal Phillips—Kleinman form (46) holds. The effective
potential in the PK form

we o1+ Ve, (55)

should then be compared with the angular projected
LDF effective potential (generated from state p)

{Wise o] + Ul () — Wiy [n (I} + WEV [2()] .(56)

Hence, for the reference state both forms are analogous,
while for a general state e (# 1) one has in principle to
recompute the potential (55) from the all-eleciron
(valence + core) density, while in the form (56) the
potential in the curly brackets is fixed at the reference
state and the valence W%V [n(r)] is computed from the
pseudo charge density. There is hence an enormous
simplification in the angular projected LDF form (56)
relative to the PK form (55). Note that in many calcu-
lations using the PK form, the all-electron density in
the state of interest is approximated by the pseudo-
charge density, and their difference (“orthogonality
hole™) neglected [12,13] or approxunated by some
form [27].

Vy,eff =

7. Summary remarks

We have attempted to derive from a rigorous first-
principles approach angular-momentum-prajector
pseudopotentials for use within the HF and LDF sche-
mes for calculating atomic wavefunctions. While several
marked similarities exist between the two, we also feel
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that there are significant differences. In general, the
most important differences {cut-off of the potential
forlz=l,
dence) [end to favor the LDF procedure, since both
pseudopotential and LDF procedures attempt to deal
with a smoothed wavefunction (LDF by a gradient ex-
pansion in the density, pseudopotential by removing
from the valence functions the wiggles required for
core orthogonality). Numerical tests for a number of
atoms and states indicate that the LDF pseudopoten-
tial procedure is fast and accurate, at least for the
first row. We have also compared our first-principles
~ pseudopotentials with semi-empirical pseudopotentials
and with Phillips—Kleinman forms, and feel that, for
LDF calculations, our potentials are less arbitrary and
should be of greater utility-

Of course, the real value of such pseudopotentials
lies in applications to electronic structure studies for
atoms and molecules. Because of the nature of most
working LDF codes, only for plane-wave expansions
(see section 5.4) is our pseudopotential easy to imple-
ment. Nevertheless, we feel that it possesses great po-
tential for providing an avenue toward accurate, va-
lence-only LDF calculations.
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