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Physical properties of alloys are compared as computed from ‘direct’ and 
‘inverse’ procedures. The direct procedure involves Monte Carlo simula- 
tions of a set of local density approximation (LDA)-derived pair and 
multibody interactions { uf ), generating short-range order (SRO), ground 
states, order-disorder transition temperatures, and structural energy differ- 
ences. The inverse procedure involves ‘inverting’ the SRO generated from 
{vi) via inverse-Monte Carlo to obtain a set of pair only interactions { tf ). 
The physical properties generated from ($ ) are then compared with those 
from ( vf ) . We find the following: (i) Inversion of the SRO is possible (even 
when ( vf ) contains multibody interactions but (t ) does not). (ii) Never- 
theless, the resulting problem interactions (fif agree with the input f 
interactions ( vf ) only when the problem is dominated by pair interactions. 
Otherwise, ( fif) are very different from ( vf ). (iii) The same SRO pattern 
can be produced by drastically different sets ( vf ). Thus, the effective 
interactions deduced from inverting SRO are not unique. (iv) Inverting 
SRO always misses configuration-independent (but composition-depen- 
dent) energies such as the volume deformation energy G(x); consequently, 
the ensuing (cf) cannot be used to describe formation enthalpies or two- 
phase regions of the phase diagram, which depend on G(x). 01997 Elsevier 
Science Ltd 

Keywords: A. disordered systems, D. order-disorder effects, D. thermo- 
dynamic properties. 

The physical properties of AI_& alloys are usually 
analyzed and interpreted via ‘cluster expansion’ models 
[l-3]: Each of the N sites o,f an alloy, i = 1,. . . ,N, is 
labeled by a spin variable Sj = -1 or +l if site i is 
occupied by an A or B atom, respectively. The set of spin 
variables (S’i) defines a configuration u. The energy of 
any of the p possible configurations is then written [4] 
as a sum over clusters of points (i; ij; ijk; . . .): 

E(a9 V) =JO(v)+ CJi(V$i + cJij(V$iij 
i j-3 

kcjci 
(1) 

where V is the volume, the Js are interaction energies and 
the first sum is over all sites, the second over all pairs, the 

third over all triplets, etc. We refer to these elementary 
clusters as ‘figures’ J 

If the set of interactions (Jf(V)) is known for a given 
alloy system, one may apply standard methods of lattice 
statistical mechanics (e.g. mean field, cluster variation or 
Monte Carlo methods) to the expansion and compute 
ground state structures or finite-temperatures thermody- 
namic properties. Recent examples included the calcula- 
tion of temperature-composition phase diagrams and 
ground state structures of transition metal [l-3] and 
semiconductor [2] alloys, mixing enthalpies of disordered, 
partially ordered, and off-stoichiometric alloys [2, 31 and 
short-range order (SRO) of solid solutions [5,6]. We refer 
to this approach as the ‘direct approach’. 

Conversely, another common tradition involves the 
‘inverse approach’: A measured thermodynamic 
property such as the set of SRO parameters o(n) (the 
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Table 1. The values of the input interaction energies vr and the interaction energies i$ reconstructed via IMC 
simulations of the SRO computed from vf (meV/atom). Designation of the ‘figures’ f follows the notation of Table IV 
of [5]. For Set 2, the multibody interacttons used in the direct set D vf, but not in the inverse set Df if are (in meV/ 
atom):J3 = -96.1,& = 44.5J.s = 64.5, M3 = -41.1,Qs = -81.5, andZ& = 139.1. Structural energy differences, 
ordering energies 6E,rd(u) (the energy difference between u and a random alloy at the same composition), and the 
random alloy mixing energy at x = l/4 are shown (meV/atom), as are transition temperatures (K). ‘NA’ means not 
applicable. 

Clusters 

Empty 
Point 
Pairs 

Designation 

Jo 
JI 
J2 
K2 
L2 
M2 
N2 

02 
p2 

WL12, DO221 

&xd(L12) 

Ground state 

TC 

G(x = l/4) 

Lvl,ix(l/4) 

Set 1 

Direct 

Df”f 
-233.2 

252.9 
152.0 

-20.0 
58.9 
33.5 

-4.0 
-42.6 

f512 

630 
112.1 

-56.2 

Inverse 

OfFf 
NA 
NA 
157.2 

-21.0 
60.0 
33.3 

-4.8 
-45.1 

L12 

680 
NA 

-172.1 

Set 2 

Direct 

DfVf 
-233.2 

252.9 
152.0 

-20.0 
58.9 
33.5 

0.0 

0.0 
0.0 

+103.3 
-41.9 

DO22 

1850 
112.1 

-227.7 

Inverse 

Dffif 
NA 
NA 
690.0 

17.6 
-19.2 
103.2 
-3.6 
-0.4 
13.2 

+76.2 
-79.8 

DO22 

1900 
NA 

-600.6 

atom-atom pair correlation for the nth atomic shell) is necessary to deform the constituents from their equili- 
used in an inverse statistical approach (e.g. the inverse brium volume to the volume V(x) of u. The second term 
Monte Carlo (IMC) method [7] to deduce a set of of equation (3) describes the spin flip excess energy of 
effective interactions [8]. These interactions are subse- forming u from A + B already prepared at the volume V. 
quently used in a cluster expansion, equation (l), to 
predict thermodynamic properties other than the SRO. 

The correlftion function fif is defined as a product of the 
variables Si over all sites of the figure fwith the overbar 

In this paper, we explore the extent to which the inverse denoting an average over the Df symmetry equivalent 
approach may be used to predict alloy properties by figures per lattice site. Equation (3) is similar to equation 
applying it to a well-characterized a(n) obtained through (l), but here the effective interaction energies {vf ) are 
a direct procedure. volume-independent pure spin flip energies. 

In the following it is convenient to introduce the excess 
energy ti(a, V) of configuration u, defined as the energy 
of this con&ration at volume V, relative to the energies 
EA(VA)andEs(Vs)ofequivalentamountsofsolidAandB, 
at their respective equilibrium volumes V, and V,: 

Wu, V) = Ecu, VI - [U - MA(&) + xEB(v~)l. (2) 

If the equilibrium volume V(u) depends primarily on the 
composition x and only weakly on the configuration u, 
then the variables u and x can be rigorously separated in 
equation (2) giving [9] 

Wu,V)=G(x)+~Dfvffif(u). (3) 
f 

Here, the first term G(x) describes the elastic energy 

We will examine the invertibility of the inverse 
approach by performing a ‘controlled experiment’. As 
input, we use two ‘exact’ sets of interactions ( vf ]. 
Equation (1) is then used along with these [ vf ) in 
direct Monte Carlo (MC) simulations to obtain the 
‘exact’quantities such as SRO parameters o(n), structural 
energy differences 6E(u, d) between configurations u 
and u’, transition temperatures T,, and the mixing 
energy of the random alloy AHmix. We then contrast 
the results of this ‘direct procedure’ with those of the 
‘inverse procedure’, in which the set { cr(n)) (obtained in 
the direct procedure from the known, exact { vf )) is used 
as input to deduce the interactions {Gf } by IMC simula- 
tions from which we then obtain G(n), &!?(a, u’), i;, and 
A/?&. 
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Fig. 1. Comparison of the (0 0 1) planes of a(k) and c%(k) for A$ alloys. 

We use as input two sets of interaction energies ( vf } 
(see Table 1). As an illustration of physically realistic 
interactions, we use one set of interactions that was 
recently extracted [6] from T = 0 first-principles calcu- 
lations of formation energies of ordered f.c.c.-based 
Nir_,V, compounds and reproduces reasonably well 
many of the measured physical properties. This ‘realistic 
set’, which we call Set 2, contains pair interactions up to 
fourth neighbors, as well as three and four-body interac- 
tions. Set 1 is identical to Set 2, except that we have set 
equal to zero all multibody interactions. 

We first contrast the directly calculated alloy proper- 
ties using Sets 1 and 2 in MC simulations. For the direct 
MC calculations, a system size of 4096 atoms was used 
with periodic boundary conditions, 1200 Monte Carlo 
steps (MCS) were used for equilibration, and averages 
were typically taken over 1800 MCS. Temperatures of 
T = 850 K and 2300 K were used for the SRO calcula- 
tions for Sets 1 and 2. Figure 1 shows the SRO a(k) 
calcuIated directly from { vf 1 for Sets 1 and 2 at compo- 
sitionAsB. Only multibody interactions contribute to the 
difference between the SRO of Sets 1 and 2, and this 
difference is dramatic: a(k) of Set 1 shows peaks at the 
X-points (10 0) whereas a(k) of Set 2 shows peaks at the 
W-points (140) as seen experimentally in N&V [lo]. 
Table 1 also shows that multibody interactions change 
the ground state structure from Liz to the observed [ll] 
DOz2 structure and that the energy difference between 
these two structures, 6E(Llz, D02J, changes from -4 to 
+103meV/atom and T, changes from 630 to 1850K 

upon inclusion of multibody interactions. Also, note 
from Table 1 that G(x = l/4) is a significant fraction of 
the random alloy mixing enthalpy, A&,,,@ = l/4). 
Thus, from the directly calculated values it is clear that 
both multibody interactions and the elastic energy G(x) 
are physically very important in this alloy system. 

Using the directly calculated a(k), we now apply 
IMC to recover the interactions energies. Following the 
tradition among practitioners of the IMC method, only 
pair interactions were retained in the energy expression 
of IMC. First, configurations were produced which 
reproduced the input values of 35 shells of o(n). 
System sizes of 262 144 and 216 000 sites were used 
for Sets 1 and 2. IMC simulations were performed on 
three crystals compatible with the sets of 01(n), and 
averages were taken over these three crystals. Tests 
were performed of the convergence of the inverse pro- 
cedure with respect to the number of pairs included. 
Many different sets of pair interactions were used 
(between 4 and 20 shells), and from these caiculations, 
the number of pairs needed to reproduce o(n) adequately 
were determined. 

Short-Range Order 

Figure 1 compares the recalculated h(k) (computed 
from Yf) and a(k) (computed from vf). Both sets of SRO 
are well reproduced by the IMC procedure. The accurate 
inversion of SRO [i.e. {G(n) - {o(n))] has been demon- 
strated previously by many authors (see e.g. [7, 81). 
However, in these previous studies, measured SRO was 
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used as input to the IMC, and thus the interactions which 
produced the input SRO were not known. We have shown 
that even when multibody interactions are used to produce 
o(n) (as in Set 2) the IMC procedure (using pair interac- 
tions only) reproduces this SRO quite well. 

Effective Interactions 

We compare the values of vf vs Cf in Table 1. For Set 
1, the IMC algorithm closely reproduces the input set of 
pair interactions: the standard deviation between {of] 
and (31 for Set 1 is 2.7 meV/atom. For Set 2, the direct 
and inverse sets of interactions differ dramatically in 
several respects: 

(i) Three and four body interactions are present in 
{ vf }, but are specifically excluded from the pair-only 
IMC calculation of { $ }. 

(ii) There are huge differences in pair interactions 
(the standard deviation of the first four pairs is 275 meV/ 
atom). 

(iii) Seven pair interactions were required in the IMC 
to reproduce o(n), whereas only four pair interactions 
were present in the direct set. (A similar increase in range 
was reported in [12].) 

However, even though there are enormous differ- 
ences between vj and cj of Set 2, they both produce 
nearly identical SRO patterns (see Fig. 1). This surprising 
fact indicates that even the pair interactions are not 
determined uniquely from a SRO pattern. [This non- 
uniqueness was also found by Schweika and Carlsson 
[12], (Fig. 3a), who in contrast to the present work, used a 
high-temperature expansion (whereas we use IMC) to 
invert SRO generated by pair and multibody interac- 
tions.] We assert that due to the non-uniqueness of pair 
interactions derived from IMC, they cannot generally be 
compared with other sets of pair interactions. When 
multibody interactions are physically important, the 
non-uniqueness of these sets make such comparisons 
meaningless. For example, Schweika and Carlsson [12] 
found that inversion of SRO produced interactions gj 
which were temperature-dependent even though the 
input set { vf ) was not. Clearly, this temperature-depen- 
dence is not due to physical effects (e.g. vibrational or 
electronic excitation effects), but rather due to the fact 
that a pair-only inverse scheme does not recover infor- 
mation on the multibody interactions { vj }. 

Structural energies, ground states, and transition 
temperatures computed from ( vf } are compared with 
those computed from ( tr ) in Table 1. 

Miring Energies 

Table 1 also shows values of the mixing enthalpy of 
the random alloy Mmi,(X = l/4). For Set 1, where 
{ fif 1 - ( vf }, the direct and inverse values of Uti 

differ because of the absence of G(x) in the inverse 
procedure. This absence leads to an error of more than 
100 meV/atom, even in cases (such as Set 1) dominated 
by pair interactions. In Set 2, the comparison of A?i,,,i, is 
even worse (direct and inverse values differ by more than 
350meV/atom), because now both G(X) and multibody 
information is missing from the inverse procedure. 
Deducing values of AH& is clearly not reliable in the 
inverse procedure. 

We have seen that while total energy E(o, V) defines 
the complete set of interaction energies, inversion of 
quantities (e.g. SRO) other than E(o, V) may lead to a 
loss of information, We now use equation (3) to distin- 
guish different classes of alloy properties and discuss 
which are invertible: 

(a) Physical properties that depend on both G(X) and 
on the spin-flip energies { vj} include any quantity which 
involves the energetics of two or more concentrations 
and, hence, two or more volumes. [Note that G(X) 
depends on x, but not on the particular atomic arrange- 
ment (‘configuration’) a.] Examples include the forma- 
tion energy of a structure [which involves V, VA and V,, 
see equation (2)], the mixing energy AH,,,k of the random 
alloy, and two-phase equilibria in a composition-tem- 
perature phase diagram. Since ‘type-(a)’ properties such 
as the set (AQa, V)] contain complete information on 
both G(x) and on all ( vr ), given the measured or ab initio 
calculated energies (&(a, V)}, it is possible to invert 
equation (3) and in principle extract the ‘exact’ G(x) and 
{ vf ), as demonstrated in [9]. Thus, the inversion of ‘type- 
(a)’ properties involves no loss of information. 

(b) Physical properties that do not depend on G(x) 
include energy differences of isocompositional config- 
urations u and u’, 6E(u, a’). The order-disorder transition 
temperature T, at stoichiometric composition also falls 
into this class since it involves the energy difference 
between the disordered high-temperature phase and the 
partially ordered low-temperature phase, both at the 
same X. Another physical property which does not 
depend on G(x) is the atomic SRO. cw(n) involves a 
competition between energies of a random and a short- 
range ordered structure, both at the same volume V(x); 
therefore, cr(n) (even if determined for several composi- 
tions) contains no information about G(x). Therefore, 
inversion of a ‘type-(b)’ property, such as SRO, cannot 
provide any information on G(x), even if the SRO covers 
a range of compositions. Consequently, the interactions 
($1 extracted from such a procedure do not allow 
calculation of ‘type-(a)’ properties, such as formation 
energies [equation (2)], mixing energies, or the phase- 
coexistence regions of the phase diagram. This point is 
highlighted by recent studies [5] on Nii,Au,. This is a 
phase-separating system; however, the SRO is of 
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ordering type. Inverting the SRO will thus inevitably Office of Energy Research (OER) [Division of Materials 
produce ordering-type { + ], which are useless for pre- Science of the Office of Basic Energy Sciences (BES)], 
dieting the miscibility gap phase diagram or the correct U.S. Department of Energy, under contract No. DE- 

AH,.,,, > 0. These conflicts are resolved [5] by using G(x) AC36-83CH10093* 
in the Ising-like expansion. 

We conclude that: 

(i) The IMC algorithm provides a set of pair interac- 
tions which accurately reproduces the input SRO 
whether or not multibody interactions are used to gen- 
erate this input. When only pair interactions are involved, 
the inverse procedure can even provide accurate values 
of structural energy differences, ordering energies, and 
energies of SRO. 

(ii) However, when multibody interactions are phy- 
sically important, even the pair interactions are incor- 
rectly determined by the inversion of SRO. The structural 
or ordering energies deduced from the inverse procedure 
can thus contain substantial errors. 

(iii) Finding a set of interactions which reproduces a 
given set of SRO is found to be a non-unique process: 
dramatically different sets of interactions (one set with 
pairs only, one set with pairs and multibodies) may still 
produce quantitatively the same SRO. Thus, comparing 
sets of interactions from IMC with other sets of 
interactions may be unwarranted. However, comparing 
a theoretical SRO pattern to a measured one is a sound 
procedure. 

(iv) Inverting the SRO always removes information 
on energy terms that are SRO-independent, e.g. G(x). 
This loss prevents, in principle, the interactions deduced 
from SRO from being applied to predict phase-coexis- 
tence regions of the phase diagram or AH,,. 
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