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Abstract 

The theory of phase stability in the Ni-Au alloy system is a popular topic due to the large size mismatch between Ni and 
Au, which makes the effects of atomic relaxation critical and also to the fact that Ni-Au exhibits a phase separation 
tendency at low temperatures, but measurements at high-temperature show an ordering-type short-range order. We have 
clarified the wide disparity which exists in the previously calculated values of mixing energies and thermodynamic 
properties by computing ‘state-of-the-art’ energetics (full-potential, fully-relaxed LDA total energies) combined with 
‘state-of-the-art’ statistics (k-space cluster expansion with Monte Carlo simulations) for the Ni-Au system. We find: (i) 
LDA provides accurate mixing energies of disordered Ni,_,Au, alloys (A Hmi, I + 100 meV/atom) provided that both 
atomic relaxation (a - 100 meV/atom effect) and short-range order ( - 25 meV/atom) are taken into account properly. (ii) 
Previous studies using empirical potentials or approximated LDA methods often underestimate the formation energy of 
ordered compounds and hence also underestimate the mixing energy of random alloys. (iii) Measured values of the total 
entropy of mixing combined with calculated values of the configurational entropy demonstrate that the non-configurational 
entropy in Ni-Au is large and leads to a significant reduction in miscibility gap temperature. (iv) The calculated short-range 
order agrees well with measurements and both predict ordering in the disordered phase. (v) Consequently, using inverse 
Monte Carlo to extract interaction energies from the measured/calculated short-range order in Ni-Au would result in 
interactions which would produce ordering-type mixing energies, in contradiction with both experimental measurements and 
precise LDA calculations. 

1. Introduction tion tendency at low temperatures and positive mix- 

The Ni-Au alloy system is physically interesting 

because it exhibits on the one hand a phase separa- 

* Corresponding author. E-mail: cmw@sst.nrel.gov. 

ing enthalpies [1] and on the other hand exhibits at 

high temperatures an ordering-type short-range order 

(SRO) pattern [2] which, in reciprocal space, shows 

peak intensity away from the r-point, despite the 

fact that phase-separating systems are expected to 
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show a peak at r. ’ Also, the fee Ni and Au 
constituents possess a large lattice mismatch (Au/a 
- 15%), thus making this system a critical test for 
any alloy phase stability theory hoping to capture the 
effects of atomic relaxation. Important early experi- 
mental and theoretical work on this alloy includes 
the work of Moss et al. [3,4], Cohen et al. [2,.5,6] and 

Cook and de Fontaine [7]. The coexistence of phase 
separation (at low T) with short-range ordering (at 
high T) in the same alloy system might have been 
naively construed to imply a change from repulsive 
(‘ferromagnetic’) interactions at low T to attractive 
(‘anti-ferromagnetic’) interactions at higher T. The 
change would have been surprising, given that no 
electronic, magnetic, or structural change is observed 

in this temperature range. The answer to this puzzle 
was given by Lu and Zunge [81: The excess energy 
for a disordered Ni , _ ., Au I alloy or an ordered com- 
pound with configuration of type (T is given by: 

and may be written [9] AH = A E + A EvD, where 
AC is the constant-volume, ‘spin-flip’ energy re- 
quired to create the configuration u out of Ni and 
Au, each already prepared at the alloy lattice con- 
stant a& and A E,,, is the volume deformation 
energy required to hydrostatically deform Ni and Au 
from their respective lattice parameters a,Nb and u&” 

’ Using diffuse X-ray scattering, Wu and Cohen [2] measured 

the SRO of a Ni,,Auob alloy and found: (I) A large. positive 

second neighbor Warren-Cowley SRO parameter, and (2) in their 

simulation, they noted clusters of Ni atoms, with the wavelength 

of these clusters corresponding to the peak of the measured SRO 

pattern in reciprocal space, k,,, - (0.6, 0,O). These facts indicate 

a short-range clustering tendency along the (100) direction. Al- 

though our calculations agree with these observations, there ap- 
pears to be a semantic problem of how to characterize these facts. 

When considering all of the measured data, WC classify the 
measured SRO pattern as ordering-r)lpe since (I) The Warren- 

Cowley SRO parameters in real-space show strong negative 
(ordering-type) values in many shells other than second neighbor, 

indicating that the clustering tendency in the second shell is 

competing with an ordering tendency in many other shells. (2) 
The total SRO pattern in reciprocal space (including 20 real-space 

shells) shows peaks awuy from the r-point, the typical wavevec- 

tor for clustering-type tendencies. 

to a&. In Ref. [S], it is demonstrated that SRO is 
determined by the constant-volume energy change 
Ae, which is negative (ordering, or ‘anti-ferromag- 
netic’) in Ni-Au, indicating an ordering tendency of 
SRO. However, AE,, = G(X) is large and positive, 

making AH > 0. And, since long-range order is 
determined by AH, Ni-Au shows phase-separating 
(‘ferromagnetic’) long-range order. This analysis 
leads to two unexpected conclusions: first, that the 
time-honored Ising-like representation of alloy ther- 
modynamics which includes only ‘spin-flip’ energies 
of the A E type, but ignores the elastic energy G(x) 
will fail to explain basic stability trends for systems 
such as Ni-Au. Second, since measurements or cal- 
culations of the SRO are insensitive to physical 
effects (i.e. elastic deformation AE,,) that control 
measurements/calculations of mixing enthalpies 
AH, the often-used practice (see e.g. Ref. [lo- 131 of 
‘inverting’ the SRO profile to extract interaction 
energies that are then used to predict mixing en- 
thalpies is findamentuElyflawed. Specifically, inver- 
sion of the SRO of Ni-Au will produce ordering-like 
interaction energies which, when used to calculate 
mixing enthalpies, will produce (ordering-like) nega- 
tive values, while the measured ones are strongly 
positive [ 1,141. 

For these and other reasons, theoretical investiga- 
tions of phase stability in Ni-Au have recently be- 
come quite popular [8,15-221 (Table 1). These calcu- 
lations are distinguished by the methods used for (i) 
energetics (Z’= 0 K) and (ii) statistics (T f 0). En- 
ergy calculations (T = 0 K) for this system have 
been performed by a wide variety of techniques: 
first-principles calculations, both full-potential 
(FLAPW [8] and FLMTO [ 151) and atomic-sphere- 
approximation (LMTO [16-181 and ASW [I’,]), as 
well as semi-empirical (EAM [20]) and empirical 
potentials [ 1 5,21,22]. There are significant variations 
in the computed energetics (Table I). Statistics have 
been applied to these calculations using cluster ex- 
pansions (CE) such as E-G [9], Connolly-Williams 
[23] and second-order expansions [24]. 

The purpose of this paper is thus three-fold: 
First, we would like to clarify the conflicting 

energetic and statistical results (Table 1) by comput- 
ing ‘state-of-the-art’ energetics for Ni-Au alloys 
(full-potential LAPW total energies including full 
atomic relaxation) combined with ‘state-of-the-art’ 
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Table I 

Summary of energy calculations performed for Ni, _ 1 Au, alloys. Shown are the methods used to compute T = 0 energetics, as well as the 

type of cluster expansion (CE) and statistics used. Also given is the mixing energy of the T -+ = random alloy near x = I /2 and the 

calculated miscibility gap temperature, if available. FLAPW = full-potential linearized augmented plane wave method, FLMTO = full- 

potential linear muffin-tin orbital method, ASW = augmented spherical wave method, LMTO-ASA = linear muffin-tin orbital method in the 

atomic sphere approximation, EAM = embedded atom method, MC = Monte Carlo, CVM = cluster variation method, MF = mean-field, 

SOE = second-order expansion 

Authors T = 0 energy Method Results 

cluster expansion technique statistics AH@ nl,r TMo (K) 

Wolverton and Zunger a FLAPW 

Lu and Zunger b FLAPW 

Deutsch and Pasture] ’ FLMTO 

Taliizawa, Terakura, and Mohri d ASW 

Amador and Bozzolo ’ LMTO-ASA 

Colinet et al. f LMTO-ASA 

Morgan and de Fontaine s LMTO-ASA + ‘Elastic Springs’ 

Eymery et al. h empir. potential 

Tetot and Fine1 ’ empir. potential 

Deutsch and Pasture1 ’ empir. potential 

Asta and Foiles j EAM 

Expt. (calorimetry) T = 1150 K k 

Expt. (EMF) T = i 173 K ’ 
Expt. (phase diagram) 

k-space CE 

e-G 

t-G 

cw 

cw 

E-G 

E-G 

simulation 

simulation 

SOE 

MC 

MC 

none 

CVM 

CVM 

CVM 

CVM 

none 

MC 

none 

MC/MF 

+ 118 

+ 127 

+ 136 

+ 170 

+ 150 

+67 1200-1400 

+98 2330 

+60 

+48m 950 

f83 

+78 2460 

+76 

+77 
1083 

a Present results. b Ref. [s]. ’ Ref. [15]. d Ref. [19]. ’ Ref. 1161. f Ref. [17]. g Ref. [18]. h Ref. [22]. ’ Ref. [2l]. j Ref. [20]. 

’ Ref. [I]. ’ Ref. [ 141. mAtT=1150K. 

statistics (a k-space CE [25] with Monte Carlo simu- 
lations). These computations will clarify whether the 
better agreement with experimental AH obtained by 
approximated methods (e.g. empirical and semi-em- 
pirical potentials, as well as atomic-sphere-ap- 
proximation methods) relative to full LDA methods 
is fundamental or accidental. 

Second, we would like to address the issue of 
why the calculated miscibility gap temperatures are 
often much too high compared with the experimen- 
tally assessed phase diagram [ 11. In Table 1, one can 
see a fixed ratio between calculated miscibility gap 
temperatures TMG and the calculated A Hmi,. In fact, 
all previous calculations (except the EAM calcula- 
tions of Asta and Foiles [20]) very nearly follow the 
ratio obtained using mean-field configurational en- 
tropy: kBTMG/A H,,,i, = 2. However, the experimen- 
tal value of this ratio is 1.2. We will examine this 
apparent discrepancy between experimental A Hmi, 

and TMG below. 
Third, we would like to examine the SRO in 

Ni-Au and discuss the implications of this SRO on 
‘inverse’ techniques, mentioned above, for calculat- 
ing phase stability in alloys. We will offer a chal- 

lenge to practitioners of the inverse Monte Carlo 
method. 

2. Checking ordered compound formation ener- 
gies 

Table 1 summarizes the results of previous calcu- 
lations on the mixing enthalpies of random Ni-Au 
alloys. The wide discrepancy between calculated val- 
ues of A H,,,i, (48- 170 meV/atom) is apparent from 
this table. Since mixing enthalpies A H,,,i, of random 
alloys can be expressed (see e.g. Eq. 3b in Ref. [26]) 
as a linear combination of formation enthalpies 
A H,(V) of certain ordered compounds {(T], the dis- 
crepancies in A H,,,ix must reflect discrepancies in 
A H,(a). But formation enthalpies of small-unit-cell 
ordered compounds can be computed accurately and 
reliably via full-potential’ fully-relaxed LDA meth- 
ods. Our strategy will thus be to trace the source of 
the discrepancy in AHmiX to the values of formation 
energies of various Ni,,Au, ordered compounds, as 
shown in Table 2. Examining this table leads to 
several interesting points regarding the energetics in 
Ni-Au. 
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Table 2 
Comparison of formation enthalpies AH& a) for Ni-Au ordered compounds. Nomenclature for the ordered structures is the same as that 

used in Ref. [26]. All energies in meV/atom. Numbers in parentheses indicate unrelaxed energies 

Structure Fully relaxed FLAPW a Partially FLMTO ’ ASW 4 LMTO e Empirical potential ’ EAM ’ 
relaxed 

FLAPW ’ 

NiAu (LI n) f76.l (+98.1) + 76.8 + 79.4 ( + 96.4) (+59) (+ 116.6) +57.9(+73.9) +21.4(+91.1) 

Ni2Au, (22) + 70.2 (+ 286.7) + 124.3 + 123.1 (+300.1) (+213.4) +62.3 (+ 127.7) ~ 130.3 (+ 208.6) 

NiAu (Ll ,) + 166.8 ( + 192.1) + 167.6 + 175.4 ( + 177.9) + 72.9 ( + 159.7) 

NiAu (‘40’) + 84.8 (+ 93.5) + 83.8 + 89.9 (-t 114.3) _ I .9 ( + 96.4) 

Nt,Au (Ll,) + 77.5 +75.5 + 80.7 + 42 + 92.4 + 58. I +77.1 

Ni,Au(DO,,) +75.0(+75.0) +81.5 (+ 95.3) 

NiAu, (Ll 2) + 78.9 + 78.2 +7x.0 + 52 + 89.4 +54.1 + 86. I 

NiAu, (DOZz) + 68.6 ( + 68.7) + 68.0 (C 76.4) 

a Present results. Complete atomic relaxation via quantum mechanical forces and total-energy minimization. 

’ Ref. [8]. Partial atomic relaxation via continuum elasticity, using Eqs. (2)-(6). 

’ Ref. [ 151. 

’ Ref. [l91. 

’ Ref. [l8]. LMTO-ASA with sphere radir chosen to minimize charge transfer. 

’ Ref. [20]. 

2.1. FLMTO versus ASA methods (LMTO, ASW) 

In comparing the full-potential LMTO [IS] to 
LMTO-ASA [ 181 calculations, one can see signifi- 
cant and strongly configuration-dependent discrepan- 
cies, even when considering unrelaxed configura- 
tions. For example, the 22 structure (a Ni,Au, (001) 
superlattice) has an unrelaxed formation energy 
which is nearly 100 meV/atom lower in the LMTO- 
ASA calculation than in the full-potential LMTO 
one. Thus, the ASA-based calculations (LMTO, 
ASW) in the Ni-Au system cannot be relied upon 
for the kind of quantitative energetics required in 
phase stability studies (for a list of many cases in 
which ASA and full-potential formation energies 
significantly disagree see Table 1 in Ref. [27]). 

2.2. Harmonic versus anharmonic relaxation 

In a large lattice-mismatched system like Ni-Au, where Ei,“) and a!$) are the equilibrium energy and 
the effects of atomic relaxation are likely to be lattice constant of the cubic material A. A E$; is the 
crucial. Although straightforward, fully relaxing all energy of the alloy constituent subject to he biaxial 
of the cell-internal and cell-external degrees of free- constraint that the lattice constant perpendicular to i 
dom can be computer intensive. One alternative to be externally fixed at a, . AE,,,,(a.) is simply the 
full atomic relaxation (using quantum mechanical deformation energy change upon hydrostatically dis- 
forces and total energy minimization) which has torting the material from a,, to a I . The central 
been used in Ni-Au [8] is to use continuum elasticity quantity in these elastic calculations is the ‘strain 

theory [28] to find the relaxed geometry, with a 
subsequent LDA calculation with this geometry to 
find the relaxed energetics. Continuum elasticity the- 
ory can be used as a relaxation model by realizing 
that many ordering Ni,, Au, compounds can be de- 
scribed as ‘superlattices’ along some special orienta- 
tions i. Continuum elasticity then provides the equi- 
librium interlayer spacing ccq along i as a function 
of the externally-fixed perpendicular lattice constant 
a, as the minimum of the epitaxial strain energy 
due to the external constraint: 

c,.~( I;, aL) = a$) + [2 - 3q’“‘( aI , “)[ a::’ - al] 

+ . . . (2) 

AE$;(a, , i) 
q(al’i)= AE 

hulk aL 
( ) 



C. Wolverton, A. Zunger/Computational Materials Science 8 (1997) 107-121 Ill 

reduction factor’ q(a, , iI. In continuum elasticity 
theories, q(a, , 8) is given by 

4(a, ’ x^) = 1 -B/[C,, + ~(a,, /?)A] (4) 

where 

A=C,-(C,, -C,,)/2 (5) 

is the elastic anisotropy, B = CC,, + 2C,,)/3 is the 
bulk modulus and Cij are elastic constants. In the 
ham?onic approximation, q(a I , ii> is fu$her as- 
sumed to be a, -independent and yharm(k) is the 
following geometric function for the direction f = (I, 
m, n): 

Yharnl(l m, n) 

4( Pm2 + m2n2 + n212) 
= 

(12+m2+n2)’ 

= G&G K,( 1, m, n) - -&K,(i, m, n) 
L I 

(6) 
where K, are the Kubic harmonics of angular mo- 
mentum L. 

Using Eqs. (2)-(6) thus provides predicted re- 
laxed geometries c, <s, a,) for alloy compounds 
(e.g. the 22 structure) given the elastic constants and 
a(‘). Indeed, these equations have been routinely =l 
used (see review in Ref. [29]) to predict the distor- 
tion ceq - aeq of films grown epitaxially on a sub- 
strate with lateral lattice constant a I . Comparison to 
LDA calculations [30] shows that for semiconductors 
with lattice mismatch (ucq - a I )/a I ,< 7%, the har- 
monic expressions (Eqs. (4)-(6)) work very well 
down to a monolayer thickness. However, we find 
that for noble- and transition-metal alloys with a 
much larger lattice mismatch (e.g. Ni-Au, Cu-Au 
with Au/u = 15%, 12%, respectively), anharmonic 
corrections are important. As we will see below in 
Section 3.3, this is manifested by the fact that r(fi> 
of Eq. (4) now has additional terms to those appear- 
ing in the harmonic form of Eq. (6). These anhar- * 
manic terms in y(k) lead via Eq. (4) to corrections 

to s(a, t f) and consequently via Eq. (2) to the 
relaxation of the lattice constant c,,(R). Indeed, us- 
ing the same FLAPW as Ref. [8], but minimizing the 
total energy quantum-mechanically (‘fully relaxed’ 
in Table 2) rather than via the harmonic expression 

of Eq. (4) (‘partially relaxed’ in Table 2), we find a 
lower-energy relaxation for 22: The LDA energy 
minimization gives A H(Z2) = + 70.2 meV/atom, 
while LDA with harmonic relaxation gives + 124.3. 
For other structures, the effect is much lower. Never- 
theless, anharmonic relaxation in Ni-Au alloys is 
large and cannot be neglected. 

2.3. Empirical methods: Getting the right AH,,,i,(x, 

T) for the wrong reason? 

We see from Table 1 that the methods that use 
empirical evaluations of A Hmi,(1/2, m> [15,18,20- 
22] produce results that are lower and thus closer to 

the measured A H,,,(1/2, 1150) than methods that 
use converged, full potential, fully relaxed ap- 
proaches (i.e. the present work and Refs. [8,15]). 
Since there is a proportionality between AHmix and 
AH,(a), we surmise that the empirical methods will 
produce formation energies A H,(a) of ordered 
compounds that are lower than the LDA results for 
such systems. Indeed, Table 2 shows the formation 
energies of two of the empirical potential methods. 
By comparing these numbers to full-potential LDA 
energies, one can see that the empirical potentials 

systematically underestimate the formation energies 
of ordered compounds. Since the LDA method is 
expected to reproduce formation enthalpies of 
small-unit-cell ordered structures rather accurately 
and since FLAPW gives a precise representation of 
the LDA, we think that the underestimation of 
FLAPW energies by the empirical methods is a 
rather serious limitation of these methods. The EAM 
of Ref. [20] was fit to the unrelaxed FLAPW calcula- 
tions of Ref. [8] and thus reproduces these energies 
fairly well (except for the 22 structure). However, 
the EAM severely overestimates the energetic effect 
of relaxation and hence produces relaxed formation 
energies which are much lower than LDA, and in 
some cases are even negative ‘. It would be desir- 
able to see more formation energies of ordered com- 
pounds from the empirical methods to determine the 

* The Ni-Au system is especially difficult for the EAM. Simi- 

lar comparisons between EAM and LDA for other systems (e.g. 

Cu-Ag) have yielded EAM results significantly closer to LDA 

1311. 
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expectation of underestimation of A H,( CT > relative 
to LDA. 

In summary, the reason that empirical methods 

3. Present calculations: FLAPW with k-space 
cluster expansion 

agree with measured random-alloy mixing enthalpy 
better than LDA methods is a systematic underesti- 
mation by the empirical methods of even the ordered 

compound energies. 

3.1. FLAPW calculations of ordered compounds 

We have performed first-principles full-potential 
LAPW [32] calculations for pure Ni, pure Au, and a 

Table 3 

Listing of the LAPW calculated unrelaxed and relaxed A H(u) (in meV/atom) for Ni, _ 1 Au I_ Many of the structures calculated here can 

be characterized as a (Ni),(Au), superlattice of orientation 1. We use the nomenclature of Ref. [26] for structure names 

Orientation formula [OQll [OIlI 10121 [Ill1 [I131 

AB L’O 
Unrelaxed +98.1 

Relaxed +76.l 

CE (relaxed) + 74.8 

A,B 
Unrelaxed 

Relaxed 

CE (relaxed) 

Pl 
+ 207.8 

+ 105.7 

+ 105.9 

AB, 
Unrelaxed 

Relaxed 

CE (relaxed) 

P2 
+ 151.7 

+ 38.3 

+ 37.8 

A,B 
Unrelaxed 

Relaxed 

CE (relaxed) 

Zl 

+221.7 

+ 89.9 
+ 94.3 

AB, 
Unrelaxed 

Relaxed 

CE (relaxed) 

23 

+ 142.0 

+ 32.4 

+ 28.2 

A,B, 
Unrelaxed 

Relaxed 

CE (relaxed) 

22 

+ 286.7 

+ 70.2 

+ 69.9 

A,,B,,(P~~) 
Unrelaxed 

Relaxed 

CE (relaxed) 

+ 576.2 

+ 30.8 

+ 30.8 

Other structures 

Unrelaxed 

Relaxed 

CE (relaxed) 

~1, (A,B) 
+ 77.5 

+ 77.5 

+ 80.7 

L’O 
f98.1 

t76.1 

+ 74.8 

Yl 
+ 123.3 

+ 98.9 

+ 102.4 

Y2 
+ 126.3 

+ 102.6 

+ 98.8 

Yl 

+ 148.5 

+ 99.2 
c91.3 

Y3 

+ 104.1 

+ 78.7 
+ 77.7 

Y2 

+ 192.3 

+ 96.6 
+ 101.1 

+ 576.2 
+ 117.7 

+ 116.1 

LI, CAB,) 
+ 78.9 

+ 78.9 

+ 78.6 

L’O 
+98.1 

+76.1 

+ 74.8 

“0~ 
+ 75.0 

+ 75.0 

+69.l 

DO,, 
+ 68.7 

+ 68.6 

+ 67.6 

‘40’ 

+ 93.5 

+ 84.8 

+ 88.3 

+ 576.2 

+ 84.8 

+ 86.8 

~7 (A,B) 
+ 82.9 
+ 82.9 

+ 98.5 

L’, 
+ 192.3 

+ 166.8 

+ 167.1 

cul 

+ 288.5 

+ 202.2 

+ 208.4 

a2 

+ 200.9 

+ 100.9 

+ 94.5 

VI 

+ 290.8 

+ 193.7 

+ 189.6 

v3 
+ 172.8 

+ 83.0 
+79.1 

v2 

+ 335.8 
+ 162.4 

+ 166.7 

+ 516.2 

+ 173.8 

+ 172.5 

D7, (A, B) 
56.8 
56.8 

57.6 

L’, 
+ 192.3 

+ 166.8 

+ 167.1 

WI 

+ 125.7 

+ 120.8 

w3 

+ 88.4 
+ 83.2 

w2 

+ 144.2 

+ 93.6 
+ 99.3 

+ 576.2 

+ 119.8 

+ 117.9 

SQS'& (A,B,) sw14, (A,B,) Z6(A,B, - 100) Z5 (A,B, - 100) 

Unrelaxed + 183.2 + 118.2 + 355.5 + 273.3 

Relaxed + 96.8 + 59.8 + 63.2 +57.1 

CE (relaxed) +81.5 + 75.0 + 62.5 + 57.9 
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large number (31) of fee-based Ni-Au compounds in 

order to construct an accurate cluster expansion. The 
total energy of each compound is fully minimized 
with respect to volume, cell-internal, and cell-exter- 

nal 3 coordinates using quantum-mechanical forces. 
We have used the exchange correlation of Wigner 
[33]. The muffin-tin radii are chosen to be 2.2 a.u. 
for Ni and 2.4 a.u. for Au. Brillouin-zone integra- 
tions are performed using the equivalent k-point 
sampling method [34], with the k-points for each 

compound all mapping into the same 60 special 
k-points for the fee structure. This mapping guaran- 

tees that the total energy per atom of an elemental 
metal calculated either with the fee unit cell or with 
a lower symmetry (e.g. any of the compounds) are 
identical. All calculations performed are non-mag- 
netic. (The spin polarization energy difference be- 
tween ferro- and non-magnetic fee Ni was calculated 

and found to be - 50 meV/atom.) 
The 31 calculated LAPW formation energies are 

given in Table 3. Both relaxed and unrelaxed (total 
energy minimized with respect to volume, but with 
cell-internal and cell-external coordinates held fixed 
at ideal fee positions) formation energies are shown. 
The nomenclature of the compounds studied is the 
same as given in Ref. [26]. Many of the compounds 
considered can be described as Ni, Au, ‘super- 
lattices’ along a particular orientation I;-: ‘ 

Ni,Au,: [loo], [ill], 

Ni,Au,: [lOO], [Oil], [ill], 

Ni,Au,: [lOOI, [Oil], [ill], 

Ni,Au,: [loo], [Oil], [201], [Ill], [311], 

Ni,Au,: [loo], [Oil], [201], [Ill], [311], 

Ni,Au,: [loo], [Oil], [201], [ill], [311], 

Ni,Au,: [loo], 

Ni,Au,: [lOOI. 

(7) 

’ Generally, it was found that relaxing the cell-internal degrees 

of freedom provided much more energy lowering (by roughly a 
factor of 10) than the energy lowering of cell-external coordinates. 

For some low-symmetry monoclinic structures relaxation of the 
length of the unit cell vectors provided an insignificant amount of 

energy lowering and thus the energy lowering associated with the 

variation of the angle of the unit cell vectors was neglected. 

We also calculated the energies of six other struc- 
tures: Ll,(Ni,Au and NiAu,), D7(Ni,Au and 
NiAu,) and two g-atom ‘special quasi-random struc- 
tures’ 1351, SQS14, (N&Au, and Ni,Au,). In addi- 
tion, the Ni,Au, long-period superlattice limits (p, 
q + a> needed in the construction of the k-space 
cluster expansion (see below) were computed for six 
principal directions: [loo], [Oil], [201], [ll 11, [31 l] 
and [221]. The numerical error of the LAPW calcula- 
tions of AH, is estimated to be N 10 meV/atom or 
less. 

3.2. k-space cluster expansion 

The Ni-Au formation energies AH, for struc- 
tures (T are then mapped onto a cluster expansion 
using the k-space formulation of Laks et al. [3]. 
Rather than a cluster expansion of AH,, we will 
expand with respect to a reference energy: 

A&( a) = AHLDA( a) - Eref (8) 

We will separate the CE into two parts: (i) the terms 
corresponding to pair interactions with arbitrary sep- 
aration will be conveniently summed using the recip- 
rocal space concentration-wave formalism and (ii> all 
terms but the pairs will be cast in real-space: 

A.&,( a) = cJ( k)lS( k, o)l* + c+$lr,( 0) 
k f 

(9) 

The first summation includes all pair figures and the 
second summation includes only non-pair figures. In 
the reciprocal-space summation in Eq. (9), J(k) and 
S(k, CT) are the lattice Fourier transforms of the 
real-space pair interactions and spin-occupation vari- 
ables, Jij and iii, respectively, and the spin-occupa- 
tion variables take the value $ = - l( + l), denoting 
the atom at site i is Ni(Au). The function J(k) is 
required to be a smooth function by minimizing the 
integral of the gradient of J(k). The real-space 
summation of Eq. (9) is over f, the symmetry-dis- 
tinct non-pair figures (points, triplets, etc.), Fr is the 
number of figures per lattice site,& is the Ismg-like 
interaction for the figure f and n_ is a product of 
the variables ii over all sites of the figure f, aver- 
aged over all symmetry equivalent figures of lattice 
sites. 
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The reference energy of Eq. (8) is chosen to 
contain infinite-range real-space elastic interaction 
terms. Subtracting these long-range terms from 
AH LDA before cluster expanding removes the k + 0 (T 
singularity and thus significantly enhances the con- 
vergence of the CE [25]. The form used for Eref is 

Fe, = 4xc11_x) cAE;qS(k x)1@, u>I’ (10) 
k 

where AEE\(i, x) is the equilibrium constituent 
strain energy, defined as the energy change when the 
bulk solids Ni and Au are deformed from their 

equilibrium cubic lattice constants uNi and uAu to a 
common lattice constant a, in the direction perpen- 
dicular to il. A,!$:( i, x) can thus be written as the 
minimum of the following expression with respect to 

a, 

AE;;(i, x) = (1 -x)qNi(uL , k)AE,N,‘,,(aL) 

+xq*“(q, ~)AEi%(d (11) 

where q(*)(a, , $1 is given by Eq. (2). 
The final expression used for the formation en- 

ergy of any configuration (T is then 

AH(a) = cJ( k)lS( k, a)12 + cO,J,fi,( a) 
k f 

+ 4xcl1_ x> ~Wj( I;, x)lS( k, v)I’ 
k 

(‘2) 

0.5 

0.4 

0.1 

i”“““” 

6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 6.4 6.6 6.6 7.0 7.2 7.4 7.6 7.6 6.0 

al (a.u.) al (a.u.) 

The following input is needed to construct this 
Hamiltonian for Ni-Au: (i) the formation energies of 
a set of ordered fee-based compounds (required to fit 
the values of J(k) and J,.) and (ii) the epitaxial 
energies of fee Ni and fee Au (required to compute 
the anharmonic values of A EGqS(i, x>>. The output is 
a Hamiltonian (Eq. (12)) which (i) predicts the en- 

ergy of any fee-based configuration (i.e. not only 
ordered compounds), even lOOO-atom cells or larger, 
(ii) possesses the accuracy of fully-relaxed, full- 

potential LDA energetics and (iii) is sufficiently 
simple to evaluate that it can be used in Monte Carlo 
simulations and thereby extend LDA accuracy to 

finite temperatures. 

3.3. Anharmonic calculation of constituent strain 

Laks et al. [25] demonstrated that the calculation 
of A Eg!( f, x) of Eq. (11) is significantly simplified 
if one uses harmonic continuum elasticity theory (i.e. 
insert Eqs. (4)-(6) into Eq. (11)). However, we have 
already seen evidence of anharmonic elastic effects 
in Ni-Au. Thus, we have performed LDA calcula- 

tions of q(a i , 1) directly from its definition in Eq. 
(21, rather than using the harmonic approximation in 
Eq. (6). In Fig. 1, we show the results of the LAPW 
calculations of qNi(a, , f) and qAU(al , f) for six 
principal directions: (1001, (11 l), (1 lo), (2011, (311) 
and (221). It is clear that the calculated values of q 
are not independent of a i , but rather show a marked 
and non-trivial dependence on the perpendicular lat- 

Fig. I. LAPW calculations of y(“)(cr ~ , g) of Eq. (2) for Ni-Au. Shown are (a) qN’ and (b) Y*” for six principle directions. 
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tice constant. Thus, the lattice mismatch in Ni-Au 

appears to be too large for a harmonic continuum 
model of elasticity to be accurate. In particular, the 
value of qNi(a, , 100) is quite low upon expansion, 
indicating that Ni is elastically extremely soft in this 
direction. Au, on the other hand, becomes softest in 
the (201) direction for significant compression. In a 
separate publication [36], we will demonstrate that 
the auharmonic effects can be cast analytically in 
terms of the harmonic expressions of Eq. (4) by 
extending the expansion of y(i): 

r(Q = C&0@) (13) 
L 

to include angular momenta L = 6, 8 and 10 with the 
coefficients ~,(a I ) obtained from LDA calculations 
rather than the L = 0, 4 expression of Eq. (6) used 

before [25]. 
The results for qNi(u,, l) and qA"(al , i) are 

used to numerically minimize Eq. (11) and hence to 
find A Ez”,( 2, x). The results for the CS energies are 
shown in Fig. 2. Here, also, the anharmonic effects 
are seen quite strongly as AEEl(i, x) for some 
directions cross with other directions and asymme- 
tries of the various directions are not all the same 
(effects which could not occur in the harmonic 
model). The most prominent feature of AEE:(z, x) 
is that (100) is the softest elastic direction, which 
stems from the elastic softness of Ni along this 
direction. Ni being soft and Au being relatively hard 
along (100) leads to Ni(Au) being highly distorted 

200, I I I I I , 
L 

0 
0.0 0.2 0.4 0.6 0.6 1.0 
Ni x Au 

Fig. 2. LAPW calculations of A&,(2, x> for Ni-Au for six 
principle directions. 

40 - Ni-Au Pair Interactions (a) : 

20 

0 I I !,, ,,,’ 

-20 - 

-40 - 

0 0.5 1 1.5 2 2.5 3 3.5 4 

Rij I a 
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I 

Ni-Au Multibody Interactions 1 tb). 

3-body 4-body 

20 - 

g 
9 
%I 0 

J3 , 1 I I L4 

E K3 N3 P3 Q3 J4 K4 

-T 
-20 - 

-40 - 
i 
I I I 

Fig. 3. (a) Pair and (b) multibody interaction energies for Ni-Au. 

The multibody figures are defined by the following lattice sites, in 

units of a= 2 (the origin is contained in all figures): J,; (1 101, 

(101), K,; (110). (200), I$; (200), (002). P,; (110). (103). Q,; 
(1 lo), (220), J,; (1 IO), (101), (011). K,; (1 IO), (101), (200) and 

L,; (I lo), ClOl), (211). 

(nearly undistorted) for long-period (100) Ni-Au 
superlattices and also leads to the marked asymmetry 
in AE~~(lOO, X) towards the Ni-rich compositions. 
Similar arguments can be applied to explain the 
opposite asymmetry of the (201) strain. 

For E,, to be useful in the k-space CE, one must 
be able to know this energy for all directions, not 
merely the ones for which it was calculated. To 
obtain such a useful form, we fit the constituent 
strain results of Fig. 2 to a series of Kubic harmonics 
(0-10th order) consistent with cubic symmetry (L = 
0, 4, 6, 8, 10). This procedure provides not only a 
good fit of the calculated strain data, but also an 
analytic form to obtain the values of A EEl<f, x) for 
all directions. 
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O[.““““~““““““‘.j 
0 10 20 30 40 50 

Number of pair interactions, Npairs 

Fig. 4. Cluster expansion fitting error in Ni-Au versus the number 

of pair interactions included in the fit. 

3.4. Stability of the cluster expansion 

Using the calculated formation energies (AH,} 
(Table 3) and the anharmonic CS strain energy (Fig. 
2), we then fit the coefficients J(k) and Jf of the 
k-space CE using Eq. (9). We used all 33 calculated 
structures in the fit of the expansion, which included 
20 pair, 5 triplet and 3 quadruplet interactions. The 
standard deviation of the fitted energies relative to 
their LAPW values is 5.3 meV/atom, which is the 
same order of magnitude as the numerical uncertain- 
ties in LAPW. The results for pair and multibody 
interactions are shown in Fig. 3. 

In order for the expansion to have a useful predic- 
tive capability, tests must be performed to assess the 
stability of the fit. 

3.4.1. Changing the number of interactions 
We performed tests of the stability of the fit with 

respect to the number of pair interactions, NPai,, = 
(l-50). Fig. 4 shows the standard deviation of the 
fit as a function of the number of pair interactions 
included. It is clear that the fit is well converged for 
NPai,, = 20. We also tested the stability of the fit with 
respect to inclusion of more multibody interactions 
than are shown in Fig. 3. Including three additional 
triplet figures in the fit resulted in no change of the 
standard deviation of the fit, the added interactions 
had values < 2 meV/atom and the original interac- 
tions were changed by less than 2 meV/atom. Thus, 
the fit is stable with respect to the figures included 
(both pair and multibody). 

3.4.2. Changing the number of structures 
We also performed tests of the predictive ability 

of the fit by removing some structures from the fit. 
First, we removed three structures which were origi- 
nally fit quite well: 22, p2 and Ll 2 (NiAu,). Re- 
moving these structures from the input set resulted in 
their energies changing by < 1 meV/atom. How- 
ever, a much more critical test of the fit is to remove 

the structures which are fit most poorly: SQS 14, and 
SQS14,. Removing these structures from the fit 
changes their energies by only - 2-3 meV/atom. 
Thus, we are confident that the present k-space CE 
fit is both stable and predictive. 

4. Results of current calculations 

4.1. Mixing enthalpy: How good are previous calcu- 
lations? 

Using the k-space cluster expansion in combina- 
tion with a mixed real/reciprocal space Monte Carlo 
code (canonical), one can obtain thermodynamic 
properties of Ni-Au alloys. Fig. 5 shows the mixing 
enthalpy as a function of temperature, AH,,,,,(T). 
Monte Carlo calculations were performed for a 163 
= 4096 atom cell, with 100 Monte Carlo steps per 
site for averages. The simulation was started at an 
extremely high temperature, and slowly cooled down 
using a simulated annealing algorithm. Also shown 

Monte Carlo AH,,&) - Ni,,5Au0.5 

120 AH,ix (x=l/Z,T=-) 

-Disordered Phase 
0 Coherent Phase Separation I 

5ot.“““‘.“.““““““““,i 
1000 1500 2000 2500 3000 3500 4000 

T (K) 

Fig. 5. AH(T) computed for Ni,,Au,, from a combination of 

the k-space cluster expansion and Monte Carlo simulations. 
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in Fig. 5 is the value of the mixing energy of the 
completely random alloy. The difference between the 
Monte Carlo calculated AH,,,,,(T) and the random 
alloy energy is precisely the energetic effect of 
short-range order. We have fit the values of 
AH,,,,,(T) to linear and quadratic functions of p = 
l/k,T to extrapolate the values down in tempera- 
ture below the point at which coherent phase separa- 
tion occurs in the simulation. (Both fits gave virtu- 
ally identical results, so the linear fit is used here and 
below.) This allows us to ascertain the value of the 
mixing enthalpy at 1100 K, near the temperature 
where this quantity has been experimentally mea- 
sured. These results are tabulated in Table 4, which 
shows both the effects of atomic relaxation (- 100 
meV/atom) and SRO (- 2.5 meV/atom) on the 
mixing enthalpy and compares the value of atomi- 
cally relaxed and short-range ordered mixing energy 
with those values from experiment. One can see that 
by taking into account both relaxation and SRO, 
LDA produces a value for the mixing energy which 
differs from experiment by only 15-20 meV/atom. 
Thus, we conclude from this comparison that high 
quality LDA calculations provide accurate energetics 
for the Ni-Au system. 

The preceding discussion leads to a number of 
conclusions regarding previous calculations of 
A H,i, : 

(i) Since relaxation reduces AH,,,i, by - 100 
meV/atom, the unrelaxed A Hmi, values (‘& in 
Table 1) have to be reduced by this amount to 
appropriately compare with experiment. 

(ii) Since SRO reduces AH,i, by -25 
meV/atom, the results of previous calculations that 

Table 4 

A’%,, for Ni, ~Au~.~. All energies in meV/atom. SQS-4 refers 

to a Catom special quasi-random structure (Y 2). This table shows 

the effects of relaxation (first line minus second line) and short- 

range order (third line minus fourth line) on the mixing energy 

A&i, 

SQS-4 unrelaxed (7’ = m> 

SQS-4 relaxed (T = m) 

CE relaxed (T = m) 
CE relaxed (T = 1100 K) 

Expt. (calorimetry) T = 1150 K 

Expt. (EMF) T = I 175 K 

+ 192 

+97 
+I18 

+93 
i76 

+77 

omitted SRO (all except ‘i’ in Table 1) have to be 
adjusted accordingly. 

(iii) In light of the fact that the empirical poten- 
tial-based and ASA-based methods (LMTO and 
ASW) were shown to be inaccurate with respect to 
full-potential LDA methods for unrelaxed, ordered 
compounds (Table 2), the results of relaxed, mixing 

energies of random alloys appear to be questionable 
using these schemes. 

4.2. Configurational or non-conjgurational entropy? 

From the fit of the Monte Carlo data in Fig. 5, 
one can find the configurational entropy of the 

NiO.Y%., disordered phase by integrating the en- 
ergy down from infinite temperature (where the con- 
figurational entropy is known): 

AS(T)=AS(T=m)+E(T)/T-k,jo%(/Qdfi 

(14) 

The configurational entropy obtained from thermo- 
dynamic integration in this way is 

A&,,,(Ni,.,Au,., 3 T = 1100 K) = 0.56k,, (15) 
compared to the ‘ideal’ (infinite temperature) value 

of 

AS,,,f(NiO,,Au,,, , T + m) = 0.69k,, (16) 
This calculated value for the configurational entropy 
of mixing can be compared with the experimentally 
measured values of total entropy of mixing: Calori- 
metric measurements give A S(T = 1150 K) = l.O4k, 
[l] while EMF measurements give AS(T= 1173 K) 
= 1.08ka [14]. Thus, we can obtain an estimate of 
the non-con$gurational entropy and find it to be 

large: As,,,.,,,, (T - 1100 K) = 1.04 - 0.56 = 
0.48 k,. This non-configurational entropy is hence 
responsible for TMG being so small experimentally, 
compared to all the theoretical results. In fact, if we 
use the calculated A HmiX = 93 meV/atom and the 
combined ‘experimental/calculated’ A Snon_conf = 
0.48kn in the following formula: 

T 
2A Hmix 

MG = 
43 + 2~s”o”-co”f 

(17) 

we obtain TMG - 1100 K and kBTMG/A H,,,i, = 1.02, 
much closer to the experimental values (TMG - 1083 
K and kgTMG/AHmix = 1.2) than using the above 
formula neglecting non-configurational entropy (TM, 
- 2150 K and k,T,,/A H,,,i, = 2.0). 
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From this consideration of non-configurational ef- 
fects, one should conclude that the accuracy of a 
calculation with configurational degrees of freedom 
only (as is done in most of the previous 
calculations 4), should be determined by looking at 
the energetics, not the transition temperatures. Thus, 

previous calculations which give ‘good’ transition 
temperatures do so precisely because they have ‘bad’ 
energetics. 

4.3. Short-range order of Ni, _ , Au, solid solutions 

Using the k-space CE and Monte Carlo simula- 
tions, we may also compute the SRO of disordered 
Ni , _,YAu, alloys. We show the results of our SRO 
simulations for Ni,,Au,,, in Fig. 6. For the SRO 
Monte Carlo calculations, a cell of 243 = 13824 
atoms was used, with 100 Monte Carlo steps for 
equilibration, with averages taken over the subse- 
quent 500 steps. Several calculations and measure- 
ments of the SRO exist in the literature: Wu and 
Cohen [2] used diffuse X-ray scattering to deduce the 
atomic SRO of N~,,Au~.~ at T = 1023 K. The mea- 
sured diffuse intensity due to SRO must be separated 
from all the other contributions which give rise to 
diffuse intensity and for this purpose Wu and Cohen 
used 25 real-space Fourier shells of SRO parameters, 
and found the rather surprising result that the peak 
intensity in reciprocal space due to SRO is of order- 
ing-type and occurs at the point ksRo = (0.6, 0, O), 
rather than k,,, = (0, 0, 0) which would be ex- 
pected for a clustering alloy. Several authors have 
tried to account for this ordering nature of the SRO: 
Lu and Zunger [8] calculated the SRO (using 21 
real-space shells) and found peaks at - (0.8, 0, 0) 
whereas Asta and Foiles [20] used an embedded 
atom method and found the SRO (using 8 real-space 
shells) to peak at - (0.5, 0, 0). Our calculations for 
the SRO of Ni,,Au,,, are given in Fig. 6. We have 
calculated the SRO at T = 2300 K, above the misci- 
bility gap temperature for our alloy Hamiltonian. We 
find that, using 8, 25 and 100 shells, the SRO peaks 

4 Some of the previous calculations (f; i, j of Table I) 

estimated the effects of vibrations on the phase diagram, either 
using a simple Debye model (J‘) with LDA bulk modulus calcula- 

tions or continuous-space Monte Carlo simulations (i, j) using the 

elastic response of an empirical potential. 

at (0.65, 0, 01, (0.40, 0, 0) and (0.38, 0, 0) respec- 
tively, in good agreement with both the measure- 
ments of Wu and Cohen (k,,, = (0.6, 0, 0) for 25 
shells) and also with previous calculations. 

Eq. (12) shows that the alloy Hamiltonian used in 
the Monte Carlo simulations is composed of three 
parts: the pair interaction terms, the multibody inter- 
action terms, and the constituent strain terms. It is 

interesting to see the effect of each of these portions 
of the alloy Hamiltonian on SRO. Thus, in addition 
to the ‘full’ calculations, which contain pairs, multi- 
bodies and constituent strain in the alloy Hamilto- 
nian, we have also computed the SRO with (i) the 
CS energy only and (ii> the CS energy plus the pair 
interactions. These results are shown in Fig. 7. (Be- 
cause the CS energy is non-analytic in reciprocal 
space about the origin, many Fourier coefficients are 
required to converge the SRO of CS alone; thus we 
show only results using 100 shells of parameters in 
Fig. 7.) One can see that the SRO with CS only is 
dominated by almost constant streaks of intensity 
along the I’- X line and very little intensity else- 
where. This SRO pattern is understandable when one 
considers that the constituent strain at this composi- 
tion (Fig. 2) is much softer (much lower in energy) 
in the (100) direction than along any other direction. 
Thus, (loo)-type fluctuations in the random alloy are 
energetically favored, and because the constituent 
strain is dependent only on direction and not on the 
length of the wavevector, one should expect that all 
fluctuations along the (100) directions will occur 
roughly equally, regardless of the length of the 
wavevector. This is precisely what we see in Fig. 7. 
Contrasting this SRO using CS only with that calcu- 
lated using both CS energy and pair interactions (but 
not multibody interactions) shows that the pair inter- 
actions create a peak in intensity along the I’- X 
line, but significantly closer to r than the peak 
intensity using the ‘full’ alloy Hamiltonian. Thus, 
while the effect of pairs is to create a peak near the 
r point, the multibody interactions move this peak 
out from r towards the X-point. 

4.4. Standard inverse Monte Carlo would giue un- 
physical interaction energies: A challenge 

The statistical problem we have solved here in- 
volves the calculation of the alloy SRO at high 
temperature for given alloy Hamiltonian ((Jzj), {J,} 
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Short-Range Order: NiO.4AuO.6, T=2300K 

8 Shells 

Fig. 6 

Short-Range Order: Ni04AuO.6, T=2300K 
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Fig. 6. Monte Carlo-calculated short-range order of Ni,,, Au,,, in the (hk0) plane using (a) 8, (b) 25 and (c) 100 shells of Warren Cowlcy 

SRO parameters. The peal\ intensity is the red shaded contour while the lowest contours are shaded blue. Contours arc separated by 0. I Laue 

unit in each plot. 

Fig. 7. Monte Carlo-calculated short-range order of Ni0,4A~0,6 using (a) constituent strain temrs only, (b) constituent strain and pair temrs 

and (c) constituent strain, pair and multibody terms in the alloy Hamiltonian. The peak intensity is the red shaded contour while the lowest 

contours are shaded blue. Contours are separated by 0.1 Laue unit in each plot. 
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and AE,,). However, a popular technique used to 
study phase stability in alloys involves the ‘inverse’ 
problem of determining a set of pair-only interac- 
tions (Aj} from a measured or calculated SRO pat- 
tern and the subsequent use of these pair interactions 
to determine thermodynamic properties other than 
the SRO. In fact, (Jyj) are often used to determine 
AHmiX or phase stability. As we have mentioned in 
the introduction and described more fully in Ref. 
[37], inverting the SRO always removes information 
on energy terms that are SRO-independent e.g. the 
volume deformation energy G(x). This loss pre- 
vents, in principle, the interactions deduced from 
SRO from being applied to predict physical proper- 
ties which depend on G(x), such as AH,,,. For 
example, in the case of Ni-Au, the SRO is of 
ordering type. Thus, we expect that inverting the 
SRO of Ni-Au (e.g. via inverse Monte Carlo) would 
produce interactions { Jj) which are of ordering type 
and using these interactions to predict the mixing 
enthalpy would result in the unphysical result A H,,,i, 
< 0. 

One might expect that by changing the tempera- 
ture, one could obtain a shift of the SRO from 
ordering to clustering type, and thus, the inverse 
technique would produce interactions which would 
correctly give AH,i, > 0. However, we have com- 
puted the SRO for several temperatures, and find no 
evidence of a shift in SRO to clustering type. 

A test of our expectations by any of the practi- 
tioners of inverse Monte Carlo would certainly be 
welcomed. To that end, our SRO calculations are 
available for use as input to inverse Monte Carlo to 
extract interactions. These SRO calculations are 
available for a variety of compositions and tempera- 
tures, each with a large number of real-space SRO 
parameters. It would be of great interest to see 
whether the interactions extracted from inverting the 
SRO of Ni-Au would produce the correct sign of 
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