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The effects of electron-hole interaction on the exciton energy of semiconductor quantum dots are
calculated using pseudopotential wave functions. A comparison with the widely used, but never tested,
effective-mass approximation (EMA) shows that the electron-hole Coulomb energy is significantly
(~40%) overestimated by the EMA, and that the scaling with the dot RiZe sublinear inl/R. The
exchange splitting is much smaller than the Coulomb energy, and in the case of CdSe quantum dots
shows significant deviations from tH¢R3 scaling predicted by the EMA. [S0031-9007(96)02243-0]

PACS numbers: 71.35.Cc, 73.20.Dx

Perhaps the single most important quantity that deter€oulomb and exchange interaction, leading to a strong de-
mines the optical properties of semiconductor quantunpendence of the exciton energy on the quantum dot size. In
dots is the exciton energy [1]. As the size of the quanthe strong confinement limit, where the size of the quantum
tum dot decreases from the bulk limit to the nanometedot is much smaller then the bulk exciton radius, correla-
range, quantum confinement effects significantly increasgon effects become negligible [2—4], and the electron-hole
both the single-particle energy gap and the electron-qoléloulomb and exchange integrals have the form
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where ¢, and ¢, are the microscopic electrofe) and

(h) hole single-particlewave functions of spino, and = the highly simplified one-band effective-mass approxi-

e is the dielectric constant of the quantum dot, whichmation (EMA) has been almost universally used to

is, in general, different from the bulk dielectric constant.estimate these quantities, even when the calculation of

Simple particle-in-a-box models [2,3,5] suggest that thehe single-particle energy gap requires more sophisticated

single-particle energy-gap shifte, = €, — e;’““‘ scales and reliable methods (such as multibdad p [16], tight-

as 1/R? with the size of the quantum dot, while the binding [6], or pseudopotentials [7,8]). In fact, the EMA

Coulomb energ¥c,. scales only as/R, so thatEco, < provides simple, analytical expressions fég,, and

A€, inthe limit R — 0. Recent calculations [6—10] have AEecn: Assuming an infinite potential barrier at the

shown, however, that (i) the scaling of the energy gap i®oundaries of the quantum dot, and using the envelope

slower than1/R?, mainly because of band nonparabol-functions of a noninteracting electron-hole pair, one

icity effects [6—8], and (ii) the dielectric constaatde-  obtains the well-known equations [5,12]

creases when the size is reduced [9,10], leading to a less 2

efficient exciton screening. These results point to the EEMA = Ceour < (3)

conclusion that the electron-hole Coulomb energy can be €R

as important as the single-particle energy gap in predict- a\3

ing the exciton energy of small semiconductor quantum AEEMA — Cexch<—x> E., (4)

dots. Furthermore, each excitonic energy level can be split R

by the electron-holexchangenteraction [11,12]. While whereR is the dimension of the quantum d&, anda,

the singlet-triplet splittingAE..., is exceedingly small are the bulk exciton exchange splitting and exciton radius,

(~0.1 meV) in bulk materials, it can be greatly enhancedrespectively, an@cqu1, Cexcn are dimensionless constants

by quantum confinement, and has been recently invoked tihnat depend only on the shape of the quantum dot [17].

explain the resonant Stokes shift between absorption arfor example, in the case of a spherical dot of radius

emission in Si [13,14] and CdSe [15] nanocrystals. R, the electron and hole ground-state envelope func-
Despite the quantitative importance of the electron-holgions f.(r) = fi(r) = 27 R)"2sin(zr/R)r~" yield

Coulomb and exchange energies in small quantum dot& Egs. (1) and (2 cou = 1.786 andCexcn, = 2.111.
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Despite the great popularity of the simple EMA ex- exchange splittingAE...;, is significantly smaller than
pressions (3) and (4), there are now reasons to believEc,,;, and in the case of CdSe quantum dots does not fol-
that the use of EMA wave functions to calculafg low the 1/R? scaling law predicted by the EMA. These
and AE.., is inadequate. Recent advances in compueonclusions have an immediate implication on the manner
tational physics [8], enabling the direct solution of thein which the results of electronic structure calculations are
Schrddinger equation for large quantum dots without rebeing currently compared with measured excitonic ener-
sorting to the EMA, have revealed that the microscopiayies [2,3,5-8,16].
wave functions are quite different from the EMA wave In the self-consistent field (SCF) approach the electron
functions. Figure 1 contrasts the valence-band maximurand hole single-particle wave functions are obtained by
and conduction-band minimum wave functions of a 6000-minimizing the exciton energy under the assumption of un-
atom GaAs quantum dot as obtained by a plane-waveorrelated exciton wave function. In the pseudopotential
pseudopotential calculation (see below) with the EMA enframework this leads to the coupled Hartree-like equations
velope functions used in Egs. (3) and (4) to evaluatg,

2
andAE..,. We see that the pseudopotential wave func- [—h— V% + Vps(re)—

tions are more extended than the EMA wave functions 2mo

and do not exhibit the simple sinelike envelope function e’ [, () 3 _

predicted by the EMA. We have calculated the electron- P T d ’”h}/’E(re) = Ecipe(re),  (59)
hole Coulomb and exchange energies of semiconductor 52

nanocrystals using such accurate, local-density approxi- [——V% + Vps(rp)+

mation (LDA)—derived pseudopotential wave functions. mo

We have considered quantum dots of 1V, 1lI-V, and 1I-VI e? [ (r)? 5 B

materials: Si (indirect gap at all sizes), GaAs (direct gap € Ir, — 1, d re}’l’h(rh) = Expn(ra),  (5D)

at large sizes and indirect gap at small sizes [18]), and i i
CdSe (direct gap at all sizes). We find that (i) the EMAWheremo is thebareelectron mass antd,(r), is the total
significantly overestimateshe Coulomb energ¥cou by m|croscop|cpseudopptent|al of t_he guantum dot, is given
as much as 40% in small quantum dots, (i) the quantit)here by a superposition of atomic screened potentials:
€Ecoun has asublinear dependent orl/R, and (iii) the Vps(r) = Z va(r — Ry). (6)

o
We use the atomic potentials of Ref. [8] for Si, Ref. [19]
for GaAs, and Ref. [20] for CdSe. These potentials were
PS EMA fitted to measured bulk transition energies, deformation
potentials, and effective masses, and to surface work
functions. Very significantly, these potentials were also
CBM CEM constrained to reproduce LDA-calculated bulk wave func-
tions (see procedure in Ref. [20]). The surface dangling
bonds are passivated using hydrogenlike potentials in or-
der to remove the surface states from the band gap and
to decouple the band-edge states from surfacelike states.
Equations (5a) and (5b) are solved self-consistently in
a plane-wave representation using the folded-spectrum
method [8] to single out the band-edge electron and
hole wave functions from the remaining eigenstates, with
a computational cost that scales only linearly with the
size of the system. The Coulomb energy is then ob-
tained from Eq. (1) afcou = (1/€) [ pr(x)Ve(r)dr,
where p,(r) = el (r)|? is the hole charge density and
V.(r), the electrostatic Coulomb potential due to the elec-
tron, satisfies the Poisson equatitV,(r) = —47p.(r)
with p.(r) = e|.(r)|>. The Poisson equation is solved
FIG. 1(color). The valence-band maximum (VBM) and inside a computational domain including the hydrogen-
conduction-band minimum (CBM) wave functions of a 6000- passivated quantum dot and a surrounding region of
atom (110) X (110) x (001) GaAs quantum dot, as obtained vacuum; the boundary conditions are obtained by a mul-
from a plane-wave pseudopotential calculation (left-hand S'de)tipole expansion of the electron Coulomb potential. The

are compared with the EMA envelope functions used in theb laci tor is di tized | id d
calculation of the Coulomb and exchange energies (right-hang@P'actan operator is discretized on a real-space grid, an

side). The wave function amplitude, averaged along the [001fh€ resulting linear system is solved using a conjugate-
direction, is plotted in the (001) plane. gradients algorithm.

VBM VEM
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A simpler approximation is to calculate perturbatively the pseudopotential Coulomb energy of several pairs of
Ecou from theunperturbedelectron and hole wave func- states close to the band edges, finding #ha,; is at most
tions 40 and 5, which are solutions of the single-particle 40 meV larger than the ground-state Coulomb energy.

Schrddinger equation There are several reasons for the overestimation of
R, o 0.0 the Coulomb energy by the EMA. First, the EMA
—2—mOV + Vis(r) |47(r) = €/47(r).  (7) envelope functions are required unrealistically to vanish

exactly at the boundary of the quantum dot, while the
The results of self-consistent and perturbative calculationgseudopotential wave functions are allowed to decay
for the exciton ground-state Coulomb energy [21,22] ofyariationally and spill out into the vacuum region, as
GaAs quantum dots are compared in Table . As we cafllustrated in Fig. 1. While the inclusion of a finite
see, the perturbative approach mimics the self-consistejotential barrier in the EMA calculations leads to a
results within 10%, so it is a reasonably good approximareduction of the Coulomb energy [23], the concept of
tion in the size range considered here. The validity of pera band discontinuity used by the EMA is ambiguous
turbation theory can be understood as follows. In smallyhen the quantum dot is embedded in glass, organic
quantum dots, where the Coulomb integral is larger, the unsplvents, or vacuum, and the applicability of the EMA
perturbed single-particle energy levels are widely spacediself becomes uncertain in these cases. Second, the
and perturbation theory can be applied to estimate electrogontribution to the Coulomb energy resulting from the
hole interaction. In larger quantum dots the energy levmicroscopic oscillations of the wave function (Fig. 1)
els are more closely spaced, but the Coulomb integral igre completely neglected in the EMA. Finally, even
smaller, and perturbation theory is still valid. The threewhen the microscopic oscillations are integrated out, the

highest occupied energy levels of GaAs quantum dots argseudopotentiamacroscopicenvelope function can still
very close in energy (two of them are actually degenerate).

This degeneracy is split by the electron-hole interaction in

the SCF calculation, but the splitting is very small (IeSSTABLE I1.  Electron-hole Coulomb and exchange energies of
than 2 meV in all the cases considered here). spherical Si quantum dots, rectangular GaAs quantum dots,
Using unperturbed electron-hole wave functions, weand wurtzite CdSe quantum boxes, as obtained from first-
have calculated the exciton Coulomb energy of Si, GaAs?rder perturbation theory. The columns labeled., and
and CdSe quantum dots of different sizes and shapes. Ttgou Show the unscreened Coulomb energy of the ground-

id clouding th Its by th tainties in the sizes ate electron-hole pair, calculated using pseudopotential wave
avoid clouding the results by the uncertainies In e SIZ€x ¢itong (PS), and effective-mass envelope functions (EMA).

dependent quantum dot dielectric constant [9,10], we Writehe screened Coulomb energsts,, = AR, /e is obtained
Ecoul = Acoul/ €, and calculate the coefficieAt,,. The  using a modified Penn model [22] for the dot dielectric
effective sizeR is obtained from the number of atoms  constantAEL., is the exciton exchange splitting.

asR = ao(yN)'/3, whereqy is the bulk lattice constant . . s s
and y = 3/32# for spherical Si dots of radiug, y = Eﬁec(%e size ‘?g\j“)' ’?g%‘ AEMA /4P (ﬁéﬁ}) ?rﬁg&‘)
1/8+/2 for rectangular GaAs dots of siZe X R X +/2R, Coul/ - Coul

and y = /3 ¢o/8ay for cubical wurtzite CdSe dots of Si spherical quantum dots

EMA PS

sizeR X R X R. The Coulomb energy of the exciton 75 2671 3.446 1.29 340 62
. . . 8.9 2.251 2.893 1.28 270 35
ground state [21] is compared in Table Il with the EMA 10.4 1954 2474 127 293 21
Coulomb energy obtained from Eq. (3). As we can see, 135 1670 1.907 114 176 13
the EMA consistently overestimatds.,, by as much as
40% in small quantum dots. We have also calculated GaAs rectangular quantum dots
9.8 2.845 3.947 1.39 374 93
TABLE I. Electron-hole Coulomb energy¥c,, of GaAs 1?? f%g g?ég 1‘;’2 ig% i?l
rectangular quantum boxes, obtained using the self-consistent : : : :
field approximation (SCF) and first-order perturbation theory 21.7 1.423 1.782 1.25 149 8
(FOPT). A modified Penn model [22] is used to evaluate the 25.7 1221 1.506 1.23 123 6
size-dependent dielectric constant. 29.7 1.076 1.303 121 106 4
- - 33.7 0.962 1.149 1.19 93
Effective size (A) EXE (mev) E&Qu (meV) 37.7 0.837 1.027 1.23 79
41.7 0.765 0.929 1.21 71
o S S 45.7 0.705 0.847  1.20 64
17'7 195 187 49.7 0.654 0.779 1.19 59
217 158 149 53.7 0.610 0.721 1.18 54
25.7 127 123 CdSe cubical qguantum dots
29.7 110 106 9.0 3.502 4.875 1.39 669 173
33.7 97 93 16.6 2.077 2.639 1.27 294 97
37.7 81 79 24.3 1.495 1.808 1.21 184 57
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