
PHYSICAL REVIEW B 15 JANUARY 1997-IVOLUME 55, NUMBER 3
Local-density-derived semiempirical nonlocal pseudopotentials
for InP with applications to large quantum dots

Huaxiang Fu and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

~Received 5 August 1996!

In the same way thatatomiccalculations have been used previously to extractbare ionic pseudopotentials,
self-consistentbulk calculations can be used to constructscreenedatomic pseudopotentials. We use such a
method to construct screened nonlocal atomic pseudopotentials for InP. A series of bulk, local-density-
approximation~LDA ! calculations are performed on a few InP crystal structures, covering a range of unit-cell
volumes, to produce bulk potentials$VLDA~G!%. By solving a set of linear equations, we extract from these
crystalline potentials the corresponding screenedatomic ‘‘spherical LDA’’ ~SLDA! potentialsvSLDA

a ~uqu! for
sitesa5In or P. In combination with the nonlocal part of the usual LDA pseudopotentials, these SLDA
potentials give band structures and wave functions that are virtually indistinguishable from the self-consistent
LDA results for bulk InP. In the next step, we apply linear changes to the local SLDA potentials~while keeping
the nonlocal potentials at their LDA values!, to fit the band structures toexperiment. Interestingly, this removal
of LDA eigenvalue errors requires only small and subtle changes in the potential—mostly an upshift in the
region near the cation core, withnearly no change at the bond center. Furthermore, the linear changes to the
SLDA potentials result mostly in an upshift of the conduction bands with little effect on the valence bands.
Because only small changes in the potential suffice to fit the bands to experimental results, the wave functions
remain virtually unchanged relative to those in the original LDA calculation. Hence, we obtain semiempirical
pseudopotentials which can produceab initio LDA-quality wave functions with experimentally measured band
structures, effective masses, and deformation potentials. The potentials obtained here were deposited on an
FTP site and can be used by interested readers. Since the resulting pseudopotentials are ‘‘soft’’~with small
high-momentum components!, they can be applied within a plane-wave basis in combination with a Gaussian
correction to large systems for which LDA calculations are prohibitively expensive. As an illustration, we
apply our InP screened atomic pseudopotentials to calculate quantum size effects on the band gaps of InP dots
with sizes up to 700 atoms. Good agreement is found between the theoretical and the experimental band gaps.
Fitting the calculated band gapsEg ~in unit of eV! versus the effective dot sizesD ~in unit of Å! gives
Eg51.45137.295/D1.16. This prediction differs significantly from the quadratic size dependenceD22.0 ex-
pected from simple effective-mass theory.@S0163-1829~97!05203-X#
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I. INTRODUCTION

Significant interest has recently arisen in the optical a
transport properties of semiconductor quantu
structures1–4—dots, wires, wells, and films—with typical lin
ear dimensions of 20–100 Å. A description of the electro
properties of such 103–104 atom structures using first
principles methods5 pertinent to bulk solids6,7 is currently
prohibitive. Furthermore, it has recently8,9 been shown tha
the continuum-type effective-mass-based methods10 may
sometimes be insufficient to describe such ‘‘small’’ stru
tures. An efficient, intermediate approach was recen
proposed:11,12one first extracts an approximately transfera
screened atomic pseudopotential from self-consistent fi
principles electronic structure calculations on a series of b
solids,13 and then uses it to define the potential of
nanostructure.11,12 The ensuing nanostructure Schro¨dinger
equation is then solved using a fast direct diagonaliza
method in a plane-wave basis.11 This approach is much faste
than traditional self-consistent first-principles methods5 used
for bulk solids14 in that: ~i! the Schro¨dinger equation is
solved but once, and~ii ! an efficient diagonalization metho
providing energy levels in a fixed ‘‘energy window’’ i
available and appropriate.11 Unlike effective-mass-base
550163-1829/97/55~3!/1642~12!/$10.00
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approaches,10 the method based on screened atomic pseu
potential allows us to treat explicitly the atomistic charac
of the nanostructure as well as surface effects, while perm
ting multiband and intervalley coupling. Unlike tight-bindin
methods,15,16 the current method usesexplicit and variation-
ally flexible basis functions, thus permitting direct compa
son of wave functions with local density approximatio
~LDA ! studies when available. Note, however, that unli
LDA approaches, the current method provides only el
tronic structure information~levels, transition probabilities
wave functions! but no ground-state properties~e.g., equilib-
rium geometries!, which have to be assumed at the outse

The present method requires the knowledge of accu
and transferable screened atomic pseudopotentials. While
traditional ‘‘empirical pseudopotential method’’17 ~EPM!
does provide atomic pseudopotentials that reproduce
measured band structures of prototype bulk solids, the e
ing wave functions and deformation potentials are not c
strained by the fitting procedures, nor are these pseudopo
tials available at the short reciprocal lattice vecto
characterizing nanostructures whose linear dimensions a
few bulk lattice constants. Wang and Zunger13 have recently
proposed a method to extract screened atomic pseudop
tials from first-principles LDA calculations onbulk solids
1642 © 1997 The American Physical Society
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55 1643LOCAL-DENSITY-DERIVED SEMIEMPIRICAL . . .
such that the wave functions are LDA-like while the ba
structures, effective masses, and deformation poten
match experiments. Here we apply this ‘‘semiempiric
pseudopotential method’’~SEPM! to both the bulk structure
and nanostructures of InP.

The present work differs from our previous work13 in sev-
eral aspects:

~i! We develop and apply pseudopotentials for a new m
terial system—bulk InP and InP quantum dots on which
merous experiments have been recently performed,18–23 but
little theoretical work is available. InP dots have been
cently synthesized either as strain-induced ‘‘self-assembl
particles in metalorganic vapor phase epitaxy,20,21 or as par-
ticles in colloidal solution growth.22,23 The dot sizes range
from 20 to 600 Å. Some interesting phenomena were fou
e.g., the evolution of photoluminescence~PL! intensity with
pressure,18 the strong dependence of PL decay time on
photon energy,19 the blueshift of the PL peak with the pho
toexcitation power, and band-gap renormalizati
effects.20,21 Quantitative analyses of such experiments
quire a practical and reliable computational tool, which c
reproduce excitation energies, wave-function informat
~e.g., transition probabilities!, effective masses, and deform
tion potentials. The present method is suitable for such p
poses.

~ii ! We wish to understand the limitation of the SEPM
The SEPM approach13 relies on representing the screen
solid-state pseudopotential as linear combination of over
ping but spherical ‘‘site potentials,’’ and on system-to
system transferability. If such potentials are transfera
from one structure to another, their Fourier transforms w
lie on a ‘‘universal’’ potential-versus-momentum curve. W
have seen previously13 that both the spherical approximatio
and the transferability approximation work very well for
and CdSe. But unlike Si and CdSe, the atomic size differe
between In and P is very large, so the directional cha
transfer in InP could be significant, raising questions on
suitability of the spherical approximation. Indeed, we fi
that there is a larger error for InP in theb-Sn structure than
in the zinc-blende and rocksalt structures. We further fi
that the asymmetric part of the InP ‘‘spherical LDA
~SLDA! potentials deviates somewhat from a univers
potential-versus-momentum curve. This feature was not
countered before13 in Si or in CdSe. This problem is ana
lyzed and addressed here.

~iii ! When moving from the SLDA to SEPM calculation
for bulk InP, we find that only small changes to the atom
potentials can remove the LDA band-structure errors: m
of the change occurs near the In atomic core with lit
change required near the In-P bond center. This expl
why we can obtain experimentally consistent bands w
LDA-like wave functions.

~iv! Application of the SEPM to large quantum dots r
quires paying special attention to the small reciprocal-latti
vector components of the potentials, which are absent in
riodic bulk solids from which the potentials are drawn. T
sensitivity of the energy levels of dots to the small mome
tum components of the asymmetric pseudopotential is s
ied. Through this investigation, we find a simple and gene
way to determine the low-momentum components of the
tentials. We also find that the slope of the SEPM potentia
ls
l
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zero wave vector can have significant influence on the
tential profile of quantum nanostructures.

The final semiempirical pseudopotentials are ‘‘soft,’’ s
they can be applied within plane-wave bases to large syst
for which LDA calculations are prohibitively expensive
Such soft pseudopotentials, which reproduce LDA-like wa
functions with experimentally consistent orbital energies, c
be useful in a large range of physical problems, includ
quantum dots, wires, and films. As an illustration, we ap
our InP screened atomic pseudopotentials to the calcula
of the band gaps of cubic InP quantum dots with sizes
to 700 atoms~effective size 26 Å!. Good agreement is found
between the theoretical band gaps and the experimen
measured values. At the same time, our band gap ve
effective size relation is significantly different from that e
pected from simple effective-mass theory.

The paper is organized as follows. In Sec. II, the meth
ology is described. Section III gives the details of the co
struction of SEPM potentials. In Sec. IV, the applications
InP quantum dots are presented.

II. METHODOLOGY

In the first-principles LDA pseudopotential approach, t
electronic structure of a solid is addressed by solving
LDA single-particle equation:6

$2 1
2¹21Vnonlocal

ps ~r !1VLDA~r !%c i5e ic i . ~1!

Here,Vnonlocal
ps ~r ! is the~angular momentum dependent! non-

local part of the ionic pseudopotential, an
VLDA~r !5V local

ps ~r !1VHXC~r ! contains the local ionic pseudo
potentialV local

ps as well as the screening potentialVHXC made
up of the interelectron Coulomb~‘‘Hartree’’ !, exchange and
correlation ~XC! parts. Given an ionic pseudopotenti
$v l

ps(r )% @we use consistently lower casev~r ! to denote
‘‘atomic’’ potentials, while capitalV~r ! denotes crystalline
potentials#, Eq. ~1! can be solved self-consistently for an
crystal structure ~denoted by s! using well-established
methods.14

Our approach for constructing screened site potent
consists of four steps:

First, we calculate self-consistently the crystalline pote
tial VLDA

~s! ~r ! from Eq. ~1! for a few bulk crystal structuress
~e.g., zinc blende, rocksalt,b-Sn! and a few unit cell vol-
umesVs for each structure. We then extract thespherical
component of the screened site-pseudopotentialvSLDA

~a,s! by
solving:

VLDA
~s! ~r ![Vlocal

ps,~s!~r !1VHXC
~s! ~r !>(

a
(
Ra,s

vSLDA
~a,s!~ ur2Ra,su!.

~2!

Here, a denotes the type of atom andRa,s is the lattice
vector to sitea in structures. In Eq. ~2!, we have assumed
that the crystal potentialVLDA

~s! ~r ! is a superposition ofspheri-
cal screened site pseudopotentials. We use the t
‘‘SLDA’’ to denote spherically approximated~S! LDA. In
practice, we extractvSLDA

~a,s! from a reciprocal space form o
Eq. ~2!, namely,
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1644 55HUAXIANG FU AND ALEX ZUNGER
VLDA
~s! ~G!>(

a
S~a,s!~G!vSLDA

~a,s!~ uGu!, ~3!

whereS(a,s)(G)5Vs
21(Ra,s

eiG•Ra,s is the structure factor
andG is a reciprocal lattice vector. Note thatvSLDA

~a,s! is not a
free-atom potential, but rather a solid-embedded site po
tial. The SLDA site potentials can be written conveniently
a symmetric part vSLDA

~1! ~uGu! and an asymmetric par
vSLDA

~2! ~uGu!:

vSLDA
~1 ! ~ uGu!5vSLDA

~ In! ~ uGu!1vSLDA
~P! ~ uGu!, ~4!

vSLDA
~2 ! ~ uGu!5vSLDA

~ In! ~ uGu!2vSLDA
~P! ~ uGu!. ~5!

Second, we fitvSLDA
~a,s! ~uGu! extracted by inverting Eq.~3! to

a set of Gaussian functions,

vSLDA
~a,s!~ uGu!5(

i
cie

2~ uGu2ai !
2/bi

2
, ~6!

whereai , bi , andci are fitting parameters. Using the SLD
potential@right-hand side of Eq.~2!# in place ofVLDA~r ! of
Eq. ~1! yields energies and wave functions that are very cl
to LDA values. While the LDA wave functions are ver
useful and quite accurate, the LDA band gaps are usua
underestimated.24

Thus, in the third step of our procedure, we adjust
parameters of Eq.~6! to reproduce the experimentally ob
served band structures. Insofar as the required changes i
SLDA potentials are small, the ensuing wave functions w
still be quite close to the LDA results. This will then giv
near LDA-quality wave functions with realistic band stru
tures.

In the fourth and final step, we treat the small moment
components of the pseudopotentials. These component
nonzero for quantum dots, but are not specified by ba
structure calculations~or by the EPM! for extended bulk sol-
ids with small unit cells.

Since the final pseudopotential is rather smooth, a rap
converged plane-wave expansion is possible. In fact, u
the efficient diagonalization method11 and our final semi-
empirical pseudopotentials, we can easily calculate the e
tronic structure of a;1000-atom dot.

III. CONSTRUCTION OF THE SEPM POTENTIALS:
DETAILS

A. SLDA potentials and their performance for bulk InP

A central question in the development of the SLDA p
tential is whether the spherical approximation of Eq.~3! is
sufficiently accurate and transferable. If it is, the data po
of vSLDA

(a,s) ~uGu! versus wave-vector lengthuGu should fall on a
single-valued ‘‘universal’’ curve for different structuress
and cell volumesVs . To test this, we have solved Eq.~1!
self-consistently for InP in three crystal structures~zinc
blende, rocksalt, andb-Sn! and three cell volumes for eac
structure, using first-principles pseudopotential method14

We use the scalar-relativistic atomic pseudopotentials {v l
ps}

obtained from the procedure of Troullier and Martins,25,26

employing the core correction27 for In ~having a large core
with significant core-valence wave-function overlap! but not
n-
s
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for the small-core P atom, where the correction is small. T
exchange-correlation potential used is that of Perdew
Zunger.24 Equation ~1! was solved in a plane-wave bas
with a knietic energy cutoff of 25 Ry. In all the calculation
reported here, the nonlocal part of the ionic pseudopoten
Vnonlocal
ps (r ) of Eq. ~1! was obtained in a similar way to that o

Ref. 28 but in numerical form, and was kept unchanged
we move from LDA to SLDA and SEPM. We use th
‘‘small box’’ implementation13 to handle the nonlocal part o
pseudopotential. This approach takes advantage of the s
range nature of nonlocal part, and uses the plane waves
large momentum to expand it in Fourier space.

The symbols in Fig. 1 show the LDA-derived symmetr
potentialvSLDA

~1! ~uGu) versus wave vector lengthuGu as well as
the asymmetric partvSLDA

(2) ~uGu! versusuGu. These quantities
were obtained from Eq.~3! given VSLDA

(s) (r ). Note that one
cannot obtain the values ofvSLDA

(1) ~uGu! and vSLDA
(2) (uGu) at

G50 from the inversion of bulk LDA calculation. This wil
be discussed later. ThevSLDA

(1) (uGu) versusuGu points of Fig.
1~a! fall on a nearly universal curve for all structures a
volumes, butvSLDA

(2) (uGu) in Fig. 1~b! is somewhat multival-

FIG. 1. Screened~local! atomic pseudopotentialsvSLDA~uGu! ex-
tracted via Eq.~3! from self-consistent LDA calculations for a few
bulk InP crystal structures and a few volumes each structure.~a!
symmetric partvSLDA

~1! ~uGu!; ~b! asymmetric partvSLDA
~2! ~uGu!. Sym-

bols of diamond, cross and square correspond to the data for In
zinc blende, rocksalt andb-Sn structures, respectively. Three vo
umes are considered for each structure. The solid lines are ana
cally fitted curves using Eq.~6!. In the analytically fitted curves
vSLDA

~1! ~uGu! at G50 is 2179.32 hartree bohr3 and vSLDA
~2! ~uGu! at

G50 is 214.2 hartree bohr3.
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55 1645LOCAL-DENSITY-DERIVED SEMIEMPIRICAL . . .
ued at the shortest bulkG vectors. This deviation ofvSLDA
(2)

3(uGu) from a universal curve did not occur in Si@for which
vSLDA

~2! ~uGu![0# or in CdSe~see Fig. 1 in Ref. 13!. We also
observe that this nontransferability error is mainly reflec
in the asymmetric potentialvSLDA

~2! ~uGu!, while the symmetric
potentialsvSLDA

~1! ~uGu! versusuGu fall on their respective uni-
versal curves for13 Si, InP, and13 CdSe. Because of the de
viation of the data in Fig. 1~b! from a universal curve, sev
eral questions not met in previous work13 arise, such as wha
is the effect of such deviation on the electronic structur
what is the reason for this deviation; and how can one de
mine the value ofvSLDA

~2! ~uGu! atG50.
We next investigate the effect of such small-G fluctua-

tions invSLDA
~2! ~uGu! @Fig. 1~b!# on thebulk band structure. To

address this, we have performed bulk band-structure ca
lations@via Eq.~1!# on InP using the potentialsvSLDA

~1! ~uGu! of
Fig. 1~a! and vSLDA

~2! ~uGu!1dv ~2!~uGu!, wheredv ~2!~uGu! is a
controlled deviation. We find that near the shortest bulk zi
blende reciprocal lattice vector~uGu5)2p/a, wherea is the
lattice constant!, the sensitivity]enk/]v

(2) of the band struc-
ture enk to the fluctuationdv ~2! is less than 5.031023 ~in
units of 1/bohr3! for the lowest eight bands over the fir
Brillouin zone~BZ! for bulk InP in zinc-blende and rocksa
structures. Given that the largest scatter ofvSLDA

~2! ~uGu! in Fig.
1 is about 20 eV bohr3, the maximum ensuing band structu
error is only about 0.1 eV for zinc-blende and rocksalt str
tures. For theb-Sn structure, this nontransferability error in
creases to about 0.2 eV. Thus, the scatter invSLDA

~2! ~uGu! has
only a small effect onbulk band-structure calculations.

Before we fit the SLDA data in Fig. 1 using the analyt
expression in Eq.~6!, we need the values ofvSLDA

~6! ~uGu! at
G50. vSLDA

~1! ~uGu! at G50 is obtained by fitting to the InP
work function ~see Appendix A!. While the value of
vSLDA

~2! ~uGu! nearG50 has no effect on bulk band structure
it could affect quantum dot levels. To investigate this effe
quantitatively, we have solved Eq.~1! for an InP quantum
dot, using the SLDA potential of Fig. 1 with controlle
changes invSLDA

~2! ~uGu! at near-zeroG values.@Details of the
method used to solve Eq.~1! for dots are given below#. We
allowed fluctuations of610 hartreebohr3 in the value of
vSLDA

~2! ~uGu! nearG50. After passivating the surface danglin
bonds~see below!, we find that such a potential fluctuatio
shifts the conduction-band minimum~CBM! and valence-
band maximum~VBM ! eigenvalues of a 35-atom InP dot b
less than 0.05 eV@so ]e i /]v

(2)uG50.9.031025 in units of
1/bohr3#. We conclude that the small-G fluctuations in
vSLDA

~2! ~uGu! are rather inconsequential to the electronic str
tures of both solids and quantum dots. Since it is rather
ficult to determine uniquely the precise value ofvSLDA

~2! ~uGu!
nearG50, our conclusion on the insensitivity of the ener
levels to smallG components ofvSLDA

~2! is significant. In fact,
given this relative insensitivity, we can fix theG50 compo-
nents ofvSLDA

~1! ~uGu! andvSLDA
~2! ~uGu! using simple procedures

the details of which are described in Appendix A.29 Having
fixed theG50 components of the screened pseudopotent
we now have an absolute energy scale in the problem. T
we will be able to discuss, for example, absolute energy
sitions of the VBM and CBM separately as a function of d
size.

We now curve fit the obtained discretevSLDA
~6! ~uGu! data

points in Fig. 1 including theirG50 limits using a conve-
d

;
r-

u-

-

-

,
t

-
f-

ls,
s,
-
t

nient analytic expression—a sum of Gaussians as describ
in Eq. ~6!. The fitted curves are shown as solid lines in Fig
1.

As a final test of the spherically approximated LDA po
tential, we solve Eq.~1! using the original LDA value for
Vnonlocal
ps ~r !, and the curve-fitted SLDA potential@Eq. ~6!# in

place ofVLDA~r !. The resulting band structures are compare
in Fig. 2 with the original~nonspherical! LDA band struc-
tures. Excellent agreement is found: the maximum BZ

FIG. 2. Band structures calculated from LDA potentials~solid
lines! and from SLDA potentials~dotted lines! for InP in different
crystal structures: ~a! Zinc-blende structure~lattice constant
a511.01 a.u.!; ~b! Rocksalt structure~a510.28 a.u.!; ~c! b-Sn
structure~a513.91,c57.93 a.u.!. The lattice parameters are opti-
mized by LDA calculations. In~a! and~b!, the LDA and the SLDA
band structures are nearly indistinguishable, showing that a sup
position of spherical potentials is a good approximation to the LD
potential.
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FIG. 3. Contour plots of wave-function squares on the~110! plane for theG15v, G1c, X5v, andX1c states in zinc-blende InP~lattice
constanta511.01 a.u.! as calculated by using LDA, SLDA, and SEPM potentials. The LDA and SLDA results are obtained using k
cutoff energyEcut525 Ry, and the SEPM results are obtained usingEcut56.8 Ry and the Gaussian correction~Appendix B!.
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averaged errors between the LDA and the SLDA results
0.07 and 0.02 eV for the lowest eight bands in zinc-blen
and rocksalt InP, respectively. In the metallicb-Sn form, the
error is larger: 0.35 eV for the first and fifth bands and 0
eV for other bands. In order to find the reason for this re
tively large error, we intentionally let the fitted curve in Fi
1~b! pass through theb-Sn data points. Application of this
potential to study the band structure will result in error
flecting only the spherical approximation. We find that in t
b-Sn structure the spherical approximation error is ab
0.15 eV and the nontransferability error is 0.20 eV for t
first and fifth bands. We attribute the relatively larger er
for b-Sn structure to the large difference in the sizes of the
and P atoms, and to the low symmetry of theb-Sn structure.
re
e

-

-

t

r
n

We find that the LDA wave functions are also accurate
reproduced by our fitted SLDA potentials. As an examp
Fig. 3 compares the contour plots of the wave-functi
squares for theG15v, G1c, X5v, andX1c states of zinc-blende
InP as calculated from the LDA and from the fitted SLD
potentials. The agreement is excellent: the LDA vers
SLDA wave-function overlap is larger than 99.9%.

The first three columns in Table I29–41 compare zinc-
blende InP band energies, effective masses, and deform
potentials obtained from LDA and SLDA calculation
showing good agreement.

The good agreement between LDA and SLDA calcu
tions persists after we reduce the kinetic cutoff energy fr
25 to 6.8 Ry, while compensating for the reduced basis
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55 1647LOCAL-DENSITY-DERIVED SEMIEMPIRICAL . . .
using the ‘‘Gaussian correction’’~GC! method13 as de-
scribed in Appendix B and in Fig. 4. The reduction of t
kinetic energy cut-off can reduce significantly the compu
tional effort for quantum nanostructures.

B. SEPM potentials and their performance for bulk InP

In the next step, we apply linear changes to the cur
fitted potentialsvSLDA

~6! ~uGu! @i.e., we only change the coeffi
cients$ci% in Eq. ~6!# so as to fit their bulk eigenvalues to th
experimentally observed excitations. The obtained poten
is called the SEPM potential. The required changes in
potentials are found to be small, and therefore the change
the wave functions relative to the LDA calculation are a
small.

Table I compares the band energies, effective masses
deformation potentials obtained by using the SLDA poten
and the empirically corrected potential~SEPM!. In this table,
the pertinent experimental results are included for comp
son. We see that the SEPM achieves good accord with
pertinent experimental quantities, including the band str
tures atG, X, andL points, the effective masses and defo
mation potentials. The SEPM band structures of InP in zi
blende structures are compared in Fig. 5 with the SLD
band structures. We see that, except for the upshifts of
conduction bands, the main features and trends of the w

TABLE I. Energy levels at high-symmetry points, effectiv
masses for electrons (me), heavy holes~mHH! and light holes
~mLH!, deformation potentialsa~k! defined as2]Eg~k!/] lnV and
work function of zinc-blende InP as calculated by LDA, SLDA, a
SEPM potentials. Our assessment of the best value of the re
experimental data is also listed for comparison. The energy lev
deformation potential, and work function are all in eV. The zero
the energy is at the valence-band maximum~G15v!.

Properties LDA SLDA SEPM Expt.

G1v 211.54 211.50 211.46 211.00a

G1c 0.76 0.86 1.45 1.43b

G15c 4.11 4.24 4.90 4.78c

X5v 22.35 22.29 22.23 22.0a

X1c 1.64 1.77 2.30 2.40d

L3v 20.97 20.96 20.92 21.00a

L1c 1.49 1.60 1.97 2.04e

me 0.057 0.060 0.095 0.079,f 0.081g

mHH~001! 0.43 0.40 0.47 0.52,b 0.61i

mHH~111! 0.97 0.90 1.03 0.95,j 0.63h

mLH~001! 0.057 0.057 0.097 0.104,i 0.118h

a~G! 6.04 6.75 8.19 7.98,k 6.40l

a(X)2a(G) 27.53 26.04 25.81 26.82l

a(L)2a(G) 23.18 22.76 23.08 23.12l

Work function 5.91 5.85m

aReference 30. hReference 37.
bReference 31. iReference 38.
cReference 32. jReference 39.
dReference 33. kReference 40.
eReference 34. lReference 41.
fReference 35. mReference 29.
gReference 36
.

-

-

al
e
in

nd
l

i-
he
-
-
-

e
le

SEPM band structures follow those of the SLDA. The wav
function squares of SEPM calculations for some bulk sta
are illustrated in Fig. 3, showing good agreement with LD
and SLDA results.

C. Effects of removing the LDA error

The G-space SEPM potential and the shi
Dv5vSEPM

~a! 2vSLDA
~a! , needed to remove the LDA error in th

band structures, are shown in Fig. 6, while Fig. 7 sho
vSEPM

~a! andDv in real space. There are two interesting a
pects involving the effect of the removal of the LDA error

(i) Spatial location of the LDA potential error:We see
from Fig. 7 that correcting the LDA band-structure error e
tails an increase in the LDA potential in the core region f
the In atom, and only slight changes for the P atom, wh
the potential at the In-P bond center does not change m
The effect of the potential increase in the core region
band structures can be readily understood: Since the ato
In s orbital energy is higher than that of the Ps orbital, the
location of the lowest conduction band~the antibonding state

FIG. 4. ~a! Band structures of InP in zinc-blende structure~a
511.01 a.u.! as calculated using LDA potentials with kinetic cuto
energyEcut525 Ry ~solid lines!, and as calculated by SLDA poten
tials with Ecut56.8 Ry and without Gaussian correction~dotted
lines!. Note the large difference between two results.~b! Same as
~a! except that dotted lines are obtained with Gaussian correct
Note the close agreement with LDA when the Gaussian correc
compensates the reduced energy cutoff~Appendix B!.
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formed from thes orbitals of the two atoms! is mainly de-
termined by the atomic energy level of the Ins orbital. The
increase of the SEPM potential relative to the SLDA pote
tial in the In core region will push up the atomic energy lev

FIG. 5. The zinc-blende InP band structure calculated fr
SEPM ~dotted lines! and from SLDA potentials~solid lines!. The
lattice constant isa511.01 a.u. Both the SEPM and the SLDA ban
energies are given in absolute values. Since the VBM positions
very close to each other for LDA and SLDA bands, this figu
shows that most of the LDA error is in the conduction bands.

FIG. 6. The semiempirical atomic potentialsvSEPM
~a! ~solid lines!

and the shiftDv5vSEPM
~a! 2vSEPM

~a! ~dotted lines! in G space:~a! for
In; ~b! for P. Dots on the axis indicate zinc-blende reciproc
lattice-vector lengths for bulk InP.
-
l

of the In s orbital, consequently raising the lowest condu
tion band. Due to the orthogonalization constraint, the hig
conduction bands will also be pushed up as shown in Fig
The valence bands bear only little change since thep orbital
energy is not affected by shifting the In potential near t
origin. Furthermore, since the potentials near the In-P b
center do not change significantly, the In-P interaction w
not change much. This suggests that the wave function
not change too much either. This is borne out by the si
larity of SEPM and LDA wave functions shown in Fig. 3
The fact that the error in SLDA potential is mostly in th
atomic core region and is different fors andp valence elec-
trons suggests that one could improve the SEPM fit by tre
ing the nonlocal part of the pseudopotential also as a par
etrized function. At this stage, however, we prefer not
introduce additional fitting functions.

(ii) Energy location of the LDA error:Figure 5 gives the
SEPM and SLDA bands of zinc-blende InPon an absolute
scale ~i.e., the VBM’s are not aligned!. The comparison of
SEPM band structures relative to SLDA results shows t
the main effect of the removal of LDA error is to move th
conduction bands up while the valence bands do not cha
much. This situation is similar to what was found in mo
elaboratedGW calculations.42

D. Effect of the potential slope at G50 on nanostructures

So far, our discussion has centered on bulk materials.
plication of SEPM potentials to quantum nanostructu

re

-

FIG. 7. The semiempirical atomic potentialsvSEPM
~a! ~in solid

lines! and the shiftDv5vSEPM
~a! 2vSLDA

~a! ~in dotted lines! in real
space:~a! for In; ~b! for P. The vertical arrow indicates the In-
bond center.
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FIG. 8. Planar-averaged potentialsV% a(z) @Eq. ~7!# for InP~110! films with different thickness, as calculated using:~a! SEPM potentials
with nonzero slope;~b! SEPM potentials with zero slope atG50. The labeled numbers for each curve are the film thickness~in monolayers!.
The arrow in~b! indicates the theoretically fitted work function. The film VBM energies for different thicknesses are shown in the in
~b!.
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~which contain reciprocal lattice vectors that are absent in
bulk! requires that the potentials should be flat nearG50
i.e., the potential slope atG50 is zero. As an illustration of
this point, we calculated the planar-averaged potentialV% a(z)
for ~110!-oriented InP films with different thicknesses, usin
the SEPM potentials~i! with nonzero slope and~ii ! with zero
slope atG50. Here,

V% a~z!5
1

2l Ez2 l

z1 l

V̄~z8!dz8, ~7!

where

V̄~z!5
1

S E V~r !dx dy, ~8!

V~r !5(
a

(
Ri

vSEPM
~a! ~r2Ri !. ~9!

In the above equations,z is the distance from one side of th
supercell along the direction vertical to the film, andS is the
area of cross section parallel to the film plane.l is the thick-
ness of a single monolayer in the InP~110! film. The planar-
averaged potentialV% a(z) for films with different thicknesses
are shown in Fig. 8~a! for the SEPM potentials with nonzer
slope, and in Fig. 8~b! for the SEPM potentials with zero
slope atG50. It can be seen that in Fig. 8~a! the potential at
the slab center has not approached the bulk value even
15-ML-thick films while the potential in Fig. 8~b! has
achieved the bulk value at the film center even for rather t
films. ThisG50 treatment has no effect on the properties
bulk InP, but is crucial for the investigation of quantum co
e

for

n
f
-

finement effect in nanostructures such as in dots. The slo
of the SEPM potentials generated previously13 for Si and
CdSe are very close to zero too.

The final InP SEPM as well as the Si and CdSe potent
can be found on an FTP site for the interested reade43

They can be used in numerous applications requiring lar
scale calculations.

IV. APPLICATIONS TO QUANTUM DOTS

As an illustration of the utility of our semiempirica
pseudopotential, we use it to calculate the band gaps
surface-passivated InP quantum dots with different siz
Here we discuss only the salient features of the results
detailed description of InP quantum dot will be deferred to
future paper.

We consider InP dots containing 17, 29, 107, 259, a
712 atoms~not including the passivating atoms!. The dots
take cubic shape with faces oriented along the~001! and
~110! planes of zinc-blende structure. Using the same den
as in the bulk, the effective dot sizes are calculated
D5(a/2)(N)1/3 wherea is the lattice constant andN is the
number of atoms in the dots. This gives effective siz
D57.49, 8.95, 13.83, 18.57, and 26.01 Å for the dots w
17, 29, 107, 259, and 712 atoms, respectively.

We next discuss the surfaces of the dots. Previous ca
lations on other-material dots using thek•p theory,44 tight-
binding method,45 or truncated crystal method46 have ig-
nored the existence of surfaces either by assuming infi
potential barrier or by removing the dangling bonds in t
Hamiltonian matrix. Since one of our future objectives is
study surface effects on the electronic structures of dots,
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include here explicit surface effects. For bare~unpassivated!
dots, the atoms at the surface will most likely reconstru
Here we model, instead, dots grown by self-assemb
method20,21 or by colloidal solution.22,23 In both cases, the
atoms at the surface are passivated chemically either by
other semiconductor20,21 or by organic molecules,22,23 so the
surface is, most likely, unreconstructed. Generally, the s
face conditions of dots are different for differently prepare
samples. However, based on the measurements of PL l
time and PL efficiency, it is found that the emission orig
nates mostly from dot-interior~‘‘bulklike’’ ! states, not from
surface states. In recent experiments for InP dots, orga
compounds and HF solution are used to passivate and e
the surface.22,23 In these experiments, the passivation effe
of organic compounds and HF at the InP dot surface is qu
similar to attaching an electrostatic potential to the surfa
dangling bond. We thus simulate the actual passivation
dots by attaching the following fictitious pseudopotential
In-like and P-like dangling bonds:

FIG. 9. ~a! One-electron band gap for InP quantum dots wit
different sizes. Solid dots: calculated results using SEPM potentia
dash line: analytic fit of the calculated results from Eq.~11!; tri-
angle and square symbols denote, respectively, the experime
data from absorption and photoluminescence measurements~Refs.
22 and 23!. For the experimental data shown here, the electron-h
Coulomb energy has been subtracted.~b! Calculated VBM and
CBM levels of InP quantum dots.
t.
d

n-

r-

e-

ic
tch
t
te
e
in

ua5ua
0 exp~2ur2Ru2/r a

2 !, ~10!

whereR is the spatial position of the passivating atom. T
parameters$u a

0 ,r a% are selected so as to fit the calculat
surface density of states of planar InP surfaces to LDA
sults or to photoemission data for surfaces.47 This procedure
was described in Ref. 11 for Si. Here we illustrate the el
tronic structure of InP quantum dots using the typical valu
For the InP~110! surface,ua

0523.5 hartrees andr a50.9 a.u.
for surface In, andua

0522.0 hartrees andr a51.0 a.u. for
surface P. For the InP~100! surface,ua

0521.5 hartrees and
r a51.4 a.u. for surface In, andua

0520.5 hartrees and
r a51.5 a.u. for surface P. These values produce a band
free of surface states for all the InP~110! and InP~001!
films.47 We point out that, after removing the surface sta
out of the gap, the band-edge energy levels of dots are
sensitive to the passivating potentials. We will return to t
point later.

In order to solve the Schro¨dinger equation with many at
oms, we use the folded spectrum and conjugate grad
methods,11 allowing us to find the energy levels and wav
functions of the CBM and VBM states of dots. The calc
lated band gaps for these dots are illustrated in Fig. 9~a!
while the VBM and CBM energy levels of dots are shown
Fig. 9~b!. For comparison, the available experimental d
from absorption spectrum22 and PL measurements23 are also
shown in Fig. 9~a!. The experimental values are converted
one-electron band gaps by subtracting the electron-hole C
lomb energy calculated fromEc523.572/«D ~Ref. 48!.
Here,Ec and the sizeD are both given in atomic units, an
the static dielectric constant« of InP is49 12.4. Figure 9~a!
shows that the theoretical one-electron gaps are in g
agreement with the experimental measurements. The q
tum size effects on both the CBM and the VBM of dots a
obvious in Fig. 9~b!. Note that the energy levels in Fig. 9~b!
are absolute values since our SEPM potentials are obta
by fitting the work function. Therefore, we can discuss t
size effect separately for the VBM and the CBM of dots. W
fitted our calculated band gaps~Eg in units of eV! versus the
size of InP dots~D in units of Å! as

Eg51.45137.295/Dn, n51.16. ~11!

This analytic equation is described by the dashed line in F
9~a!. Not surprisingly, the valuen51.16 from our atomistic
calculation is very different from that found in class
effective-mass theory ofn52.0.

In order to investigate the natures of the VBM and CB
of dots, we have calculated the planar-averaged wa
function squareucmu2 along certain directions, wherem is
the energy-level index. The planar-averaged wave-func
squareucmu2(x) along thex direction anducmu2(z) along the
z direction are defined as

ucmu2~x!5
1

Syz
E ucm~r !u2dy dz, ~12!

ucmu2~z!5
1

Sxy
E ucm~r !u2dx dy, ~13!

whereSyz andSxy are the cross-section areas of the pla
perpendicular to thex axis and that of the plane perpendic
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lar to thez axis, respectively. For the InP dots consider
here, thex, y, andz axes are along~110!, ~1̄10!, and ~001!
directions of InP zinc-blende structure, respectively. Thex
andy directions are equivalent for the dots considered he
Figures 10~a! and 10~b! give, respectively, the planar
averaged wave-function squaresucmu2(x) and ucmu2(z) for
the dot with 712 atoms. In this figure, symbols along t
horizontal axis indicate atomic-layer positions in the d
From Fig. 10, we can see that the wave functions of both
CBM and VBM are mostly distributed in the interior of do
with but little amplitude at the dot surface. For such ‘‘do
interior’’ states, changes in the passivation potential~e.g.,
different saturation species! cannot shift these energy leve
significantly. A similar situation is found in experiments.22,23

In summary, we derive the semiempirical pseudopot
tials for InP from ab initio LDA pseudopotential calcula
tions. The obtained SEPM potentials reproduce accura
the LDA wave functions and the experimentally observ
band structures, effective mass, and deformation poten
Since it is soft, the SEPM potential can be used efficiently
large-scale quantum nanostructure calculations using pl

FIG. 10. ~a! Planar-averaged wave-function squareucmu2(x)
along thex direction. For clarity,ucmu2(x) for VBM is plotted
along positive vertical axis whileucmu2(z) for CBM is plotted along
negative vertical axis. The symbols along the horizontal axis in
cate the atomic-layer positions.~b! Planar-averaged wave-functio
squaresucmu2(z) along thez direction.
e.

.
e

-

ly
d
al.
n
e-

wave bases. This is illustrated here for the band gaps of
quantum dots with different sizes, showing a good agreem
with the experimental results.
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APPENDIX A: DETERMINATION OF vSLDA
„1…

„zGz…
AND vSLDA

„2…

„zGz… AT G50

When one calculates the electronic structures of quan
dots using plane-wave bases and supercells, the knowle
of vSLDA

~1! ~uGu! andvSLDA
~2! ~uGu! at smallG is necessary. In this

Appendix, the procedures to determinevSLDA
~1! ~uGu! and

vSLDA
~2! ~uGu! atG50 are described.
vSLDA

~1! ~uGu! at G50 is determined by noting that change
in this quantity shift rigidly the whole bulk band structur
We thus require that the work function of thick InP film~the
negative of the eigenvalue of film’s VBM! equals its ob-
served, orientationally averaged value of29 5.85 eV. This
givesvSLDA

~1! ~G50!52179.32 hartree bohr3 for InP with lat-
tice constanta511.01 a.u. Using this value, the theoretic
work function of thick InP film is 5.91 eV. Due to the quan
tum confinement effect, the VBM energy level of the fil
changes with the film thickness. The calculated VBM for
series of~110! InP slabs embedded in vacuum is shown
the inset of Fig. 8~b!. For the thickest slab shown in th
figure, we can see a work function close to the measu
value.

The determination ofvSLDA
~2! ~uGu! atG50 is more compli-

cated. One may consider obtainingvSLDA
~2! ~uGu! at smallG by

computingVLDA~G! in Eq. ~1! for long period superlattices
of pure InP with different levels of strain, e.g
~InP!n/~strained InP!n . Since the potential of long period su
perlattices contains smallG components, one could extrapo
late the superlatticeVLDA~G! to G50. However, we found
that the superlattice structure factorsS~G! in Eq. ~3! for the
smallG vectors are very small due to the structural similar
of the superlattice to the bulk. The smallS~G! values lead to
a significant scatter and noise in the calculatedvSLDA

~2! ~uGu! at
smallG.

Based on the fact~described in Sec. III! that both the
VBM and CBM levels of quantum dots are rather insensit
to vSLDA

~2! ~uGu! at smallG, we use a simple approach to es
mate this value. Having fixedvSLDA

~1! ~uGu! at G50 by fitting
the work function and having fitted analyticallyvSLDA

~1! ~uGu!
using Eq.~6!, we now have this function in the wholeG
space. We can thus Fourier transformvSLDA

~1! ~uGu! to
vSLDA

~1! (r ). We next need to separate invSLDA
~1! (r ) the compo-

nents due to In and due to P so that thevSLDA
~2! (r ) could be

calculated. To do this, we assume that the In and P so
state potentialsvSLDA

In (r ) and vSLDA
P (r ) can be written as a

product of screened free-atom potentialṽ a[v ion
a 1vHXC and

a screening factora ie
2r /b i, i.e.,

i-
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vSLDA
~1 ! ~r !5@a1e

2r /b1#ṽ In~r !1@a2e
2r /b2#ṽ P~r !.

~A1!

We now fit the right-hand side of Eq.~A1! to the left-hand
side usinga1, b1, a2, and b2 as fitting parameters. Afte
determininga1, b1, a2, andb2 from Eq. ~A1!, we obtain
vSLDA

~2! (r ) in real space from

vSLDA
~2 ! ~r !5@a1e

2r /b1#ṽ In~r !2@a2e
2r /b2#ṽ P~r !.

~A2!

Fourier transforming thisvSLDA
~2! (r ) gives vSLDA

~2! ~G50!. For
zinc-blende InP at lattice constanta511.01 a.u., we find
vSLDA

~2! ~G50!5214.2 hartree bohr.3

APPENDIX B: GAUSSIAN CORRECTION TO SMALL
BASIS SET CUTOFF

A known shortcoming of a plane-wave basis set ba
structure calculation is that the number of basis function
usually quite large, especially when we deal with large s
tems such as quantum dots or long period superlattices. H
we adopt a method to reduce the cutoff energy.

Generally, when small cutoff energy is used, the ba
structures are poorly converged. This is illustrated in F
-
,

-

D
es
k

r

B

-
is
-
re,

d
.

4~a!, showing the band structures of bulk InP in the zin
blende structures~with lattice constant being 11.01 a.u.! as
calculated with a converged basis of 25-Ry cutoff and
small basis of 6.8-Ry cutoff. It can be seen that while thep
bands~e.g., the top three valence bands! are described quite
well, the s bands~e.g., the lowest conduction band and t
lowest valence band! are affected strongly by the reductio
in basis set size. In order to correct this kind of difference,
additional Gaussian-type potentialqie

2ur2Ra /di u
2
is placed at

each atomic siteRa for both In and P atoms. Here,qi anddi
are determined by minimizing the difference between t
kinds of band structures~i.e., converged LDA and Gaussia
corrected SLDA with a small basis!. We findq524.27 har-
trees andd50.7 bohr for In, andq522.53 hartrees and
d50.7 bohr for P. Figure 4~b! shows the band structures fo
zinc-blende InP corresponding to 6.8-Ry cutoff energy w
the Gaussian correction in comparison with those co
sponding to 25-Ry cutoff energy. It can be seen that, us
the Gaussian-type correction potential leads to the b
structures that are very similar to the pure plane-wave c
verged results. Using the same Gaussian parameters
other crystal structures—rocksalt andb-Sn—we find errors
of <0.2 eV. We use the same Gaussian corrections in a
our calculations for InP quantum dots.
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