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Magnitude and size scaling of intervalley coupling in semiconductor alloys and superlattices
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~Received 14 July 1997!

Coupling between differentG, X, andL band-structure valleys is responsible for~a! level anticrossing in
superlattices as a function of period, pressure, and electric field and for~b! ‘‘optical bowing’’ of band gaps in
random alloys. We investigate the symmetry, magnitude, and size scaling of intervalley coupling in semicon-
ductor superlattices and alloys by direct supercell calculations, performed with screened pseudopotentials and
a plane-wave basis, considering up to 106 atoms/supercell. Projecting the calculated electronic wave functions
c i of alloys or superlattices onto the bulk states of the constituent zinc-blende materials shows thatc i contain
a ‘‘majority representation’’ from one or more zinc-blende statesg. The intervalley couplingE( i , j ) between
the alloy statesc i andc j then includes a term 2F(g,g8)V(g,g8) due to the ‘‘majority representations’’g and
g8 of c i andc j , respectively, plus residual terms due to the minority representations. We find the following:
~i! In alloys, the orbital overlap functionF(g,g8) is large, since the wave functions are extended. The
intervalley coupling elementV(g,g8) exhibits simple selection rules: being zero for (G1c ,X1c), (G1c ,L3c),
(X1c

x ,X1c
y ), etc. ~‘‘weak coupling’’!, and nonzero for (G1c ,X3c), (G1c ,L1c), (L3c ,X1c), etc. ~‘‘strong cou-

pling’’ !. This explains why theḠ-like conduction band of mixed-cation alloys contains zinc-blendeG1c and
L1c character, but notX1c . In the case of strong coupling,E( i , j ) scales as 1/AV, whereV is the volume,
while in the weak-coupling case the entire coupling originates from the ‘‘minority representation,’’ and is
20–100 times smaller. The minority representation, however, contributes to the bowing of the band gap vs
composition.~ii ! In superlattices, although the above selection rule forV(g,g8) still exists, the magnitude of
the intervalley coupling is governed by the overlap functionF(g,g8). For simple superlattices,F(g,g8) is
small, since the wave functions are localized in particular segments~‘‘weak coupling’’!. Consequently, the
‘‘majority representation’’ contributes 5–100 times less than in the analogous case of alloys. Furthermore,
E( i , j ) scales as 1/n3, wheren is the superlattice period.@S0163-1829~97!05744-5#
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I. INTRODUCTION

When an electronic state of a composite system~e.g.,A/B
heterostructure,A/B nanostructure, orA12xBx alloy! con-
sists of bulk Bloch states originating froma fewband struc-
ture valleys (G,X,L) of the constituent solidsA andB, we
say that the system exhibits ‘‘intervalley coupling.’’ The
are two types of manifestations of intervalley couplings:

In the first type, two states of the composite system
composed each from a different band structure valley of
parent bulk system. When an external field~e.g, pressure,1–3

alloy composition,4,5 electric6 and magnetic fields7! is
scanned, the energies of the two states of the composite
tem will anticross due to the mixing~coupling! between
them. Figure 1 illustrates this case by depicting~see the in-
set! the calculated dependence of two conduction-band
ergy levelsḠ1(G1c) and Ḡ1(X1c) of the (GaAs)n /(AlAs) n

~001! superlattice on the external pressure. The states h
the sameḠ1 symmetry in the superlattice, yet they are d
rived from distinct valleys~G1c andX1c , respectively! of the
zinc-blende constituents. The anticrossing gapE(G,X) ~the
point of closest approach! can be calculated or measure
thus providing the magnitude of theG1c-X1c intervalley cou-
pling in the superlattice. Figure 1 shows how the magnitu
of the G1c-X1c anticrossing gap oscillates with the superl
tice periodn, and illustrates how the couplingG1c-X3c with
a different stateX3c oscillates with a different phase. Thes
behaviors will be analyzed below.
560163-1829/97/56~19!/12395~9!/$10.00
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In the second type of manifestation of intervalley co
pling, a state of the composite system is dominated by c
tributions from a single valley~e.g., G! in the constituent
solids. Here the intervalley coupling is demonstrated by
existence of minority contributions fromothervalley minima
~e.g.,L! in the same state of the composite system. This
shown in Fig. 2~a! for the Ḡ-like conduction-band minimum
~CBM! of the Ga0.7Al0.3As alloy. Its wave functionc ( i )(r )

FIG. 1. Magnitudes ofE(G,X) anticrossing gap as functions o
superlattice periodn in (GaAs)n /(AlAs) n ~001! superlattices. The
inset shows the change of the energy levels as a function of exte
pressure forn514.
12 395 © 1997 The American Physical Society
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12 396 56LIN-WANG WANG AND ALEX ZUNGER
was calculated via a plane-wave screened pseudopote
method using a;33 000 atom cubic supercell~see Sec. III!.
It is then projected onto a set of virtual-crysta
approximation~VCA! zinc-blende Bloch functionsfm,k

VCA(r ):

c~ i !~r !5(
m,k

Am,k
~ i ! fm,k

VCA~r !, ~1!

wherek is the reciprocal vector of the supercell within th
zinc-blende Brillouin zone andm is the band index. The
amplitudePk

CBM5(muAm,k
CBMu2 is shown in Fig. 2~a! vs thek

points of the supercell. As we can see, a single zinc-blen
componentk5G contributes 90% of the total weight of the
alloy CBM wave function. Further analysis shows that t
weight on k5G comes mainly from a single zinc-blend
VCA stateG1c . The 10% minority contribution of otherk
points @mostly from theL point in Fig. 2~a!# results from
intervalley coupling. Although small, these minority$Pk

CBM%
components contribute significantly to the optical bowing~a
nonlinear dependence of the alloy eigenvalues on comp
tion! in this system.8,9

We are interested here in establishing~i! the existence or
absence of intervalley couplingE(g,g8) between given
statesg andg8, ~ii ! the magnitude of the coupling, and~iii !
its scaling with the systems size. Regarding item~i!, i.e., the

FIG. 2. ~a! Spectral analysis@Eq. ~1!# of the Ḡ-like CBM wave
function of a 327 680-atom supercell representing the rand
Ga0.7Al0.3As alloy. The spectrumP(kx ,ky ,kz)

CBM 5(muAm,(kx ,ky ,kz)
CBM u2 is

plotted as a function ofkx . Each diamond symbol represents on
(kx ,ky ,kz) point. The value ofPk

CBM at theG point is 0.9136, and
the sum of all points equals 1.~b! The VCA alloy energies for
different compositionsx. The vertical dashed line corresponds
x50.7 for Ga0.7Al0.3As.
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existence or absenceof intervalley coupling, this is often
discussed in the literature by considering the overall symm
try of the composite system.10,11This type of analysis can be
used, for example, to explain10 why theG1c-X1c anticrossing
gap is zero for oddn ~Fig. 1!, while the anticrossing gap fo
G1c-X3c is zero for evenn. But the applicability of the
symmetry-based analysis is limited to highly symmet
composite systems. In many cases, such as the alloy sy
illustrated in Fig. 2~a!, the overall symmetry is too low to be
useful in this respect. Regarding~ii !, themagnitude and scal-
ing of intervalley coupling is important for understand
ing optical bowing in alloys,8,9 the indirect optical
transition without phonon interaction,1,12 the resonant inter-
valley tunneling in quantum well electron transmission13

and the characteristic pressure-induced changes of ph
luminescence.14,2 Regarding~iii !, the size scaling ofE(g,g8)
is related to the order of the transition from direct to indire
gaps. If E(G,X)→0, for infinite alloy supercells, then th
G→X transition in AlxGa12xAs asx changes is first order.4

Otherwise, it is second order.
Here we will analyze the magnitudes and scalings of

tervalley couplings for alloys and superlattices. We find th
the magnitude of intervalley coupling comes from a ‘‘majo
ity contribution’’ and a ‘‘minority contribution.’’ In the case
of alloys, whether or not the majority contribution is zero
determined by a selection rule we derived@Eq. ~10! below#.
When the majority contribution is not zero, the magnitude
the intervalley coupling is 20–100 times larger than the ca
where the majority contribution is zero and the intervall
coupling scales as 1/AV, whereV is the volume of super-
cell. In the cases of simple superlattices, we find that
majority contribution is always small, due to a vanishin
overlap function@Eq. ~7! below#. In these cases, the interva
ley coupling comes from the minority contribution term
and it scales as 1/n, wheren is the period of the superlattice

II. MAJORITY AND MINORITY CONTRIBUTIONS
TO INTERVALLEY COUPLING

It is useful to define a ‘‘majority representation’’ for
given eigenstate of the composite system using the spe
expansion of Eq.~1!. As shown in Fig. 2~a! ~computational
details will be given in Sec. III!, a single zinc-blende wave
vector ~k5G, and in fact a single zinc-blende stateG1c!
contributes more than 90% of the total weight to the all
Ḡ-type CBM. ThisG1c constituent state will thus be referre
as the ‘‘majority representation’’ of theḠ alloy state. A simi-
lar analysis of theḠ-type CBM of the ~GaAs!96/~AlAs!96
superlattice at zero pressure is shown in Fig. 3. We see
although the spectral functionPk

CBM5(muAm,k
CBMu2 peaks at

the zinc-blende wave vectork50, the single zinc-blende
state (G1c) accounts for only 43% of the total spectr
weight. Including the threek points aroundG ~enclosed box
in Fig. 3! accounts for 93% of the total weight, where
inclusion of fivek points accounts for 99.6% of the total. T
elaborate on this discussion, we separate the right-hand
of Eq. ~1! into two terms:

c~ i !~r !5(
dk

An0 ,k01dk
~ i ! fn0 ,k01dk

VCA 1(
n,k

8An,k
~ i ! fn,k

VCA~r !.

~2!

m
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56 12 397MAGNITUDE AND SIZE SCALING OF INTERVALLEY . . .
The first term is limited to the neighborhooddk of k0 and
gives the ‘‘majority representation.’’dk equals zero for al-
loys ~Fig. 2!, but includes a few points for superlattices~Fig.
3!. We will useg5(n0 ,k0) to denote the constituent bas
function at the center of the majority representation.

The anticrossing gapE(g,g8) between the statesc ( i )

@with a majority contributiong5(n0 ,k0)# and c ( j ) @with a
majority contributiong85(n08 ,k08)# is

E~g,g8!52^c~ i !uV~r !uc~ j !&52 (
dk,dk8

An0 ,k01dk
~ i !* An

08 ,k
081dk8

~ j !

3^fn0 ,k01dk
VCA uV~r !ufn

08 ,k
081dk8

VCA
&

1 (
n,n8,k,k8

8R~n,n8,k,k8!, ~3!

where V(r ) is the total potential of the composite syste
and the sums overk and k’ are centered aroundk0 and k08
(k08Þk0), respectively, with noncommon domains. In E
~3!, the first term comes from the majority representat
term in Eq.~2!, while R(n,n8,k,k8) includes the residuals.

We will first discuss ways to estimate the magnitude
the first term in Eq.~3! under a simplified but common as
sumption about the potentialV(r ) ~we will discuss the pos-
sible errors of this assumption in Sec. VI!: We will assume
that the effective potential is given by a linear superposit
of overlapping~but not necessarily spherical! atomic poten-
tials DVAB(r ) on ideal, unrelaxed lattice sitesR0. We con-
sider a composite system made of a zinc-blende lattice w
NA A atoms,NB B atoms ~both cation! and NA1NB5N
anionsC. UsingV(r ;NA ,NB) to denote the total potential o
this system, we consider the form

V~r ;NA ,NB!5V~r ;0,N!1(
RA

0
DVAB~r2RA

0 !, ~4!

whereV(r ,0,N) is the total potential of the pureBC crystal,
and RA

0 is the ideal~unrelaxed! cation atomic position of
atom A.DVAB(r ) is the change in potential due to a subs
tuation of oneB atom with oneA atom.DVAB(r ) is assumed
to be independent of the local environment aroundRA

0 . Un-

FIG. 3. The spectral analysis@Eq. ~1!# of the Ḡ-like CBM state
of a ~GaAs!96/~AlAs!96 ~001! superlattice. P(kx ,ky ,kz)

CBM

5(muAm,(kx ,ky ,kz)
CBM u2 is plotted as a function ofkx , andky5kz50

for this supercell. ThePk value at theG point is 0.43.
,

n

f

n

th

der this assumption,DVAB(r ) must have Td symmetry
around its origin. This is clear that if we setNA51, then
DVAB(r )5V(r ;1,N21)2V(r ;0,N), which hasTd symme-
try. Equation ~4! is satisfied, e.g., by common empiric
pseudopotential15–17 or other non-self-consistent potenti
schemes when there is no atomic relaxations.

Substituting Eq.~4! into Eq.~3! gives an anticrossing ga

E~g,g8!52^c~ i !uVuc~ j !&52F~g,g8!V~g,g8!

12 (
n,n8,k,k8

8R8~n,n8,k,k8!. ~5!

Here

F~g,g8!5 (
dk,dk8

An0 ,k01dk
~ i !* An

08 ,k
081dk8

~ j !
S~k02k081dk2dk8!

~6!

is an envelope overlap function, and

S~k!5
1

N (
RA

0
eik•RA

0
~7!

is a structure factor, while the VCA intervalley couplin
element is

V~g,g8!5N^fg
VCAuDVAB~r !ufg8

VCA&. ~8!

Also note that, if we usefg
VCA , fg8

VCA to replacec ( i ) and
c ( j ) in Eq. ~5!, we have a single-k-point ~SKP! anticrossing
gap,

ESKP~g,g8!52^fg
VCAuV~r !ufg8

VCA&52S~k02k08!V~g,g8!.
~9!

We have introduced the quantityN into Eqs.~7! and ~8!,
which is the total number of primary cells in the system,
ensure thatV(g,g8) is an intensive quantity~independent of
the system size!. TheR8(n,n8,k,k8) term in Eq.~5! contains
the residualsR of Eq. ~3!, and additional residual term
which are produced when we replacefn0 ,k01dk

VCA with fn0 ,k0

VCA

in the evaluation of Eq.~8! in the cases of superlattices. W
will call the first term in Eq.~5! the majority contribution to
the intervalley coupling, while the residual termR8 in Eq. ~5!
the minority contribution.

From the above definitions we can now derive the cen
result of this section. We define ourX1c and X3c states by
choosing the origin of the point group operation at the an
site. As a result, in the systems we studied here, the low
conduction band state atX point is theX1c ~anionS1cation
P) and the next lowest state is theX3c ~cationS1anionP!.
For mixed-cation alloys, we find thatV(g,g8) of the follow-
ing pairs are exactly zero for the potential of Eq.~4!:

V~G1c ,X1c!5V~G1c ,L3c!5V~X1c
x ,X1c

y !5V~X1c
x ,X3c

y !50.
~10!

@For V(X1c
x ,X1c

y ) andV(X1c
x ,X3c

y ), (x,y) can be replaced by
(x,z) or (y,z)#. For mixed-anion alloys, we need to ex
changeX1c with X3c in Eq. ~10!. These selection rules can b
derived by considering the symmetries offg

VCA and theTd

symmetry of DVAB(r ) in Eq. ~8!. We see that for
superposition-type potentials without lattice relaxation, t
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12 398 56LIN-WANG WANG AND ALEX ZUNGER
entire intervalley coupling between the states of Eq.~10!
originates from the minority representation of the wave fu
tions. On the other hand, for other pairs of states, we ha
nonzero majority contribution to the coupling@provided that
the overlap factorF(g,g8) is not zero#.

In the remainder of this paper, we will show that we c
distinguish two main types of intervalley couplings:

~i! Large majority contribution in alloy (‘‘strong cou-
pling’’): This is the coupling between the ‘‘VCA-allowe
pairs’’ @e.g., G1c-X3c , G1c-L1c , X1c-L1c , X1c-L3c , and
X3c

x -X3c
y which are not in Eq.~10!#. We will see that, in

alloys, where the coupling states are extended and ha
large overlapF(g,g8), the majority term alone, using th
model potential, can explain the full coupling quantitative
The full coupling will be calculated by a direct diagonaliz
tion technique~see Sec. III!, while the model coupling will
be represented by the leading terms of Eqs.~5!–~10!. Evalu-
ating the structure factorS(k02k08) using the random distri-
bution of A atoms in Eq.~7!, we have

Emaj
alloy~g,g8!52F~g,g8!V~g,g8!>2S~k02k08!V~g,g8!

5A8x~12x!

N
V~g,g8!, ~11!

which scales as 1/AV, where V}N is the volume of the
system andx is the alloy composition of constituentA. Note
that, for an alloy, this majority contribution term coincide
with the single-k-point anticrossing gap of Eq.~9!. We will
see later that this is no longer true for superlattices.

~ii ! Small majority contribution (‘‘weak coupling’’):
There are two cases where this happens:~a! Couplings be-
tween the ‘‘VCA-forbidden’’ states of Eq.~10! in an alloy
system. In this case, the majority contribution is exactly ze
and the entire coupling comes from the minority contrib
tion. We found that in these cases the magnitude of the c
pling is 20–100 times smaller than in the strong-coupl
case.~b! Intervalley couplings in simple superlattices. Th
majority contributions of these couplings are always sm
due to a vanishing overlap factorF(g,g8) stemming from
the localization of the wave functions. The magnitude of
coupling scales as 1/n3, wheren is the period of the super
lattice.

III. DIRECT CALCULATIONS OF THE INTERVALLEY
COUPLINGS

To examine the different models of intervalley couplin
we need benchmark accurate calculations. To do so,
solve the single-particle Schro¨dinger equation

@2 1
2 ¹21V~r ;NA ,NB!#c~ i !~r !5e ic

~ i !~r !, ~12!

using a superposition of atomic screened pseudopotentia16

V~r ;NA ,NB!5 (
a5A,B,C

(
Ra

va~ ur2Rau!. ~13!

Here va(r ) is the screened pseudopotential fitted17 to bulk
band structures and band offsets. Previous calculations u
the same empirical pseudopotentials model~EPM! yield su-
-
a

a

.

,
-
u-

ll

e

,
e

:

ing

perlatticeG-X couplings close to experimental values.18 The
alloy optical bowing parameters calculated using these
pirical pseudopotentials also agree well with experimen
results.19,20For bulkAC andBC crystals, the wave functions
are close to self-consistent local-density approximation21,17

results.
We use two methods to solve the single-particle Sch¨-

dinger equation~12!: For systems containing up to 30 00
atoms, we have used the ‘‘folded spectrum metho
~FSM!.22 Instead of solving the original HamiltonianĤ, this
method solves the folded Hamiltonian (Ĥ2e ref)

2, wheree ref
is a reference energy placed inside the band gap. The c
putational effort of this method scales linearly to the size
the system. For systems containing more than 30 000~and up
to a few million! atoms, the folded spectrum method b
comes too expensive to use. For these cases, we have u
‘‘linear combination of bulk bands’’~LCBB! method.18 This
method expands the system eigenstate wave functions b
constituent bulk Bloch wave functions at manyk points. By
selecting the physically important basis functions, we c
diagonalize a million-atom system by using a few thousa
basis functions. The resulting eigenvalues have errors of
a few meV with respect to a full basis~e.g., the FSM! ap-
proach. The intervalley coupling amplitudes obtained w
the LCBB method are very close to the ‘‘exact’’ results o
tained with the folded spectrum method for systems wh
both methods can be applied.

Being able to calculate the eigenstates and eigenvalue
a given system, the intervalley coupling is obtained by p
forming a few calculations of Eq.~12! at different pressures
The anticrossing curves shown in the inset of Fig. 1
obtained and the anticrossing gapE(g,g8) is measured di-
rectly from the curves. The wavefunctions can also be p
jected to the VCA basis to obtain the spectral analysis sho
in Figs. 2 and 3.

IV. INTERVALLEY COUPLINGS IN ALLOYS:
STRONG OR WEAK COUPLINGS ACCORDING

TO SELECTION RULE

A. Size scaling

Figure 4 shows the magnitudes of thedirectly calculated
G1c-X1c and G1c-X3c anticrossing gaps~symbols! for the
Ga0.5Al0.5As alloys as a function of the supercell size, ran
ing from N5104– 106 atoms. We assume unrelaxed atom
sites and a superposition potential. We see that, as poi
out by Koiller and Capaz,4 the G-X coupling E(g,g8) ap-
proaches zero for an infinitely large alloy supercell. Th
implies that the optical transition changes abruptly from
direct transition to an indirect transition when theG and X
states cross each other.4,23 For finite supercells,E(g,g8) is
not zero, and thus can be measured experimentally from
optical transition. The finite supercell size of the alloy can
realized by the confinement of the wave functions, either d
to natural composition fluctuation in ideal alloys,24 or
through controlled growth of alloy quantum dots.25 The mag-
nitude ofE(g,g8) can also be estimated from our model: t
solid line in Fig. 4 shows the predicted curve for the co
figuration averaged magnitude of theG1c-X3c coupling by
considering only the majority contribution term@Eq. ~11!#.
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56 12 399MAGNITUDE AND SIZE SCALING OF INTERVALLEY . . .
We useV(G1c ,X3c)50.374 eV, obtained from our wave-
functions. This gives ~for x50.5 alloy composition!
Emaj

alloy(G1c ,X3c)51.06/AN eV, which agrees well with the
directly calculated values~Fig. 4!, demonstrating that in this
case, the contribution of the minority representation~in-
cluded in the direct calculation, but omitted in the mod
calculation! is small.

B. Why is G1c-X3c coupling stronger than G1c-X1c

It is clear from Fig. 4 that theG1c-X3c anticrossing gap
~‘‘strong coupling’’! is 20–100 times larger than theG1c-X1c
results~‘‘weak coupling’’!. This can be explained by the fac
that the majority contribution of theG1c-X1c coupling in Eq.
~5! is zero according to Eq.~10!, while, for G1c-X3c cou-
pling, it is not zero.

C. L 1c minority representation

Figure 2~a! shows that the largestminority representation
to the Ga0.7Al0.3As alloy comes fromL, not X. This is sur-
prising since at this composition the energy level ofX1c are
closer toG1c than the level ofL1c @Fig. 2~b!#. This phenom-
enon can be explained using perturbation theory. When
majority representation has a large coefficient, the spec
expansion formula in Eq.~2! can be further simplified as

calloy~r !>Agfg
VCA1 (

~n,k!Þg
An,kfn,k

VCA . ~14!

The minority amplitudesAn,k can be obtained approximately
using first-order perturbation theory,

An,k'
^fg

VCAuVufn,k
VCA&

en,k
VCA2eg

VCA . ~15!

We see that the minority representationAn,k is directly pro-
portional to ^fg

VCAuVufn,k
VCA&5F(g,g8)V(g,g8), which is

the majority contribution term to the anticrossing gap in E

FIG. 4. The directly calculated anticrossing gapsE(G1c ,X1c)
and E(G1c ,X3c) ~symbols! for random Ga0.5Al0.5As alloys at dif-
ferent supercell sizes. The solid line is the majority contribution
theE(G1c ,X3c) from Eq.~11! @with V(G1c ,X3c)50.374 eV for the
pseudopotentials used here#. The dashed line is drawn to guide the
eye.
l

e
al

.

~11!. We can now see that the spectral densityPk
5(muAm,ku2 is small aroundk5X. First, X3c couples only
weakly into the alloy CBM, sinceeVCA(X3c) is far above
eVCA(G1c), so the energy denominator in Eq.~15! is large.
As a result, we can ignore the contribution ofX3c state in Eq.
~14!. Furthermore, according to Eq.~10!, ^fG1c

VCAuVufX1c

VCA& is

exactly zero. Thus the correspondingAn,k for X1c should
also be very small~nonzero value comes only from secon
order perturbation effects!. Thus Pk5(muAm,ku2 is small
aroundX. On the other hand,Pk aroundL is much larger
and forms a peak, because the corresponding coupling is
required to be zero by Eq.~10!. Using V(G1c ,L1c)
50.467 eV calculated from our EPM potential, andeL1c

VCA

2eG1c

VCA50.091 eV from Fig. 2~b!, from Eqs.~11! and ~15!

we obtain thatAL1c

2 50.6731023, which is close to the di-

rectly calculated result of 0.5731023, as shown in Fig. 2~a!.
Thus, in the cation-mixed alloys, theḠ-like CBM has a ma-
jority representation originating from zinc blendeG1c , and a
minority representation originating fromL1c .

D. Effect of intervalley coupling on alloy optical bowing

The existence of minorityAn,k terms for (n,k)Þg in Eq.
~14! contributes significantly to the bowing of the allo
valence-band maximum~VBM ! and CBM states. The bow
ing coefficientbtot is defined in the following description o
the alloy energy:

E~x!5E01ax2btotx~12x!, ~16!

wherex is the alloy composition andE0 is the energy for one
constituent crystal corresponding tox50. The bowing coef-
ficient btot can be divided into contributions from VCA state
~intrinsic bowing! and contributions from intervalley
coupling8 ~repulsion effect!: btot5bVCA1bcoupl. The inter-
valley coupling effect can be expressed as a second-o
perturbation term9 @bcoupl5DEg /x(12x)#:

DEg5x~12x!
1

N (
nk

uV~r ,nk!u2

eg2enk
, ~17!

f

FIG. 5. The anticrossing gapsE(G1c ,X1c) andE(G1c ,X3c) for
(GaAs)n /(AlAs) n superlattices of different periods n, using diffe
ent empirical pseudopotentials. The type-II EPM results corresp
to real physical situations for GaAs/AlAs systems. The upper cu
is the single-k-point prediction of Eq.~9!.
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TABLE I. Magnitudes of single-k-point intervalley coupling~in meV! ^fg
VCAuV(r )ufg8

VCA& evaluated
using VCA wave functions. The potentialV(r ) is obtained using a cubic supercell containing 64 atoms.
values in the upper half of the table are predicted to be zero by superposition assumption Eq.~4!, under which
^fg

VCAuV(r )ufg8
VCA&5S(k02k08)V(g,g8) @Eq. ~9!#. RMS stands for root mean square values. ‘‘NZ’’ in th

last column stands for ‘‘not zero.’’

g2g8

^fguVufg8&
Ga0.5Al0.5As

LDA ~unrelaxed!

^fguVufg8&
In0.5Ga0.5As

EPM ~unrelaxed!

^fguVufg8&
In0.5Ga0.5As

EPM ~relaxed! S
^fguDvufg8&

V(g,g8)

G1c2X1c
x 0.046 0 24.55 4

32 0
G1c2X1c

y 0.027 0 7.46 12
32 0

G1c2X1c
z 20.042 0 22.84 0 0

X1c
x 2X1c

y 20.020 0 23.49 0 0
X1c

x 2X1c
z 20.147 0 9.06 12

32 0
X1c

y 2X1c
z 20.008 0 24.74 4

32 0

G1c2L3c
(111̄)(1) 20.004 0 23.11 8

32 0

G1c2L3c
(111̄)(2) 0.029 0 23.07 8

32 0

X1c
x 2X3c

y 0.004 0 21.07 0 0
X1c

y 2X3c
x 0.003 0 20.75 0 0

G1c2X3c
z 20.01 0 0.79 0 NZ

X3c
x 2X3c

y 20.04 0 1.49 0 NZ

L1c
(111̄)2X1c

z 0.24 0 4.91 0 NZ

L1c
(111̄)2X3c

z 20.28 0 23.64 0 NZ

RMS 0.109 0 4.33

G1c2X3c
x 38.78 8.65 210.67 4

32 NZ
G1c2X3c

y 116.40 25.96 232.60 12
32 NZ

X3c
x 2X3c

z 139.70 236.16 123.30 12
32 NZ

X3c
y 2X3c

z 46.56 212.05 40.86 4
32 NZ

G1c2L1c
(111̄) 291.18 238.35 26.52 8

32 NZ

L1c
(111̄)2L1c

( 1̄11) 149.60 1.19 19.80 12
32 NZ

L1c
(111̄)2X1c

x 19.70 218.68 2.18 4
32 NZ

L1c
(111̄)2X1c

y 19.48 218.68 1.21 4
32 NZ

L1c
(111̄)2X3c

x 237.45 210.86 220.00 4
32 NZ

L1c
(111̄)2X3c

y 237.64 210.86 226.21 4
32 NZ

RMS 84.27 21.46 44.25
rs
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whereV(r ,nk) is just theV(g,g8) of Eq. ~8!. This second-
order perturbation in eigenenergy corresponds to the fi
order perturbation in wave function of Eq.~15!. If we neglect
the intervalley coupling, i.e., if we use only the majori
representation stateg as the alloy wave function, we obtai
btot5bVCA . In the case of GaxAl12xAs, we find thatbVCA
520.38 eV for theG1c-G15v energy gap, while the experi
mental result isbtot

expt50.37 eV.26 This large discrepancy is
due to bcoupl5btot2bVCA . In our current supercell calcula
tion, btot50.45 eV,20 which is close to the experimental re
sult. The large differencebVCA2btot comes mainly from in-
tervalley couplings in the conduction band. If we separ
the band gapbtot into bCBM2bVBM , we find that

bVBM520.05, bCBM520.43: VCA,

bVBM520.05, bCBM50.78: Coupling,

bVBM520.10, bCBM50.35: Total. ~18!
t-

e

Here ubCBM~coupl!u@ubVBM~coupl!u; this is because the in
tervalley coupling is much stronger in the conduction ba
than in the valence band. Using the selection rule of Eq.~10!,
we can further analyze that thebCBM~coupl! of the alloyG1c
state is mainly due to minority representation atL1c , instead
of minority representation atX1c .

V. INTERVALLEY COUPLINGS IN SUPERLATTICES:
WEAK COUPLING DUE TO SMALL OVERLAP

FUNCTION F „g,g8…

A. Why is G-X coupling weaker in superlattices than in alloys

In Fig. 1, we see the magnitudes of the anticrossing g
of theG1c-X3c andG1c-X1c pairs in~001! (AlAs) n /(GaAs)n
superlattices. Although in the superlattice theG1c-X3c cou-
pling is larger than theG1c-X1c coupling, surprisingly the
difference is not as large as in the case of the Ga0.5Al0.5As
random alloy~Fig. 4!, where the ratio was 20–100. To se
how much of theG1c-X3c coupling comes from the majority
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contribution, we compare in Fig. 5 the directly calculat
G1c-X3c anticrossing gap with the results obtained using
single-k-point coupling of Eq.~9!. In the alloy, this single-
k-point coupling represented the majority contribution ter
and thus agreed well with the directly calculated results~Fig.
4!. But in superlattices, the single-k-point result is much
larger~5–100 times! than the directly calculated results. Fu
thermore, while the results of the single-k-point coupling
scale in superlattice as 1/n, wheren is the superlattice pe
riod, our directly calculatedG1c-X3c andG1c-X1c couplings
scale as 1/n3. We find that these differences are due to t
localization of the superlattice statesc ( i ) andc ( j ). As a re-
sult, the extended single-k-point VCA statesfg

VCA andfg8
VCA

cannot be used to representc ( i ) andc ( j ) adequately: Due to
the localization ofc ( i ) and c ( j ) states, the overlap functio
F(G,X) has a small magnitude.F(G,X) can be estimated
using envelope functions of an effective-mass model. If
barrier of the effective-mass model is infinity,F(G,X) is
zero. If the barrier if finite, analytical solutions lead
F(G,X)}1/n3. This explains the 1/n3 scaling in Fig. 5.

B. Effect of type-I/type-II band offsets on coupling

In a GaAs/AlAs system, the conduction-band energies
the constituents have the following alignment:eGaAs(G1c)
,eAlAs(G1c), eGaAs(X1c).eAlAs(X1c), and eGaAs(X3c)
.eAlAs(X3c). Thus the superlattice state induced fromG1c is
localized in the GaAs region, while the superlattice sta
induced fromX1c andX3c are localized in the AlAs region
This band-level alignment is called ‘‘type-II’’ alignment.27

In type-II systems, the overlap functionF(G,X) has contri-
butions only from the interface, and has 1/n3 scaling for
largen, which explains the 1/n3 scaling of theG1c-X3c cou-
pling as shown in Fig. 5. Since the overall interaction b
tween the two localized states is proportional to the over
between their envelope-function overlaps, the residual t
in Eq. ~5! also scales as 1/n3, which explains whyG1c-X1c
also scales as 1/n3.

The above discussions involve intervalley couplings
tween two states that are localized in different regio
~type-II alignment!. We would like to know what happen
when theG and X states are localized in the same regi
~type-I alignment!.27 To study this, we have deliberatel
changed the pseudopotentialva of Eq. ~13!, so that
eGaAs(G1c),eAlAs(G1c), eGaAs(X1c),eAlAs(X1c), and
eGaAs(X3c),eAlAs(X3c). Thus theG1c , X1c , andX3c states
are now all localized in the GaAs region. To compare res
with the original type-II case, we also fittedV(G1c ,X3c)
50.401 eV, close to the original EPM value of 0.374 e
We ensured that the Ga-Al atomic pseudopotential diff
ences in the reciprocal space are similar to those in the o
nal potentials. The type-IG1c-X3c andG1c-X1c anticrossing
gaps are plotted in Fig. 5. Their values are seen to be la
than the type-II results by a factor of 1.5–2, but they s
have the same 1/n3 scaling. The value of theG1c-X3c anti-
crossing gap is still much smaller than the single-k-point
results. This indicates that the majority contribution of t
G1c-X3c coupling in Eq.~5! is still much smaller than the
single-k-point result. This is again due to the small value
the overlap functionF(g,g8) (}1/n3), caused by the phas
e
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factor exp@i(kG2kX)•r # in the evaluation of Eq.~6!. This
again can be proved using the envelope function of
effective-mass model.

In conclusion the majority contribution of the intervalle
coupling of one-dimensional~1D! superlattices is always
much smaller than the single-k-point result. This is due to the
small value ofF(g,g8), regardless whether the band alig
ment is type I or II. The resulting superlattice anticrossi
gaps scale as 1/n3, wheren is the period of the superlattice
Although we do not explicitly study quantum wires an
quantum dots in this paper, we point out that the above c
clusion is also true for 2D quantum wires and 3D quant
dots,18 wheren is the linear dimension~not the area or vol-
ume! of the nanostructure.

However, this conclusion is no longer true
there is ad layer in the superlattice. This is demonstrat
by placing one monolayer of AlAs in the middle o
GaAs region in the ~GaAs!97/~AlAs!97 superlattice
@→~GaAs!48~AlAs!1~GaAs!48~AlAs!97#. Using the type-I
EPM, the G1c-X3c anticrossing gap increases 100 time
from the original 0.19 meV to 23 meV. This is due to th
increase ofF(g,g8); thus the increase of the majority con
tribution. On the other hand, theG1c-X1c anticrossing is 1.6
meV, much smaller than theG1c-X3c result. This is due to
the still vanished majority contribution ofG1c-X1c according
to Eq. ~10!.

VI. NONSUPERPOSITION EFFECTS
ON INTERVALLEY COUPLING

Our analytical model involves the use of selection ru
Eq. ~10!. This rule is satisfied under the assumption of
superpositional potential of unrelaxed atoms, i.e., Eq.~4!.
Here we will test the validity of this approximation, i.e., th
effects of self-consistent potential and atomic relaxations
Eq. ~4!.

A. Effects of self-consistency on superposition assumption

We use the self-consistent local density approximat
~LDA ! ~Ref. 21! to generate potentialV(r ;NA ,NB). The
self-consistent potential can no longer be written as the s
of the atomic potentials as in Eq.~4!. Instead of checking Eq
~4! directly @which might be subjected to the uncertainty
the definition ofDVAB(r2RA

0 )#, we choose to evaluate th
quantity ^fg

VCAuV(r )ufg8
VCA&5ESKP(g,g8)/2 of Eq. ~9!. By

checking the values of thoseESKP(g,g8)’s which are pre-
dicted to be zero by Eqs.~4! and~9!, we know how much the
superposition assumption@Eq. ~4!# is violated.

We use a 64-atom random Ga0.5Al0.5As supercell with
unrelaxed atomic positions. This system is large enough
contain many different local Ga and Al arrangements; thu
is useful to test Eq.~4! under these different situations. Su
percell LDA potential VLDA(r ;NA ,NB) and zinc-blende
LDA VCA wave functions are used to evalua
^fg

VCAuVufg8
VCA&. The results are shown in the second c

umn of Table I. In the analytical model@Eq. ~9!#, the values
of the upper half of Table I~case I! are predicted to be zero
either because ofV(g,g8)50 from Eq. ~10!, or because of
S(k02k08)50. In the direct LDA calculation,
^fg

VCAuVufg8
VCA& is not zero, but it is small: the root-mean



e

rm
s

ly

oe
e

b-

ed
f
ta
i

bl
le
nd
t
e

I
v
te

en
et

.

f

g
a

he

ral

m

-

p-

d
n-
e

ro

s,
the

e
al-

ter-

he
by

e

c-

m
to

ic

by

12 402 56LIN-WANG WANG AND ALEX ZUNGER
square~rms! value for the LDA results is 0.11 meV. On th
other hand, the values at the lower half of Table I~case II!
are not predicted to be zero by symmetry; they have a
value of 84 meV, about 1000 times larger than the value
case I. So, the violation of the superposition assumption@Eq.
~4!# due to the self-consistent potential is very small, on
0.1% as measured by the^fg

VCAuVufg8
VCA& values.

B. Effects of atomic relaxation on superposition assumption

As we see above, the self-consistent LDA potential d
not violate Eq.~4! very much. Thus, here we will use th
EPM to generate the total potentialV(r ;NA ,NB). We calcu-
lated an In0.5Ga0.5As 64-atom supercell with the same su
stitutional configuration as the above Ga0.5Al0.5As system
(Ga→In, Al→Ga!. We used valence-force-field~VFF! ~Ref.
28! method to relax the atomic positions. The fully relax
atomic positions have average displacements of 0.13 Å
anions, and 0.05 Å for cations. Note that although the to
potential can be written as a summation of the atom
screened potentials as in Eq.~13!, Eq. ~4! which uses unre-
laxed ideal positionRA

0 @instead of the relaxed positionRA as
in Eq. ~13!# is now not satisfied. As before,^fg

VCAuVufg8
VCA&

is calculated using the EPM VCA wave functionsfg
VCA and

fg8
VCA . The results are reported in the fourth column of Ta

I. As we can see, the rms value in the upper part of Tab
~case I! is about 4.3 meV, much larger than the correspo
ing LDA value without atomic relaxation. But it is still abou
ten times smaller than the rms value of 44 meV in the low
part of Table I~case II!.

C. Error of superposition assumption as a function
of the relaxation magnitude

For comparison, thêfg
VCAuVufg8

VCA& ’s of the unrelaxed
In0.5Ga0.5As system are also reported in column 3 of Table
We see that the values in the lower part of Table I ha
changed dramaticly after the system was relaxed. It is in
esting to know hoŵ fg

VCAuVufg8
VCA& ’s change as functions

of the magnitudes of the relaxations. To achieve differ
degrees of relaxations, we have changed the VFF param
as follow:

PA~B!8 5 1
2 ~PA1PB!6 1

2 a~PA2PB!, ~19!

where the1/2 sign is for A and B atoms, respectively
Thus, whena50, there is no relaxation, and whena51,
there is full relaxation. The resultinĝfg

VCAuVufg8
VCA& ’s as

functions of the degree of relaxationsa are shown in Fig. 6.
From Fig. 6, we found that~i! For the (g,g8) pairs of case I,
the ^fg

VCAuVufg8
VCA& ’s are mainly second-order functions o

a. ~ii ! For the (g,g8) of case II, thê fg
VCAuVufg8

VCA& ’s are
mainly linear functions ofa with fairly large slopes.

VII. CONCLUSIONS

In this paper, we have calculated the intervalley couplin
for alloys and superlattices. Empirical pseudopotentials
used to construct the total potential@Eq. ~13!# and the single-
particle Schrodinger’s equation@Eq. ~12!# is solved for su-
percells containing up to a few million atoms, using t
s
of

s

or
l

c

e
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-

r

.
e
r-
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ers

s
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folded spectrum method22 and the linear combination of bulk
band method.18 A model @Eqs. ~5!–~10!# of the magnitudes
of the intervalley coupling is provided based on spect
analysis of the wave functions@Eq. ~2!#. The magnitude of
the coupling can be divided into a majority contribution ter
and a minority contribution term@Eq. ~5!#. The majority con-
tribution term 2F(g,g8)V(g,g8) is determined by a selec
tion rule on V(g,g8) @Eq. ~10!# and the magnitude of the
overlap functionF(g,g8) @Eq. ~6!#. In general, there are two
cases of the intervalley couplings:~i! ‘‘ Strong coupling,’’
whereF(g,g8) is not small andV(g,g8) is not zero, thus
the majority contribution is dominant and large. This ha
pens for G1c-X3c , G1c-L1c , X1c-L1c , X1c-L3c , and
X3c

x -X3c
y couplings in cation-mixed alloys.~ii ! ‘‘ Weak cou-

pling,’’ where the majority contribution is zero or small, an
thus the intervalley coupling comes from the minority co
tribution ~or the majority and the minority contributions hav
comparable magnitudes!. This happens for~a! ‘‘VCA forbid-
den’’ G1c-X1c , G1c-L3c , X1c

x -X1c
y , and X1c

x -X3c
y couplings

in cation-mixed alloys. Here the majority contribution is ze
becauseV(g,g8)50, due to the selection rule of Eq.~10!.
~b! All intervalley couplings in simple superlattices, wire
and dots. Here the majority contribution is small because
small value ofF(g,g8) due to the localization of the wav
functions ~regardless whether the coupling states are loc
ized in the same place or in different places!.

Regarding the magnitudes and size scalings of the in
valley couplings, we found the following:~1! The strong
G1c-X3c coupling in a Ga0.5Al0.5As alloy scales as 1/AV,
whereV is the volume of the system. This scaling and t
magnitude of the coupling can be described quantitatively
the majority contribution term~which in this case, equals th
single-k-point results!. ~2! Weak G1c-X1c coupling in a
Ga0.5Al0.5As alloy is 20–100 times smaller than theG1c-X3c
coupling. Its majority contribution is zero due to the sele
tion rule of Eq.~10!. ~3! For the Ga0.7Al0.3As alloy, the CBM
has aG-point majority representation peak in its spectru
Pk

CBM , and anL-point minority representation peak, due

FIG. 6. ^fg
VCAuVufg8

VCA& ’s as functions of the degree of atom
relaxationsa @Eq. ~19!#. The system is a 64-atom In0.5Ga0.5As alloy
supercell as in Table I. The solid lines are predicted to be zero
superposition assumption of Eqs.~4!, ~9!, and~10!. They are mainly
second-order functions ofa.



ts

n
e

a
m

an

his
ni-

n-
-
am-
be

L.
p-

der

56 12 403MAGNITUDE AND SIZE SCALING OF INTERVALLEY . . .
the selection rule of Eq.~10!. This minority representation is
important in order to obtain the correct bowing coefficien
of the alloy eigenstates.~4! In a simple superlattice
(GaAs)n /(AlAs) n , bothG1c-X1c andG1c-X3c couplings are
weak coupling, due to the vanishing overlap factorF(g,g8)
caused by wave-function localization. The coupling mag
tudes scale as 1/n3. They are 5–100 times smaller than th
single-k-point coupling ~which describes well the ‘‘strong
couplings’’ in alloys!. This is true for both type-I and -II
band alignments in nanostructures.~5! The selection rule of
Eq. ~10! can be violated in reality due to the fact that re
potentials are not describable by the superposition assu
tion Eq.~4!. We find that this leads to a violation by Eq.~10!
is 0.1%~measured by the magnitude of^fg

VCAuVufg8
VCA&! due

to self-consistency in LDA calculation, and 10% due to
J

i-

l
p-

average 0.13 Å atomic relaxation. The magnitude of t
violation is roughly a second-order function of the mag
tude of the atomic relaxations.

Finally, throughout this paper, we discussed only catio
mixed ~or cation-substituted! systems. In the case of anion
mixed system, the same conclusions about the relative
plitudes between different intervalley couplings can
obtained after we exchange the notations ofX1c andX3c .
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